Chapter 7. Jordan Content and Integration

7.1 Definition: A (closed, n-dimensional) rectangle in \mathbb{R}^{n} is a set of the form

$$
R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]=\left\{x \in \mathbb{R}^{n} \mid a_{j} \leq x_{j} \leq b_{j} \text { for each index } j\right\}
$$

where each $a_{j}, b_{j} \in \mathbb{R}$ with $a_{j}<b_{j}$. The size of the above rectangle R is

$$
|R|=\prod_{j=1}^{n}\left(b_{j}-a_{j}\right)
$$

A partition X of the above rectangle R consists of a partition $X_{j}=\left\{x_{j, 0}, x_{j, 1}, \cdots, x_{j, \ell_{j}}\right\}$ with

$$
a_{j}=x_{j, 0}<x_{j, 1}<\cdots<x_{j, \ell_{k}}=b_{j}
$$

for each index j. The above partition X divides the rectangle R into sub-rectangles R_{k}, where $k=\left(k_{1}, k_{2}, \cdots, k_{n}\right) \in \mathbb{R}^{n}$ with $1 \leq k_{j} \leq \ell_{j}$ for each index j, and where

$$
R_{k}=\left[x_{1, k_{1}-1}, x_{1, k_{1}}\right] \times\left[x_{2, k_{2}-1}, x_{2, k_{2}}\right] \times \cdots \times\left[x_{n, k_{n}-1}, x_{n, k_{n}}\right] .
$$

If Y is another partition, given by $Y_{j}=\left\{y_{j, 0}, \cdots, y_{j, m_{j}}\right\}$, then we say that Y is finer than X (or that X is coarser than Y) when $X_{j} \subseteq Y_{j}$ for each index j.
7.2 Example: Note that a 1-dimensional rectangle in \mathbb{R}^{1} is a line segment and its size is its length, a 2-dimensional rectangle in \mathbb{R}^{2} is a rectangle and its size is its area, and a 3 -dimensional rectangle in \mathbb{R}^{3} is a rectangular box and its size is its volume.
7.3 Note: When R is a rectangle in \mathbb{R}^{n} and X and Y are any two partitions of R, the partition Z given by $Z_{j}=X_{j} \cup Y_{j}$ is finer that both X and Y.
7.4 Note: When R is a rectangle in \mathbb{R}^{n} and X is a partition given by $X_{j}=\left\{x_{j, 0}, \cdots, x_{j, \ell_{j}}\right\}$, then letting $K=K(X)=\left\{k \in \mathbb{Z}^{n} \mid 1 \leq k_{j} \leq \ell_{j}\right.$ for all $\left.j\right\}$, we have

$$
\begin{aligned}
\sum_{k \in K}\left|R_{k}\right| & =\sum_{1 \leq k_{1} \leq \ell_{1}} \sum_{1 \leq k_{2} \leq \ell_{2}} \cdots \sum_{1 \leq k_{n} \leq \ell_{n}} \prod_{j=1}^{n}\left(x_{j, k_{j}}-x_{j, k_{j}-1}\right) \\
& =\prod_{j=1}^{n} \sum_{1 \leq k_{j} \leq \ell_{j}}\left(x_{j, k_{j}}-x_{j, k_{j}-1}\right)=\prod_{j=1}^{n}\left(x_{j, \ell_{j}}-x_{j, 0}\right) \\
& =\prod_{j=1}^{n}\left(b_{j}-a_{j}\right)=|R| .
\end{aligned}
$$

7.5 Definition: Let $A \subseteq \mathbb{R}^{n}$ be bounded. For a partition X of a rectangle R with $A \subseteq R$, we define the upper (or outer) volume estimate of A with respect to X, and the lower (or inner) volume estimate of A with respect to X, to be

$$
U(A, X)=\sum_{R_{k} \cap \bar{A} \neq \emptyset}\left|R_{k}\right|=\sum_{k \in I}\left|R_{k}\right| \quad \text { and } \quad L(A, X)=\sum_{R_{k} \subseteq A^{\circ}}\left|R_{k}\right|=\sum_{k \in J}\left|R_{k}\right|
$$

where $I=I(A, X)=\left\{k \in K \mid R_{k} \cap \bar{A} \neq \emptyset\right\}$ and $J=J(A, X)=\left\{k \in K \mid R_{k} \subseteq A^{o}\right\}$ with $K=K(X)=\left\{k \in \mathbb{Z}^{n} \mid 1 \leq k_{j} \leq \ell_{j}\right.$ for each $\left.j\right\}$.
7.6 Theorem: (Basic Properties of Upper and Lower Volume Estimates) Let $A \subseteq \mathbb{R}^{n}$ be bounded, let R be a rectangle in \mathbb{R}^{n} with $A \subseteq R$, and let X and Y be partitions of R.
(1) If Y is finer than X then $0 \leq L(A, X) \leq L(A, Y) \leq U(A, Y) \leq U(A, X) \leq|R|$.
(2) $0 \leq L(A, X) \leq U(A, Y) \leq|R|$.
(3) $U(A, X)-L(A, X)=U(\partial A, X)$.

Proof: To prove Part 1, suppose that Y is finer than X. Note that each of the subrectangles R_{k} for the partition X is itself further partitioned into smaller sub-rectangles which are sub-rectangles for the partition Y, and denote these smaller sub-rectangles by $S_{k, 1}, \cdots, S_{k, m_{k}}$. Then we have

$$
U(A, X)=\sum_{k \in I}\left|R_{k}\right| \text { and } U(A, Y)=\sum_{k \in I} \sum_{j \in J_{k}}\left|S_{k, j}\right|
$$

where I is the set of $k \in K(X)$ such that $R_{k} \cap \bar{A} \neq \emptyset$ and J_{k} is the set of $j \in\left\{1,2, \cdots, m_{j}\right\}$ such that $S_{k, j} \cap \bar{A} \neq \emptyset$. By Note 7.4 , we have $\sum_{j=1}^{m_{k}}\left|S_{k, j}\right|=\left|R_{k}\right|$, and so

$$
U(A, Y)=\sum_{k \in I} \sum_{j \in J_{k}}\left|S_{k, j}\right| \leq \sum_{k \in I} \sum_{j=1}^{m_{j}}\left|S_{k, j}\right|=\sum_{k \in I}\left|R_{k}\right|=U(A, X)
$$

and also $U(A, X)=\sum_{k \in I}\left|R_{k}\right| \leq \sum_{k \in K(X)}\left|R_{k}\right|=|R|$. Thus we have $U(A, Y) \leq U(A, X) \leq|R|$. The proof that $L(A, X) \leq L(A, Y)$ is similar, and it is clear that $0 \leq L(A, X)$ and easy to see that $L(A, Y) \leq U(A, Y)$.

Note that Part 2 follows from Part 1 because, given any partitions X and Y for R, we can choose a partition Z which is finer than both X and Y, and then we have

$$
0 \leq L(A, X) \leq L(A, Z) \leq U(A, Z) \leq U(A, Y) \leq|R|
$$

Finally, to prove Part 3, note that

$$
U(A, X)-L(A, X)=\sum_{k \in L}\left|R_{k}\right| \text { and } U(\partial A, X)=\sum_{k \in M}\left|R_{k}\right|
$$

where L is the set of indices $k \in K(X)$ such that $R_{k} \cap \bar{A} \neq \emptyset$ and $R_{k} \nsubseteq A^{o}$, and M is the set of indices $k \in K(X)$ such that $R_{k} \cap \partial A \neq \emptyset$ (since ∂A is closed so that $\overline{\partial A}=\partial A$). We shall show that $K=M$. When $A=\emptyset$ we have $K=M=\emptyset$, so suppose $A \neq \emptyset$. If $k \in L$, that is if $R_{k} \cap \bar{A} \neq \emptyset$ and $R_{k} \nsubseteq A^{o}$ then we must have $R_{k} \cap \partial A \neq \emptyset$ because R_{k} is connected (indeed, if we had $R_{k} \cap \partial A=\emptyset$ then R_{k} would be separated by the disjoint nonempty open sets A^{o} and \bar{A}^{c} : note that we have $A^{o} \neq \emptyset$ because $R_{k} \cap \bar{A} \neq \emptyset$, and we have $\bar{A}^{c} \neq \emptyset$ because $R_{k} \nsubseteq A^{o}$) and hence $L \subseteq M$. If $k \in M$, that is if $R_{k} \cap \partial A \neq \emptyset$ then, since $\partial A \subseteq \bar{A}$ we have $R_{k} \cap \bar{A} \neq \emptyset$, and since A^{o} and ∂A are disjoint we have $R_{k} \nsubseteq A^{o}$, and hence $k \in M$. Thus $K=M$, as required.
7.7 Definition: Let $A \subseteq \mathbb{R}^{n}$ be bounded. We define the upper (or outer) volume (or Jordan content), and the lower (or inner) volume (or Jordan content), of A to be
$U(A)=\inf \{U(A, X) \mid X$ is a partition of some rectangle R with $A \subseteq R\}$
$L(A)=\sup \{L(A, X) \mid X$ is a partition of some rectangle R with $A \subseteq R\}$.
7.8 Theorem: (Basic Properties of Upper and Lower Volumes) Let $A \subseteq \mathbb{R}^{n}$ be bounded.
(1) If R is any rectangle with $A \subseteq R$ then $U(A)=\inf \{U(A, X) \mid X$ is a partition of $R\}$.
(2) $U(A)-L(A)=U(\partial A)$.

Proof: Given a rectangle R with $A \subseteq R$, let $U_{R}(A)=\inf \{U(A, X) \mid X$ is a partition of $R\}$. To prove Part 1, it suffices to show that for any two rectangles R, S in \mathbb{R}^{n} which contain A, we have $U_{R}(A)=U_{S}(A)$. Let R and S be rectangles in \mathbb{R}^{n} which contain A, say $R=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ and $S=\left[c_{1}, d_{1}\right] \times \cdots \times\left[c_{n}, d_{n}\right]$.

Suppose first that $R \subseteq S$ with $c_{j}<a_{j}$ and $b_{j}<d_{j}$. Given any partition Y of S, we can extend Y to a finer partition Z of S by adding the endpoints of R, that is by letting $Z_{j}=Y_{j} \cup\left\{a_{j}, b_{j}\right\}$, and then we can restrict Z to a partition X of R as follows: if, for a fixed index j, we have $Z_{j}=\left\{z_{0}, \cdots, z_{k}, \cdots, z_{\ell}, \cdots, z_{m}\right\}$ with $z_{0}=c_{j}, z_{k}=a_{j}, z_{\ell}=b_{j}$ and $z_{m}=d_{j}$, then we take $X_{j}=\left\{z_{k}, \cdots, z_{\ell}\right\}$. Then we have $U(A, X) \leq U(A, Z) \leq U(A, Y)$. Since for every partition Y of S there exists a corresponding partition X of R for which $U(A, X) \leq U(A, Y)$, it follows that
$\inf \{U(A, X) \mid X$ is a partition of $R\} \leq \inf \{U(A, Y) \mid Y$ is a partition of $S\}$,
that is $U_{R}(A) \leq U_{S}(A)$. Now let $\epsilon>0$ and suppose that we are given a partition X of R. Choose s_{j} and t_{j} with $c_{j}<s_{j}<a_{j}$ and $b_{j}<t_{j}<b_{j}$ so that for the rectangle $T=\left[s_{1}, t_{1}\right] \times \cdots \times\left[s_{n}, t_{n}\right]$ we have $|T|-|R| \leq \epsilon$. Extend the partition X of R to the partition Y of S by adding the endpoints of S and T, that is by letting $Y_{j}=X_{j} \cup\left\{c_{j}, s_{j}, t_{j}, d_{j}\right\}$. Note that the sub-rectangles of S which intersect with \bar{A} include all of the sub-rectangles of R which intersect with \bar{A} together with some of the sub-rectangles which lie in T but not R, and so we have $U(A, Y) \leq U(A, X)+|T|-|R| \leq U(A, X)+\epsilon$. Since for each partition X of R there is a corresponding partition Y of S for which $U(A, Y) \leq U(A, X)+\epsilon$, it follows that
$\inf \{U(A, Y) \mid Y$ is a partition of $S\} \leq \inf \{U(A, X) \mid X$ is a partition of $R\}+\epsilon$,
that is $U_{S}(A) \leq U_{R}(A)+\epsilon$, and since $\epsilon>0$ was arbitrary, it follows that $U_{S}(A) \leq U_{R}(A)$. Thus we have proven that $U_{R}(A)=U_{S}(A)$ in the case that $R \subseteq S$ with $c_{j}<a_{j}<b_{j}<d_{j}$.

In the general case that $R=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ and $S=\left[c_{1}, d_{1}\right] \times \cdots \times\left[c_{n}, d_{n}\right]$ are any rectangles which both contain A, we can choose a rectangle $T=\left[s_{1}, t_{1}\right] \times \cdots \times\left[s_{n}, t_{n}\right]$ with $s_{j}<\min \left\{a_{j}, c_{j}\right\}$ and $t_{j}>\max \left\{b_{j}, d_{j}\right\}$, and then we can apply the result of the above paragraph to obtain $U_{R}(A)=U_{T}(A)=U_{S}(A)$, as required, proving Part 1 .

Let us prove Part 2. Given any partition X of any rectangle R containing A, we have $U(A)-L(A) \leq U(A, X)-L(A, X)=U(\partial A, X)$, and hence (by taking the infemum on both sides) $U(A)-L(A) \leq U(\partial A)$. It remains to show that $U(A)-L(A) \geq U(\partial A)$. Let $\epsilon>0$. Choose a rectangle R containing A, and choose a partition X of R such that $L(A)-\epsilon<L(A, X) \leq L(A)$. By Part 1, we can choose a partition Y of the same rectangle R such that $U(A) \leq U(A, Y)<U(A)+\epsilon$. Let Z be a partition of R which is finer than both X and Y. Then we have $L(A)-\epsilon<L(A, X) \leq L(A, Z)$ and $U(A, Z) \leq U(A, Y)<U(A)+\epsilon$ and hence $U(\partial A) \leq U(\partial A, Z)=U(A, Z)-L(A, Z)<U(A)-L(A)+2 \epsilon$. Since $\epsilon>0$ was arbitrary, we have $U(\partial A) \leq U(A)-L(A)$, as required.
7.9 Theorem: For bounded sets $A, B \subseteq \mathbb{R}^{n}$, we have $U(A \cup B) \leq U(A)+U(B)$.

Proof: First we note that for any sets $A, B \subseteq \mathbb{R}^{n}$ we have $\overline{A \cup B}=\bar{A} \cup \bar{B}$: Indeed, since $A \subseteq A \cup B$ and $B \subseteq A \cup B$ we have $\bar{A} \subseteq \overline{A \cup B}$ and $\bar{B} \subseteq \overline{A \cup B}$ so that $\bar{A} \cup \bar{B} \subseteq \overline{A \cup B}$. On the other hand, since $A \subseteq \bar{A}$ and $B \subseteq \bar{B}$, we have $A \cup B \subseteq \bar{A} \cup \bar{B}$ and so, since $\bar{A} \cup \bar{B}$ is closed, and contains $A \cup B$, it follows that $\overline{A \cup B} \subseteq \bar{A} \cup \bar{B}$.

Let $A, B \subseteq \mathbb{R}^{n}$ be bounded. Let R be a rectangle which contains $A \cup B$. Let $\epsilon>0$. Choose a partition X of R so that $U(A) \leq U(A, X)+\frac{\epsilon}{2}$ and $U(B) \leq U(B, X) \leq \frac{\epsilon}{2}$ (we can do this by Part 1 of Theorems 7.8 and 7.6: let Y be a partition of R such that $U(A) \leq U(A, Y)+\frac{\epsilon}{2}$ let Z be a partition of R such that $U(B) \leq U(B, Z)+\frac{\epsilon}{2}$, then let X be a partition finer than both Y and $Z)$. Let $K=K(X)$, let $I(A \cup B)=I(A \cup B, X)$, $I(A)=I(A, X)$ and $I(B)=I(B, X)$, as in Definition 7.5. Since $\overline{A \cup B}=\bar{A} \cup \bar{B}$, for each index $k \in K$ we have
$k \in I(A \cup B) \Longleftrightarrow R_{k} \cap \overline{A \cup B} \neq \emptyset \Longleftrightarrow\left(R_{k} \cap \bar{A}\right) \cup\left(R_{k} \cap \bar{B}\right) \neq \emptyset \Longleftrightarrow(k \in I(A)$ or $k \in I(B))$,
$U(A \cup B, X)=\sum_{k \in I(A \cup B)}\left|R_{k}\right| \leq \sum_{k \in I(A)}\left|R_{k}\right|+\sum_{k \in I(B)}\left|R_{k}\right|=U(A, X)+U(B, X) \leq U(A)+U(B)+\epsilon$.
Since $U(A \cup B, X) \leq U(A)+U(B)+\epsilon$ for all partitions X of R, it follows (from Part 1 of Theorem 7.8) that $U(A \cup B) \leq U(A)+U(B)+\epsilon$, and since $\epsilon>0$ was arbitrary, it follows that $U(A \cup B) \leq U(A)+U(B)$, as required.
7.10 Definition: Let $A \subseteq \mathbb{R}^{n}$ be bounded. We say that A has well-defined volume (or Jordan content), or that A is Jordan measurable, or that A is a Jordan region, when $U(A)=L(A)$, or equivalently (by Part 2 of Theorem 7.8) when $U(\partial A)=0$. In this case, we define the (n-dimensional) volume of A (or the Jordan content) of A to be

$$
\operatorname{Vol}(A)=U(A)=L(A)
$$

7.11 Theorem: Every rectangle R in \mathbb{R}^{n} is Jordan measurable with $\operatorname{Vol}(R)=|R|$.

Proof: Let $R=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ be a ractangle in \mathbb{R}^{n}. By Note 7.4 , we have $U(R, X)=|R|$ for every partition X of R, so by Part 1 of Theorem 7.8, it follows that $U(R)=|R|$. By Part 2 of Theorem 7.8, we have $U(R)-L(R)=U(\partial R) \geq 0$ so that $L(R) \leq U(R)$. Let $\epsilon>0$. Choose a rectangle S of the form $S=\left[c_{1}, d_{1}\right] \times \cdots \times\left[c_{n}, d_{n}\right]$ with $a_{1}<c_{1}$ and $d_{1}<b_{1}$ (so that $S \subseteq R^{o}$) such that $|R|-|S|<\epsilon$. Let X be the partition of R given by $X_{j}=\left\{a_{j}, c_{j}, d_{j}, b_{j}\right\}$. Since S is a sub-rectangle for this partition with $S \subseteq R^{o}$ we have $L(R, X) \geq|S|$, and so $L(R) \geq L(R, X) \geq|S|>|R|-\epsilon$. Since $\epsilon>0$ was arbitrary, it follows that $L(R) \geq|R|$. Thus we have $L(R)=|R|=U(R)$.
7.12 Theorem: (Properties of Jordan Content) Let $A, B \subseteq \mathbb{R}^{n}$ be Jordan measurable.
(1) If $A \subseteq B$ then $\operatorname{Vol}(A) \leq \operatorname{Vol}(B)$.
(2) A^{o} and \bar{A} are Jordan measurable with $\operatorname{Vol}\left(A^{o}\right)=\operatorname{Vol}(A)=\operatorname{Vol}(\bar{A})$.
(3) $A \cup B, A \cap B$ and $A \backslash B$ are Jordan measurable with $\operatorname{Vol}(A \backslash B)=\operatorname{Vol}(A)-\operatorname{Vol}(A \cap B)$ and $\operatorname{Vol}(A \cup B)=\operatorname{Vol}(A)+\operatorname{Vol}(B)-\operatorname{Vol}(A \cap B)$. If $A \cap B=\emptyset$ then $\operatorname{Vol}(A \cup B)=\operatorname{Vol}(A)+\operatorname{Vol}(B)$.

Proof: To prove Part 1, suppose that $A \subseteq B$. Let R be a rectangle containing B and let X be a partition of R into the sub-rectangles R_{k} with $k \in K(X)$. Since $A \subseteq B$, we have $\bar{A} \subseteq \bar{B}$, so for $k \in K(X)$, if $R_{k} \cap \bar{A} \neq \emptyset$ then $R_{k} \cap \bar{B} \neq \emptyset$. This shows that $I(A, X) \subseteq I(B, X)$ and hence $U(A, X)=\sum_{k \in I(A, X)}\left|R_{k}\right| \leq \sum_{k \in I(B, X)}\left|R_{k}\right|=U(B, X)$. Since $U(A, X) \leq U(B, X)$ for every partition X of R, we have $U(A) \leq U(B)$ (by Part 1 of Theorem 7.8). Since A and B are measurable, this means that $\operatorname{Vol}(A) \leq \operatorname{Vol}(B)$, as required.

Let us prove Part 2. Since A^{o} is open we have $\left(A^{o}\right)^{o}=A^{o}$, and since $A^{o} \subseteq A$ we have $\overline{A^{o}} \subseteq \bar{A}$, and hence $\partial\left(A^{o}\right)=\overline{A^{o}} \backslash\left(A^{o}\right)^{o}=\overline{A^{o}} \backslash A^{o} \subseteq \bar{A} \backslash A^{o}=\partial A$. Since $\partial A^{o} \subseteq \partial A$ we have $U\left(\partial A^{o}\right) \leq U(\partial A)$ (by Part 1), and since A is measurable we have $U(\partial A)=0$. Thus $U\left(\partial A^{o}\right)=0$ so that A^{o} is Jordan measurable. Similarly, we have $\overline{\bar{A}}=\bar{A}$ and $A^{o} \subseteq \bar{A}^{o}$ so that $\partial \bar{A}=\overline{\bar{A}} \backslash \bar{A}^{o}=\bar{A} \backslash \bar{A}^{0} \subseteq \bar{A} \backslash A^{o}=\partial A$ and hence $U(\partial \bar{A}) \leq U(\partial A)=0$ so that \bar{A} is Jordan measurable. Now let R be a rectangle containing A and let X be a partition of R. From the definition of $U(A, X)$ it is immediate that $U(A, X)=U(\bar{A}, X)$, and from the definition of $L(A, X)$ it is immediate that $L(A, X)=L\left(A^{o}, X\right)$. Since this holds for all partitions X of R, we have $U(A)=U(\bar{A})$ and $L(A)=L\left(A^{\circ}\right)$. Since A is measurable, this gives $L\left(A^{o}\right)=L(A)=U(A)=U(\bar{A})$, and since A^{o} and \bar{A} are measurable, this gives $\operatorname{Vol}\left(A^{o}\right)=\operatorname{Vol}(A)=\operatorname{Vol}(\bar{A})$, as required.

We move on to the proof of Part 3. To prove that $A \cup B$ is Jordan measurable, we note that $\partial(A \cup B) \subseteq \partial A \cup \partial B$: indeed, recall (as shown in the proof of Theorem 7.9) that $\overline{A \cup B}=\bar{A} \cup \bar{B}$. Also note that since $A \subseteq A \cup B$ and $B \subseteq A \cup B$ we have $A^{o} \subseteq(A \cup B)^{o}$ and $B^{o} \subseteq(A \cup B)^{o}$ so that $A^{o} \cup B^{o} \subseteq(A \cup B)^{o}$. Thus

$$
\begin{aligned}
x \in \partial(A \cup B) & \Longrightarrow x \in \overline{A \cup B} \text { and } x \notin(A \cup B)^{o} \\
& \Longrightarrow x \in \bar{A} \cup \bar{B} \text { and } x \notin A^{o} \cup B^{o} \\
& \Longrightarrow\left(x \in \bar{A} \text { and } x \notin A^{o}\right) \text { and }\left(x \in \bar{B} \text { and } x \notin B^{o}\right) \\
& \Longrightarrow x \in \partial A \cup \partial B .
\end{aligned}
$$

Since $\partial(A \cup B) \subseteq \partial A+\partial B$, Theorem 7.9 gives $U(\partial(A \cup B)) \leq U(\partial A)+U(\partial B)$. Since A and B are Jordan measurable so that $U(\partial A)=0$ and $U(\partial B)=0$, we also have $U(\partial(A \cup B))=0$ so that $A \cup B$ is Jordan measurable. We can prove that $A \cap B$ and $A \backslash B$ are measuable in the same way, by showing that $\partial(A \cap B) \subseteq \partial A \cup \partial B$ and $\partial(A \backslash B) \subseteq \partial A \cup \partial B$, and we leave this as an exercise.

It remains to prove the various volume formulas. First, suppose that $A \cap B=\emptyset$. We know, from Theorem 7.9 that $U(A \cap B) \leq U(A)+U(B)$. Let R be a rectangle which contains $A \cup B$, and let X be a partition of R such that $L(A, X) \geq L(A)-\frac{\epsilon}{2}$ and $L(B, X) \geq L(B)-\frac{\epsilon}{2}$. Since $A^{o} \subseteq A \subseteq A \cup B \subseteq \overline{A \cup B}$, it follows that if $k \in J\left(A^{o}, X\right)$, that is if $R_{k} \subseteq A^{0}$, then we have $R_{k} \subseteq \overline{A \cup B}$ so that $R_{k} \cap \overline{A \cup B} \neq \emptyset$, that is $k \in I(A \cap B, X)$, so we have $J(A, X) \subseteq I(A \cup B, X)$. Similarly, since $B^{o} \subseteq \overline{A \cup B}$, we have $J(B, X) \subseteq I(A \cup B, X)$. Also note that since $A \cap B=\emptyset$, we also have $A^{o} \cap B^{o}=\emptyset$, so it is not possible to have both $R_{k} \subseteq A^{o}$ and $R_{k} \subseteq B^{o}$, and it follows that $J(A, X) \cap J(B, X)=\emptyset$. Thus

$$
U(A \cup B, X)=\sum_{k \in I(A \cap B, X)}\left|R_{k}\right| \geq \sum_{k \in J(A, X)}\left|R_{k}\right|+\sum_{k \in J(B, X)}\left|R_{k}\right|=L(A, X)+L(B, X) \geq L(A)+L(B)-\epsilon
$$

Since $U(A \cup B, X) \geq L(A)+L(B)-\epsilon$ for all partitions X of R, and since $\epsilon>0$ was arbitrary, we have $U(A \cup B) \geq L(A)+L(B)$. Together with Theorem 7.9, this gives

$$
L(A)+L(B) \leq U(A \cup B) \leq U(A)+U(B)
$$

Since $L(A)=U(A)=\operatorname{Vol}(A)$ and $L(B)=U(B)=\operatorname{Vol}(B)$ and $U(A \cup B)=\operatorname{Vol}(A \cup B)$, we have proven that, if $A \cap B=\emptyset$ then $\operatorname{Vol}(A \cup B)=\operatorname{Vol}(A)+\operatorname{Vol}(B)$.

Finally, we note that the other two formulas (which apply whether or not A and B are disjoint), follow from the special case of disjoint sets: Indeed, the set A is the disjoint union $A=(A \backslash B) \cup(A \cap B)$, so we have $\operatorname{Vol}(A)=\operatorname{Vol}(A \backslash B)+\operatorname{Vol}(A \cap B)$, and $A \cup B$ is the disjoint union $A \cup B=(A \backslash B) \cup(B \backslash A) \cup(A \cap H)$ so that $\operatorname{Vol}(A \cup B)=$ $\operatorname{Vol}(A \backslash B)+\operatorname{Vol}(B \backslash A)+\operatorname{Vol}(A \cap B)=\operatorname{Vol}(A)+\operatorname{Vol}(B)-\operatorname{Vol}(A \cap B)$.
7.13 Definition: A cube in \mathbb{R}^{n} is a rectangle $Q=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ in \mathbb{R}^{n} with equal side lengths, that is with $b_{k}-a_{k}=b_{\ell}-a_{\ell}$ for all $k \neq \ell$.
7.14 Theorem: (Alternate Characterizations of Outer Jordan Content) Let $A \subseteq \mathbb{R}^{n}$ be bounded. Then

$$
\begin{aligned}
U(A) & =\inf \left\{\sum_{j=1}^{m}\left|R_{j}\right| \mid R_{1}, R_{2}, \cdots, R_{m} \text { are rectangles } A \subseteq \bigcup_{j=1}^{m} R_{j}\right\} \\
& =\inf \left\{\sum_{j=1}^{m}\left|Q_{j}\right| \mid Q_{1}, Q_{2}, \cdots, Q_{m} \text { are cubes of equal size with } A \subseteq \bigcup_{j=1}^{m} Q_{j}\right\} .
\end{aligned}
$$

Proof: Let

$$
\begin{aligned}
& \mathcal{R}=\left\{\sum_{R_{k} \cap \bar{A} \neq \emptyset}^{m}\left|R_{k}\right| \mid X \text { is a partition of some rectangle } R \text { with } A \subseteq R\right\} \\
& \mathcal{S}=\left\{\sum_{j=1}^{m}\left|R_{j}\right| \mid R_{1}, R_{2}, \cdots, R_{m} \text { are rectangles with } A \subseteq \bigcup_{j=1}^{m} R_{j}\right\}, \text { and } \\
& \mathcal{T}=\left\{\sum_{j=1}^{m}\left|Q_{j}\right| \mid Q_{1}, Q_{2}, \cdots, Q_{m} \text { are squares of equal size with } A \subseteq \bigcup_{j=1}^{m} Q_{j}\right\} .
\end{aligned}
$$

and note that $U(A)=\inf \mathcal{R}$. We leave the proof that $U(A)=\inf \mathcal{S}$ as an exercise, and we prove that $U(A)=\inf \mathcal{T}$. When Q_{1}, \cdots, Q_{m} are cubes of equal size with $A \subseteq \bigcup_{k=1}^{m} Q_{k}$, we know that $U(A) \leq \sum_{k=1}^{m}\left|Q_{k}\right|$ by Theorem 7.9, and hence $U(A) \leq \inf \mathcal{S}$. It remains to show that $\inf \mathcal{S} \leq U(A)$.

Let $\epsilon>0$. Choose a rectangle R with $A \subseteq R$, and choose a partition X of R into sub-rectangles R_{k} such that $U(A, X) \leq U(A)+\frac{\epsilon}{2}$. Let k_{1}, \cdots, k_{m} be the values of k for which $R_{k} \cap \bar{A} \neq \emptyset$, so we have $\bar{A} \subseteq \bigcup_{i=1}^{m} R_{k_{i}}$ and $\sum_{i=1}^{m}\left|R_{k_{i}}\right|=U(A, X) \leq U(A)+\frac{\epsilon}{2}$. For each index i, choose a rectangle S_{i} with $R_{k_{i}} \subseteq S_{i}$ such that the endpoints of all the component intervals of all the rectangles S_{i} are rational and $\sum_{i=1}^{m}\left|S_{i}\right| \leq \sum_{i=1}^{m}\left|R_{k_{i}}\right|+\frac{\epsilon}{2}$. Let d be a common denominator of all the endpoints of all the rectangles S_{i}, and partition each rectangle S_{i} into cubes $Q_{i, 1}, Q_{i, 2}, \cdots, Q_{i, \ell_{i}}$ all with sides of length $\frac{1}{d}$. Then we have $A \subseteq \bigcup_{i=1}^{m} S_{i}=\bigcup_{i=1}^{m} \bigcup_{j=1}^{\ell_{i}} Q_{i, j}$ and

$$
\sum_{i=1}^{m} \sum_{j=1}^{\ell_{i}}\left|Q_{i, j}\right|=\sum_{i=1}^{m}\left|S_{i}\right| \leq \sum_{i=1}^{m}\left|R_{k_{i}}\right|+\frac{\epsilon}{2} \leq U(A)+\epsilon
$$

Thus $\inf \mathcal{S} \leq U(A)+\epsilon$. Since $\epsilon>0$ was arbitrary, we have $\inf \mathcal{S} \leq U(a)$, as required.
7.15 Definition: For a map $g: A \subseteq \mathbb{R}^{n} \rightarrow B \subseteq \mathbb{R}^{m}$, we say that g is Lipschitz continuous on A when there is a constant $c \geq 0$ such that $|g(x)-g(y)| \leq c|x-y|$ for all $x, y \in A$, and we say that g is open when $g(U)$ is open in B for every open set U in A.
7.16 Theorem: Let $A \subseteq \mathbb{R}^{n}$ be bounded and let $g: A \rightarrow \mathbb{R}^{n}$ be Lipschitz continuous.
(1) If $U(A)=0$ and g is Lipschitz continuous then $U(g(A))=0$.
(2) If A is Jordan measurable and g is open then $g(A)$ is Jordan measurable.

Proof: The proof is left as an exercise.
7.17 Definition: Let $A \subseteq \mathbb{R}^{n}$ be a Jordan region and let $f: A \rightarrow \mathbb{R}$ be a bounded function. Let X be a partition of a rectangle R in \mathbb{R}^{n} which contains A, and let $R_{k}, k \in K$ be the sub-rectangles. Extend f to a function $g: R \rightarrow \mathbb{R}$ by defining $g(x)=f(x)$ when $x \in A$ and $g(x)=0$ when $x \in R \backslash A$. The upper Riemann sum of f on A for the partition X and the lower Riemann sum of f on A for X are given by

$$
U(f, X)=\sum_{k \in K} M_{k}\left|R_{k}\right| \text { and } L(f, X)=\sum_{k \in K} m_{k}\left|R_{k}\right|
$$

where $M_{k}=\sup \left\{g(x) \mid x \in R_{k}\right\}$ and $m_{k}=\inf \left\{f(x) \mid x \in R_{k}\right\}$. The upper integral of f on A and the lower integral of f on A are given by

$$
\begin{aligned}
U(f) & =\inf \{U(f, X) \mid X \text { is a partition of some rectangle } R \text { with } A \subseteq R\} \\
L(f) & =\sup \{L(f, X) \mid X \text { is a partition of some rectangle } R \text { with } A \subseteq R\} .
\end{aligned}
$$

We say that f is (Riemann) integrable on A when $U(f)=L(f)$ and, in this case, we define the (Riemann) integral of f on A to be

$$
\int_{A} f=\int_{A} f(x) d V=\int_{A} f\left(x_{1}, \cdots, x_{n}\right) d x_{1} d x_{2} \cdots d x_{n}=U(f)=L(f) .
$$

7.18 Theorem: (Properties of Upper and Lower Riemann Sums) Let $A \subseteq \mathbb{R}^{n}$ be a Jordan region, let $f: A \rightarrow \mathbb{R}$ be a bounded function, let R be a rectangle which contains A, and let X and Y be two partitions of R.
(1) If Y is finer than X then $L(f, X) \leq L(f, Y) \leq U(f, Y) \leq U(f, X)$.
(2) We have $L(f, X) \leq U(f, Y)$.

Proof: Let $g: R \rightarrow \mathbb{R}$ be the extension of f by zero. When $M_{k}=\sup \left\{g(x) \mid x \in R_{k}\right\}$ and $m_{k}=\inf \left\{g(x) \mid x \in R_{k}\right\}$, we have $m_{k} \leq M_{k}$ for all $k \in K=K(X)$ so that

$$
L(f, X)=\sum_{k \in K} m_{k}\left|R_{k}\right| \leq \sum_{k \in K} M_{k}\left|R_{k}\right|=U(f, X)
$$

Similarly, we have $L(f, Y) \leq U(f, Y)$.
Suppose that Y is finer than X. Note that each of the sub-rectangles R_{k} for the partition X is itself further partitioned into smaller sub-rectangles which are sub-rectangles for the partition Y, and denote these smaller sub-rectangles by $S_{k, 1}, \cdots, S_{k, m_{k}}$. Note that $\left|R_{k}\right|=\sum_{j=1}^{m_{k}}\left|S_{k, j}\right|$ by Note 7.4. Let $M_{k}=\sup \left\{g(x) \mid x \in R_{k}\right\}$ and $N_{k, j}=\sup \left\{g(x) \mid x \in S_{k, j}\right\}$. Since $R_{k}=\bigcup_{j=1}^{m_{k}} S_{k, j}$, we have $M_{k}=\max \left\{N_{k, j} \mid 1 \leq j \leq m_{k}\right\}$ and hence

$$
U(f, X)=\sum_{k \in K} M_{k}\left|R_{k}\right|=\sum_{k \in K} \sum_{j=1}^{m_{k}} M_{k}\left|S_{k, j}\right| \geq \sum_{k \in K} \sum_{j=1}^{m_{k}} N_{k, j}\left|S_{k, j}\right|=U(f, Y) .
$$

A similar argument shows that $L(f, X) \leq L(f, Y)$. This completes the proof of Part 1.
Part 2 follows from Part 1. Indeed, given any partitions X and Y of R, we can choose a partition Z which is finer than both X and Y, and then we have

$$
L(f, X) \leq L(f, Z) \leq U(f, Z) \leq U(f, Y)
$$

7.19 Theorem: (Properties of Upper and Lower Integrals) Let $A \subseteq \mathbb{R}^{n}$ be a Jordan region, and let $f: A \rightarrow \mathbb{R}$ be a bounded function.
(1) If R is any rectangle with $A \subseteq \mathbb{R}^{n}$ then $U(f)=\inf \{U(f, X) \mid X$ is a partition of $R\}$ and $L(f)=\sup \{L(f, X) \mid X$ is a partition of $R\}$.
(2) We have $L(f) \leq U(f)$.

Proof: To prove Part 1, imitate the proof of Part 1 of Theorem 7.8. Part 2 follows from Part 1 of this theorem together with Part 2 of the previous theorem.
7.20 Theorem: (Characterization of Integrability) Let $A \subseteq \mathbb{R}^{n}$ be a Jordan region, and let $f: A \rightarrow \mathbb{R}$ be a bounded function. Then f is integrable on A if and only if for every $\epsilon>0$ there exits a partition X of a rectangle R with $A \subseteq R$ such that $U(f, X)-L(f, X)<\epsilon$.

Proof: Suppose that f is integrable on A, so we have $U(f)=L(f)$. Let R be a rectangle with $A \subseteq R$. By Part 1 of Theorem 7.19, we can choose a partition Y of R such that $U(f, Y)<U(f)+\frac{\epsilon}{2}$, and we can choose a partition Z of R such that $L(f, Z)>L(f)-\frac{\epsilon}{2}$. Let X be a partition of R which is finer than both Y and Z. By Part 1 of Theorem 7.18, we have $U(f, X) \leq U(f, Y)$ and $L(f, X) \geq L(f, Z)$, and hence
$U(f, X)-L(f, X) \leq U(f, Y)-L(f, Z)<\left(U(f)+\frac{\epsilon}{2}\right)-\left(L(f)-\frac{\epsilon}{2}\right)=U(f)-L(f)+\epsilon=\epsilon$.
Suppose, conversely, that for every $\epsilon>0$ there exists a partition X of a rectangle R with $A \subseteq R$ such that $U(f, X)-L(f, X)<\epsilon$. Let $\epsilon>0$. Choose R and X so that $U(f, X)-L(f, X)<\epsilon$. By the definition of $U(f)$ and $L(f)$, we have $U(f) \leq U(f, X)$ and $L(f) \geq L(f, X)$, and so $U(f)-L(f) \leq U(f, X)-L(f, X)<\epsilon$. Since $U(f)-L(f)<\epsilon$ for every $\epsilon>0$, it follows that $U(f) \leq L(f)$. On the other hand, we have $U(f) \geq L(f)$ by Part 2 of Theorem 7.19. Thus $U(f)=L(f)$ so that f is integrable.
7.21 Theorem: (Continuity and Integrability) Let $A \subseteq \mathbb{R}^{n}$ be a Jordan region, and let $f: A \rightarrow \mathbb{R}$ be a bounded function. If f is uniformly continuous on A, then f is integrable.

Proof: Suppose that f is bounded and uniformly continuous on A. Choose a rectangle R with $A \subseteq R$ and $|R|>0$. Let $\epsilon>0$. Since f is bounded, we can choose $M>0$ so that $|f(x)| \leq M$ for all $x \in A$. Since f is uniformly continuous on A, we can choose $\delta>0$ such that for all $x, y \in A$, if $|x-y|<\delta$ then $|f(x)-f(y)|<\frac{\epsilon}{2|R|}$. Choose a partition X of R, into sub-rectangles R_{k}, which is fine enough so that firstly, we have $x, y \in R_{k} \Longrightarrow|x-y|<\delta$ and, secondly, we have $U(\partial A, X)=\sum_{R_{k} \cap \partial A \neq \emptyset}\left|R_{k}\right|<\frac{\epsilon}{2 M}$ (we can do this since $U(\partial A)=0$). Since \bar{A} is the disjoint union $\bar{A}=A^{o} \cup \partial A$, the rectangles R_{k} come in three varieties: $R_{k} \cap \bar{A}=\emptyset, R_{k} \cap \partial A \neq \emptyset$ or $R_{k} \subseteq A^{o}$. Let g be the extension of f by zero to R, and write $M_{k}=\sup \left\{g(x) \mid x \in R_{k}\right\}$ and $m_{k}=\inf \left\{g(x) \mid x \in R_{k}\right\}$. When $R_{k} \cap \bar{A}=\emptyset$, we have $g(x)=0$ for all $x \in R_{k}$, and so

$$
\sum_{R_{k} \cap \bar{A}=\emptyset}\left(M_{k}-m_{k}\right)\left|R_{k}\right|=0 .
$$

When $R_{k} \cap \partial A \neq \emptyset$ we have $|g(x)| \leq M$ for all $x \in R_{k}$ so that

$$
\sum_{R_{k} \cap \partial A \neq \emptyset}\left(M_{k}-m_{k}\right)\left|R_{k}\right| \leq 2 M \sum_{R_{k} \cap \partial A \neq \emptyset}\left|R_{k}\right|<\frac{\epsilon}{2} .
$$

When $R_{k} \subseteq A^{o}$, for all $x, y \in R_{k}$ we have $x, y \in A$ with $|x-y|<\delta$ so that $|g(x)-g(y)|=$ $|f(x)-f(y)|<\frac{\epsilon}{2|R|}$, and hence $M_{k}-m_{k} \leq \frac{\epsilon}{2|R|}$ so that

$$
\sum_{R_{k} \subseteq A^{\circ}}\left(M_{k}-m_{k}\right)\left|R_{k}\right| \leq \frac{\epsilon}{2|R|} \sum_{R_{k} \subseteq A^{\circ}}\left|R_{k}\right| \leq \frac{\epsilon}{2} .
$$

Thus

$$
U(f, X)-L(f, X)=\sum_{R_{k} \cap \bar{A}=\emptyset}\left(M_{k}-m_{k}\right)\left|R_{k}\right|+\sum_{R_{k} \cap \partial A \neq \emptyset}\left(M_{k}-m_{k}\right)\left|R_{k}\right|+\sum_{R_{k} \subseteq A^{\circ}}\left(M_{k}-m_{k}\right)\left|R_{k}\right|<\epsilon .
$$

Thus f is integrable, by Theorem 7.20.
7.22 Theorem: (Integration and Volume) If $A \subseteq \mathbb{R}^{n}$ is a Jordan region then

$$
\operatorname{Vol}(A)=\int_{A} 1 d V
$$

Proof: Suppose that A is Jordan measurable, so we have $U(A)=L(A)=\operatorname{Vol}(A)$. Let R be a rectangle with $A \subseteq R$. Let $f: A \rightarrow \mathbb{R}$ be the constant function $f(x)=1$, and let $g: R \rightarrow \mathbb{R}$ be the extension of f by zero. Choose a partition X of R, with sub-rectangles R_{k}, such that $U(A, X) \leq U(A)-\epsilon=\operatorname{Vol}(A)-\epsilon$ and $L(A, X) \geq L(A)-\epsilon=\operatorname{Vol}(A)-\epsilon$. Let $M_{k}=\sup \left\{g(x) \mid x \in R_{k}\right\}$ and $m_{k}=\inf \left\{g(x) \mid x \in R_{k}\right\}$. When $R_{k} \cap \bar{A}=\emptyset$ we have $g(x)=0$ for all $x \in R_{k}$ so that $M_{k}=0$, and for all k we have $M_{k} \leq 1$, and so

$$
U(f) \leq U(f, X)=\sum_{R_{k} \cap \bar{A} \neq \emptyset} M_{k}\left|R_{k}\right| \leq \sum_{R_{k} \cap \bar{A} \neq \emptyset}\left|R_{k}\right|=U(A, X) \leq \operatorname{Vol}(A)+\epsilon .
$$

When $R_{k} \subseteq A^{o}$ we have $g(x)=1$ for all $x \in R_{k}$ so that $m_{k}=1$, and for all k we have $m_{k} \geq 0$, and so

$$
L(f) \geq L(f, X) \geq \sum_{R_{k} \subseteq A^{\circ}} m_{k}\left|R_{k}\right|=\sum_{R_{k} \subseteq A^{o}}\left|R_{k}\right|=L(A, X) \geq \operatorname{Vol}(A)-\epsilon .
$$

Since $\operatorname{Vol}(A)-\epsilon \leq L(f) \leq U(f) \leq \operatorname{Vol}(A)+\epsilon$ for every $\epsilon>0$, we have $U(f)=L(f)=$ $\operatorname{Vol}(A)$, which means that f is integrable on A with $\int_{A} 1=\int_{A} f=\operatorname{Vol}(A)$, as required.
7.23 Theorem: (Linearity) Let $A \subseteq \mathbb{R}^{n}$ be a Jordan region and let $f, g: A \rightarrow \mathbb{R}$ be integrable. Then $f+g$ is integrable, and $c f$ is integrable for every $c \in \mathbb{R}$, and we have

$$
\int_{A}(f+g)=\int_{A} f+\int_{A} g \text { and } \int_{A} c f=c \int_{A} f
$$

Proof: The proof is left as an exercise.
7.24 Theorem: (Decomposition) Let A and B be Jordan regions in \mathbb{R}^{n} with $\operatorname{Vol}(A \cap B)=$ 0 , and let $f: A \cup B \rightarrow \mathbb{R}$ be bounded. Let $g: A \rightarrow \mathbb{R}$ be the restrictions of f to A and let $h: B \rightarrow \mathbb{R}$ be the restriction of f to B. Then f is integrable on $A \cup B$ if and only if g is integrable on A and h is integrable on B and, in this case, we have

$$
\int_{A \cup B} f=\int_{A} g+\int_{B} h
$$

Proof: The proof is left as an exercise.
7.25 Theorem: (Comparison) Let A be a Jordan region in \mathbb{R}^{n} and let $f, g: A \rightarrow \mathbb{R}$ be integrable. If $f(x) \leq g(x)$ for all $x \in A$ then $\int_{A} f \leq \int_{A} d$.
Proof: The proof is left as an exercise.
7.26 Theorem: (Absolute Value) Let A be a Jordan region in \mathbb{R}^{n} and let $f: A \rightarrow \mathbb{R}$ be integrable. Then the function $|f|$ is integrable and $\left|\int_{A} f\right| \leq \int_{A}|f|$.
Proof: The proof is left as an exercise.
7.27 Theorem: (Fubini's Theorem for a Rectangle in \mathbb{R}^{2}) Let $R=[a, b] \times[c, d] \subseteq \mathbb{R}^{2}$, and let $f: R \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be bounded. For each $x \in[a, b]$ define $g_{x}:[c, d] \rightarrow \mathbb{R}$ by $g_{x}(y)=f(x, y)$, and for each $y \in[c, d]$, define $h_{y}:[a, b] \rightarrow \mathbb{R}$ by $h_{y}(x)=f(x, y)$. Suppose that f is integrable on R, g_{x} is integrable on $[c, d]$ for every $c \in[a, b]$, and h_{y} is integrable on $[a, b]$ for every $y \in[c, d]$. Then

$$
\iint_{R} f(x, y) d A=\int_{x=a}^{b}\left(\int_{y=c}^{d} f(x, y) d y\right) d x=\int_{y=c}^{d}\left(\int_{x=a}^{b} f(x, y) d x\right) d y
$$

Proof: Since g_{x} and h_{y} are integrable, we can define $G:[a, b] \rightarrow \mathbb{R}$ and $H:[c, d] \rightarrow \mathbb{R}$ by

$$
G(x)=\int_{y=c}^{d} g_{x}(y) d y=\int_{y=c}^{d} f(x, y) d y \quad \text { and } \quad H(y)=\int_{x=a}^{b} h_{y}(x) d x=\int_{x=a}^{b} f(x, y) d x
$$

Let $\epsilon>0$ and choose a partition Z of R such that $U(f) \leq U(f, Z)<U(f)+\epsilon$. Say $Z_{1}=$ $X=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ with $a=x_{0}<x_{1}<\cdots<x_{n}=b$ and $Z_{2}=Y=\left\{y_{0}, y_{1}, \cdots, y_{m}\right\}$ with $c=y_{0}<y_{1}<\cdots<y_{m}=d$. For all indices i, j, let $R_{i, j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$ and let $M_{i, j}=\sup \left\{f(x, y) \mid(x, y) \in R_{i, j}\right\}$ so that $U(f, Z)=\sum_{i=1}^{n} \sum_{j=1}^{m} M_{i, j}\left(x_{i}-x_{i-1}\right)\left(y_{j}-y_{j-1}\right)$. Note that

$$
G(x)=\int_{y=c}^{d} f(x, y) d y=\sum_{j=1}^{m} G_{j}(x) \text { where } G_{j}(x)=\int_{y=y_{j-1}}^{y_{j}} f(x, y) d y
$$

and note that when $x \in\left[x_{i-1}, x_{i}\right]$ we have $G_{j}(x) \leq M_{i, j}\left(y_{j-1}-y_{j}\right)$. Also note that for any bounded maps $\phi, \psi:[a, b] \rightarrow \mathbb{R}$ we have $U((\phi+\psi), X) \leq U(\phi, X)+U(\psi, X)$ because $\sup \left\{\phi(x)+\psi(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\} \leq \sup \left\{\phi(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\}+\sup \left\{\psi(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\}$. Thus we have

$$
\begin{aligned}
U(G, X) & =U\left(\sum_{j=1}^{m} G_{j}, X\right) \leq \sum_{j=1}^{m} U\left(G_{j}, X\right) \\
& =\sum_{j=1}^{m} \sum_{i=1}^{n} \sup \left\{G_{j}(x) \mid x \in\left[x_{i-1}, x_{i}\right]\right\}\left(x_{i}-x_{i-1}\right) \\
& \leq \sum_{j=1}^{m} \sum_{i=1}^{n} M_{i, j}\left(y_{j}-y_{j-1}\right)\left(x_{i}-x_{i-1}\right)=U(f, Z)<U(f)+\epsilon
\end{aligned}
$$

Since $U(G) \leq U(G, X)<U(f)+\epsilon$ for all $\epsilon>0$, it follows that $U(G) \leq U(f)$. A similar argument shows that $L(G) \geq L(f)$, so we have

$$
L(f) \leq L(G) \leq U(G) \leq U(f)
$$

Since f is integrable so that $L(f)=U(f)$, it follows that $L(f)=L(G)=U(G)=U(f)$ so that G is integrable on $[a, b]$ with $\int_{[a, b]} G=\iint_{R} f$, that is

$$
\iint_{R} f(x, y) d A=\int_{x=a}^{b} G(x) d x=\int_{x=a}^{b}\left(\int_{y=c}^{d} f(x, y) d y\right) d x
$$

Similarly, $L(f)=L(H)=U(H)=U(f)$ so that

$$
\iint_{R} f(x, y) d A=\int_{y=c}^{d} H(y) d y=\int_{x=a}^{b}\left(\int_{y=c}^{d} f(x, y) d x\right) d y
$$

7.28 Definition: For $\ell \in\{1,2, \cdots, n\}$, the $\ell^{\text {th }}$ projection map $p_{\ell}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ is given by

$$
p_{\ell}\left(x_{1}, x_{2}, \cdots, x_{\ell-1}, y, x_{\ell}, x_{\ell+1}, \cdots, x_{n-1}\right)=\left(x_{1}, x_{2}, \cdots, x_{n-1}\right)
$$

7.29 Theorem: (Fubini's Theorem for a Rectangle in \mathbb{R}^{n}). Fix $\ell \in\{1,2, \cdots, n\}$. Let $R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \subseteq \mathbb{R}^{n}$ and let $S=p_{\ell}(R) \subseteq \mathbb{R}^{n-1}$. Let $f: R \rightarrow \mathbb{R}$ be integrable on R. For each $x \in S$, define $g_{x}:\left[a_{\ell}, b_{\ell}\right] \rightarrow \mathbb{R}$ by

$$
g_{x}(y)=f\left(x_{1}, \cdots, x_{\ell-1}, y, x_{\ell}, \cdots, x_{n-1}\right)
$$

so that $p_{\ell}\left(g_{x}(y)\right)=x$. Suppose that g_{x} is integrable on $\left[a_{\ell}, b_{\ell}\right]$ for every $x \in S$. Define $G: S \rightarrow \mathbb{R}$ by

$$
G(x)=\int_{y=a_{\ell}}^{b_{\ell}} g_{x}(y) d y
$$

Then G is integrable on $\left[a_{\ell}, b_{\ell}\right]$ and we have

$$
\int_{R} f=\int_{S} G=\int_{S}\left(\int_{y=a_{\ell}}^{b_{\ell}} g_{x}(y) d y\right) d V=\int_{S}\left(\int_{y=a_{\ell}}^{b_{\ell}} g_{x}(y) d y\right) d x_{1} d x_{2} \cdots d x_{n-1}
$$

Proof: For convenience of notation, we give the proof in the case that $\ell=n$, so we have $S=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right], g_{x}(y)=f(x, y)$ and $G(x)=\int_{y=a_{n}}^{b_{n}} f(x, y) d y$, with $x \in \mathbb{R}^{n-1}, y \in \mathbb{R}$. Let $\epsilon>0$. Choose a partition Z of R with $U(f) \leq U(f, Z)<U(f)+\epsilon$. The first $n-1$ components $Z_{1}, Z_{2}, \cdots, Z_{n-1}$ of Z determine a partition X of S into sub-rectangles S_{k} with $k \in K=K(X)$, and the last component of Z gives a partition $Y=Z_{n}=\left\{y_{0}, y_{1}, \cdots, y_{m}\right\}$ of $\left[a_{n}, b_{n}\right]$, and then Z partitions R into the sub-rectangles $R_{k, j}=S_{k} \times\left[y_{j-1}, y_{j}\right]$ with $\left|R_{k, j}\right|=\left|S_{k}\right|\left(y_{j}-y_{j-1}\right)$. Let $M_{k, j}=\sup \left\{f(x, y) \mid(x, y) \in R_{k, j}\right\}$ so that $U(f, Z)=\sum_{k \in K} \sum_{j=1}^{m} M_{k, j}\left|S_{k}\right|\left(y_{j}-y_{j-1}\right)$.
Note that

$$
G(x)=\int_{y=c}^{d} f(x, y) d y=\sum_{j=1}^{m} G_{j}(x) \text { where } G_{j}(x)=\int_{y=y_{j-1}}^{y_{j}} f(x, y) d y
$$

and note that when $(x, y) \in R_{k, j}$ we have $f(x, y) \leq M_{k, j}$ so $G_{j}(x) \leq M_{k, j}\left(y_{j-1}-y_{j}\right)$. Also note that for any bounded maps $p, q: S \rightarrow \mathbb{R}$ we have $U((p+q), X) \leq U(p, X)+U(q, X)$ because $\sup \left\{p(x)+q(x) \mid x \in S_{k}\right\} \leq \sup \left\{p(x) \mid x \in S_{k}\right\}+\sup \left\{q(x) \mid x \in S_{k}\right\}$. Thus we have

$$
\begin{aligned}
U(G, X) & =U\left(\sum_{j=1}^{m} G_{j}, X\right) \leq \sum_{j=1}^{m} U\left(G_{j}, X\right)=\sum_{j=1}^{m} \sum_{k \in K} \sup \left\{G_{j}(x) \mid x \in S_{k}\right\}\left|S_{k}\right| \\
& \leq \sum_{j=1}^{m} \sum_{k \in K} M_{k, j}\left(y_{j}-y_{j-1}\right)\left|S_{k}\right|=U(f, Z)<U(f)+\epsilon .
\end{aligned}
$$

Since $U(G) \leq U(G, X)<U(f)+\epsilon$ for all $\epsilon>0$, it follows that $U(G) \leq U(f)$. A similar argument shows that $L(G) \geq L(f)$, so we have

$$
L(f) \leq L(G) \leq U(G) \leq U(f)
$$

Since f is integrable so that $L(f)=U(f)$, it follows that $L(f)=L(G)=U(G)=U(f)$ so that G is integrable on S and $\int_{S} G=\int_{R} f$, that is

$$
\int_{R} f=\int_{S} G=\int_{S}\left(\int_{y=a_{n}}^{b_{n}} f(x, y) d y\right) d x_{1} d x_{2} \cdots d x_{n-1}
$$

7.30 Theorem: (Iterated Integration) Fix $\ell \in\{1,2, \cdots, n\}$. Let $B \subseteq \mathbb{R}^{n-1}$ be a closed Jordan region. Let $g, h: B \rightarrow \mathbb{R}$ be continuous with $g(x) \leq h(x)$ for all $x \in B$. Let

$$
A=\left\{\left(x_{1}, x_{2}, \cdots, x_{\ell-1}, y, x_{\ell}, \cdots, x_{n-1}\right) \in \mathbb{R}^{n} \mid x \in B, g(x) \leq y \leq h(x)\right\}
$$

Then
(1) A is a Jordan region in \mathbb{R}^{n}, and
(2) when $f: A \rightarrow \mathbb{R}$ is continuous, we have

$$
\int_{A} f=\int_{B}\left(\int_{y=a_{\ell}}^{b_{\ell}} f\left(x_{1}, \cdots, x_{\ell-1}, y, x_{\ell}, \cdots, x_{n-1}\right) d y\right) d x_{1} d x_{2} \cdots d x_{n-1}
$$

Proof: For notational convenience, we give a proof in the case that $\ell=n$, so we have

$$
A=\{(x, y) \mid x \in B, g(x) \leq y \leq h(x)\}
$$

Verify, as an exercise that $\partial A=C \cup G \cup H$ where

$$
\begin{aligned}
C & =\{(x, y) \mid x \in \partial B, g(x) \leq y \leq h(x)\} \\
G & =\{(x, y) \mid x \in B, y=g(x)\}, \text { and } \\
H & =\{(x, y) \mid x \in B, y=h(x)\}
\end{aligned}
$$

Choose a rectangle S in \mathbb{R}^{n-1} which contains B. Note that B is compact and g and h are continuous, hence bounded, so we can choose an interval $[a, b]$ which contains the range of both g and h, so that the rectangle $R=S \times[a, b]$ contains A.

We claim that $U(C)=0$. Let $\epsilon>0$. Since B is Jordan measurable we can choose a partition X for S, into sub rectangles S_{k} with $k \in K$, such that $U(\partial B, X) \leq \frac{\epsilon}{b-a}$. Let Z be the partition of R into sub-rectangles $R_{k}=S_{k} \times[a, b]$. Note that for each $k \in K$, we have $R_{k} \cap C \neq \emptyset \Longleftrightarrow S_{k} \cap \partial B \neq \emptyset$, and hence

$$
U(C) \leq U(C, Z)=\sum_{R_{k} \cap C \neq \emptyset}\left|R_{k}\right|=\sum_{S_{k} \cap \partial B \neq \emptyset}\left|S_{k}\right|(b-a)=U(\partial B, X)(b-a) \leq \epsilon
$$

Since $U(C) \leq \epsilon$ for all $\epsilon>0$, it follows that $U(C)=0$, as claimed.
We claim that $U(G)=U(H)=0$. Let $\epsilon>0$. Choose $m \in \mathbb{Z}^{+}$so that $\frac{b-a}{m} \leq \frac{\epsilon}{2(U(B)+1)}$ and let $Y=\left\{y_{0}, y_{1}, \cdots, y_{m}\right\}$ be the partition of $[a, b]$ into m equal-sized subintervals, each of size $\frac{b-a}{m}$. Since B is compact and g is continuous, hence uniformly continuous, we can choose $\delta>0$ so that when $x_{1}, x_{2} \in B$ with $\left|x_{1}-x_{2}\right|<\delta$, we have $\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right|<\frac{b-a}{2 m}$. Choose a partition X of S into sub-rectangles S_{k} with $k \in K$, so that firstly, we have $U(B, X) \leq U(B)+1$, and secondly, for each k we have $\left|x_{1}-x_{2}\right|<\delta$ for all $x_{1}, x_{2} \in S_{k}$. Let Z be the partition of R determined by X and Y, that is the partition into the subrectangles $R_{k, j}=S_{k} \times\left[y_{j-1}, y_{j}\right]$. Note that when $R_{k, j} \cap G \neq \emptyset$ we have $S_{k} \cap B \neq \emptyset$, and note that for each k there are at most 2 values of j for which $R_{k, j} \cap G \neq \emptyset$ because, if we had $\left(x_{i}, g\left(x_{i}\right)\right) \in G \cap R_{k, j_{i}}$ with $j_{1}<j_{2}<j_{3}$ then we would have $x_{1}, x_{3} \in B$ with $g\left(x_{3}\right)-g\left(x_{1}\right) \geq \frac{b-a}{m}$. Thus

$$
U(G) \leq U(G, Z)=\sum_{R_{k, j} \cap G \neq \emptyset}\left|S_{k}\right| \frac{b-a}{m} \leq 2 \cdot \sum_{S_{k} \cap B \neq \emptyset}\left|S_{k}\right| \frac{b-a}{m}=2 U(B, X) \frac{b-a}{m} \leq \epsilon
$$

Since $U(G) \leq \epsilon$ for all $\epsilon>0$, we have $U(B)=0$. The same argument shows that $U(H)=0$.
Finally, we note that since $\partial A=C \cup G \cup H$, we have $U(\partial A) \leq \partial C \cup \partial G \cup \partial H=0$ (by Theorem 7.9), and hence A is Jordan measurable. This completes the proof of Part 1.

To prove Part 2, note that by Definition 7.17 (the definition of the integral), when we extend the domain of a function from a Jordan region to a containing rectangle, by defining the function to be zero outside the Jordan region, the original function is integrable if and only if the extended function is integrable, and they have the same integral. Extend the $\operatorname{map} f: A \rightarrow \mathbb{R}$ by zero to obtain the map $f: R \rightarrow \mathbb{R}$ with $f(x, y)=0$ when $(x, y) \notin A$. By the definition of the integral, this extended map f is integrable on R with $\int_{R} f=\int_{A} f$. By Fubini's Theorem, we have $\int_{A} f=\int_{R} f=\int_{S} G$ where $G(x)=\int_{y=a}^{b} f(x, y) d y$, which is integrable on S. When $x \in B$ we have $f(x, y)=0$ unless $g(x) \leq y \leq h(x)$, and so $G(x)=\int_{y=a}^{b} f(x, y) d y=\int_{y=g(x)}^{h(x)} f(x, y) d y$. When $x \notin B$ we have $f(x, y)=0$ for all y so that $G(x)=0$. By the definition of the integral again, since $G(x)=0$ whenever $x \notin B$ we have $\int_{S} G=\int_{B} G$, and so

$$
\int_{A} f=\int_{R} f=\int_{S} G=\int_{B} G=\int_{B}\left(\int_{y=g(x)}^{h(x)} f(x, y) d y\right) d x_{1} d x_{2} \cdots d x_{n-1}
$$

7.31 Theorem: (Local Change of Variables). Let $U \subseteq \mathbb{R}^{n}$ be open and let $g: U \rightarrow \mathbb{R}^{n}$ be \mathcal{C}^{1} with $\operatorname{det} D g \neq 0$ on U. Then for every $a \in U$ there exists an open set W with $a \in W \subseteq U$ such that $g(W)$ is open and $g: W \rightarrow g(W)$ is bijective and its inverse is \mathcal{C}^{1}, and such that for every Jordan region A with $\bar{A} \subseteq W$ and for every continuous function $f: g(A) \rightarrow \mathbb{R}$, we have

$$
\int_{g(A)} f=\int_{A}(f \circ g)|\operatorname{det} D g|
$$

Proof: We begin by noting that given $a \in U$, using the Inverse Function Theorem we can choose an open set W with $a \in W \subseteq U$ such that $g(W)$ is open and $g: W \rightarrow g(W)$ is bijective and its inverse is \mathcal{C}^{1}. Later in the proof we shrink W to make the theorem hold.

We claim that if $|R|=\int_{g^{-1}(R)}|\operatorname{det} D g|$ for every rectangle R in $g(W)$, then we have $\int_{g(A)} f=\int_{A}(f \circ g)|\operatorname{det} D g|$ for every Jordan measurable set A with $\bar{A} \subseteq U$ and every continuous function $f: g(A) \rightarrow \mathbb{R}$. Suppose that $|R|=\int_{g^{-1}(A)}|\operatorname{det} D g|$ for every rectangle R in $g(W)$, let A be a Jordan region with $\bar{A} \subseteq U$ and let $f: g(A) \rightarrow \mathbb{R}$ be continuous. Note that the functions $f^{+}=\frac{|f|+f}{2}$ and $f^{-}=\frac{|f|-f}{2}$ are both continuous and non-negative with $f=f^{+}-f^{-}$, so it suffices to consider the case that f is non-negative.

Let $\epsilon>0$. Choose a rectangle R in \mathbb{R}^{n} with $g(A) \subseteq R$ and choose a partition X of R into sub-rectangles $R_{k}, k \in K$ such that $U(f, X) \leq U(f)+\epsilon$ and such that for all k, if $R_{k} \cap \overline{g(A)} \neq \emptyset$ then $R_{k} \subseteq g(W)$ (we can do this since $\overline{g(A)}$ is compact and $g(W)$ is open). Recall that to obtain $U(f, X)$, we first extend f by zero to all of R, and then we let $M_{k}=\sup \left\{f(y) \mid y \in R_{k}\right\}$. Note that when $R_{k} \cap g(A)=\emptyset$ we have $M_{k}=0$, and so we have $U(f, X)=\sum_{R_{k} \cap \overline{g(A)} \neq \emptyset} M_{k}\left|R_{k}\right|=\sum_{R_{k} \cap g(A) \neq \emptyset} M_{k}\left|R_{k}\right|$ with

$$
M_{k}=\sup \left\{f(y) \mid y \in R_{k}\right\}=\sup \left\{f(g(x)) \mid x \in g^{-1}\left(R_{k}\right)\right\}
$$

Since the set $\left\{R_{k} \mid R_{k} \cap g(A) \neq \emptyset\right\}$ is a set of Jordan regions with disjoint interiors which covers $g(A)$, it follows that the set $\left\{g^{-1}\left(R_{k}\right) \mid R_{k} \cap g(A) \neq \emptyset\right\}$ is a set of Jordan regions with disjoint interiors which covers A. Let $B=\bigcup_{R_{k} \cap g(A) \neq \emptyset} g^{-1}\left(R_{k}\right)$. We have

$$
\begin{aligned}
\int_{g(A)} f+\epsilon & \geq U(f, X)=\sum_{R_{k} \cap g(A) \neq \emptyset} M_{k}\left|R_{k}\right|=\sum_{R_{k} \cap g(A) \neq \emptyset} M_{k} \int_{g^{-1}\left(R_{k}\right)}|\operatorname{det} D g| \\
& \geq \sum_{R_{k} \cap g(A) \neq \emptyset} \int_{g^{-1}\left(R_{k}\right)}(f \circ g)|\operatorname{det} D g|=\int_{B}(f \circ g)|\operatorname{det} D g| \\
& \geq \int_{A}(f \circ g)|\operatorname{det} D g| .
\end{aligned}
$$

Since $\epsilon>0$ was arbitrary, it follows that $\int_{g(A)} f \geq \int_{A}(f \circ g)|\operatorname{det} D g|$. A similar argument using $L(f, X)$ shows that $\int_{g(A)} f \leq \int_{A}(f \circ g)|\operatorname{det} D g|$. This proves the claim.

We shall now use the claim to prove the theorem by induction on n. When $n=1$, the theorem holds by the single variable Change of Variables Theorem. Let $n \geq 2$ and suppose, inductively, that the theorem holds in \mathbb{R}^{n-1}. Let $a \in U$. Since $\operatorname{det} \operatorname{Dg}(a) \neq 0$, by expanding the determinant along the last row, we see that one of the matrices obtained from $D g(a)$ by removing the $n^{\text {th }}$ row and $j^{\text {th }}$ column must have non-zero determinant. For notational convenience, suppose that the upper left $(n-1) \times(n-1)$ submatrix of $D g(a)$ is invertible. Write elements in W as (x, y) with $x \in \mathbb{R}^{n-1}$ and $y \in \mathbb{R}$, re-write the given point $a \in W$ as $(a, b) \in W$, and write $g: W \rightarrow g(W)$ as $g(x, y)=\left(h(x, y), g_{n}(x, y)\right)$ with

$$
h(x, y)=\left(g_{1}(x, y), g_{2}(x, y), \cdots, g_{n-1}(x, y)\right) .
$$

Define $p: W \rightarrow \mathbb{R}^{n}$ by

$$
p(x, y)=(h(x, y), y)
$$

and note that D_{p} is the matrix obtained from $D g$ by replacing the last row by $(0, \cdots, 0,1)$. In particular det $D p(a, b)$ is the determinant of the upper left $(n-1) \times(n-1)$ submatrix of det $D g(a, b)$, which we are assuming is non-zero. By the Inverse Function Theorem, we can shrink the open set W, if necessary, so that W and $p(W)$ are open with $(a, b) \in W$, and $p: W \rightarrow p(W)$ is invertible with p and p^{-1} both \mathcal{C}^{1}. Define $q: p(W) \rightarrow \mathbb{R}^{n}$ by

$$
q(u, v)=\left(u, g_{n}\left(p^{-1}(u, v)\right)\right)
$$

and note that $q(p(x, y))=g(x, y)$ for all $(x, y) \in W$ so that g is the composite $g=q \circ p$, and $D p(x, y)=D q(p(x, y)) D p(x, y)$ for all $(x, y) \in W$. The sets $W, p(W)$ and $q(p(W))=g(W)$ are all open, the maps $g: W \rightarrow g(W), p: W \rightarrow p(W)$ and $q: p(W) \rightarrow q(p(W))=g(W)$ are all bijective, and these maps and their inverses are all \mathcal{C}^{1}.

Let $R=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ be a rectangle in $p(W)$. let $S=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right]$ so that $R=S \times\left[a_{n}, b_{n}\right]$. For each $y \in\left[a_{n}, b_{n}\right]$, define $h: S \rightarrow \mathbb{R}^{n-1}$ by $h_{y}(x)=h(x, y)$. By the induction hypothesis, we have $|S|=\int_{h_{y}{ }^{-1}(S)}\left|\operatorname{det} D h_{y}\right|$, and so

$$
\begin{aligned}
|R| & =|S|\left(b_{n}-a_{n}\right)=\int_{y=a_{n}}^{b_{n}}|S| d y=\int_{y=a_{n}}^{b_{n}} \int_{h_{y}-1(S)}\left|\operatorname{det} D h_{y}\right| \\
& =\int_{y=a_{n}}^{b_{n}} \int_{h_{y}{ }^{-1}(S)}|\operatorname{det} D p|=\int_{p^{-1}(R)}|\operatorname{det} D p| .
\end{aligned}
$$

By the claim proven above, it follows that for every Jordan measurable set A with $\bar{A} \subseteq W$ and for every continuous map $f: p(A) \rightarrow \mathbb{R}$ we have

$$
\begin{equation*}
\int_{p(A)} f=\int_{A}(f \circ p)|\operatorname{det} D p| \tag{1}
\end{equation*}
$$

We can give a similar argument for the function q. Let $R=S \times I$ with $I=\left[a_{n}, b_{n}\right]$ be a rectangle in $q(p(W))=g(W)$. For each $u \in S$ let $k_{u}: I \rightarrow \mathbb{R}$ be given by $k_{u}(v)=$ $k(u, v)=g_{n}\left(p^{-1}(u, v)\right)$. By the single variable Change of Variables Theorem, we have $|I|=\int_{k_{u}-1(I)}\left|\operatorname{det} D k_{u}\right|$ and so

$$
|R|=|S||I|=\int_{S}|I|=\int_{S} \int_{k_{u}-1(I)}\left|\operatorname{det} D k_{u}\right|=\int_{k_{u}-1(R)}\left|\operatorname{det} D k_{u}\right|=\int_{k_{u}-1(R)}|\operatorname{det} D q|
$$

By the claim, it follows that for every Jordan measurable set B with $\bar{B} \subseteq p(W)$ and every continuous map $f: q(B) \rightarrow \mathbb{R}$ we have

$$
\begin{equation*}
\int_{q(B)} f=\int_{B}(f \circ q)|\operatorname{det} D q| \tag{2}
\end{equation*}
$$

Combining (1) and (2), we see that for every Jordan measurable set A with $\bar{A} \subseteq W$ and for every continuous map $f: A \rightarrow \mathbb{R}$, letting $b=p(A)$ so that $\bar{B} \subseteq p(W)$, we have

$$
\begin{aligned}
\int_{g(A)=q(B)} f & =\int_{B=p(A)}(f \circ q)|\operatorname{det} D q|=\int_{A}((f \circ q)|\operatorname{det} D q| \circ p)|\operatorname{det} D p| \\
& =\int_{A}((f \circ q) \circ p)|(\operatorname{det} D q) \circ p||\operatorname{det} D p|=\int_{A}(f \circ g)|\operatorname{det} D p|
\end{aligned}
$$

7.32 Theorem: (Change of Variables) Let $U \subseteq \mathbb{R}^{n}$ be open, let $g: U \rightarrow \mathbb{R}^{n}$ be \mathcal{C}^{1} with $\operatorname{det} D g \neq 0$ on U, let A be a Jordan region with $\bar{A} \subseteq U$, and let $f: g(A) \rightarrow \mathbb{R}$ be continuous. Then

$$
\int_{g(A)} f=\int_{A}(f \circ g)|\operatorname{det} D g|
$$

Proof: I may include a proof later.

