
Chapter 7. Jordan Content and Integration

7.1 Definition: A (closed, n-dimensional) rectangle in Rn is a set of the form

R = [a1, b1]× [a2, b2]× · · · × [an, bn] =
{
x ∈ Rn

∣∣ aj ≤ xj ≤ bj for each index j
}

where each aj , bj ∈ R with aj < bj . The size of the above rectangle R is

|R| =
n∏
j=1

(bj − aj).

A partition X of the above rectangle R consists of a partition Xj = {xj,0, xj,1, · · · , xj,`j}
with

aj = xj,0 < xj,1 < · · · < xj,`k = bj

for each index j. The above partition X divides the rectangle R into sub-rectangles Rk,
where k = (k1, k2, · · · , kn) ∈ Rn with 1 ≤ kj ≤ `j for each index j, and where

Rk = [x1,k1−1, x1,k1 ]× [x2,k2−1, x2,k2 ]× · · · × [xn,kn−1, xn,kn ].

If Y is another partition, given by Yj = {yj,0, · · · , yj,mj}, then we say that Y is finer than
X (or that X is coarser than Y ) when Xj ⊆ Yj for each index j.

7.2 Example: Note that a 1-dimensional rectangle in R1 is a line segment and its size
is its length, a 2-dimensional rectangle in R2 is a rectangle and its size is its area, and a
3-dimensional rectangle in R3 is a rectangular box and its size is its volume.

7.3 Note: When R is a rectangle in Rn and X and Y are any two partitions of R, the
partition Z given by Zj = Xj ∪ Yj is finer that both X and Y .

7.4 Note: When R is a rectangle in Rn andX is a partition given byXj = {xj,0, · · · , xj,`j},
then letting K = K(X) =

{
k ∈ Zn

∣∣ 1 ≤ kj ≤ `j for all j
}

, we have∑
k∈K
|Rk| =

∑
1≤k1≤`1

∑
1≤k2≤`2

· · ·
∑

1≤kn≤`n

n∏
j=1

(xj,kj − xj,kj−1)

=
n∏
j=1

∑
1≤kj≤`j

(xj,kj − xj,kj−1) =
n∏
j=1

(xj,`j − xj,0)

=
n∏
j=1

(bj − aj) = |R|.
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7.5 Definition: Let A ⊆ Rn be bounded. For a partition X of a rectangle R with A ⊆ R,
we define the upper (or outer) volume estimate of A with respect to X, and the
lower (or inner) volume estimate of A with respect to X, to be

U(A,X) =
∑

Rk∩A6=∅
|Rk| =

∑
k∈I
|Rk| and L(A,X) =

∑
Rk⊆Ao

|Rk| =
∑
k∈J
|Rk|

where I = I(A,X) =
{
k ∈ K |Rk ∩ A 6= ∅

}
and J = J(A,X) =

{
k ∈ K

∣∣Rk ⊆ Ao
}

with

K = K(X) =
{
k ∈ Zn

∣∣ 1 ≤ kj ≤ `j for each j
}

.

7.6 Theorem: (Basic Properties of Upper and Lower Volume Estimates) Let A ⊆ Rn be
bounded, let R be a rectangle in Rn with A ⊆ R, and let X and Y be partitions of R.

(1) If Y is finer than X then 0 ≤ L(A,X) ≤ L(A, Y ) ≤ U(A, Y ) ≤ U(A,X) ≤ |R|.
(2) 0 ≤ L(A,X) ≤ U(A, Y ) ≤ |R|.
(3) U(A,X)− L(A,X) = U(∂A,X).

Proof: To prove Part 1, suppose that Y is finer than X. Note that each of the sub-
rectangles Rk for the partition X is itself further partitioned into smaller sub-rectangles
which are sub-rectangles for the partition Y , and denote these smaller sub-rectangles by
Sk,1, · · · , Sk,mk

. Then we have

U(A,X) =
∑
k∈I
|Rk| and U(A, Y ) =

∑
k∈I

∑
j∈Jk
|Sk,j |

where I is the set of k ∈ K(X) such that Rk ∩A 6= ∅ and Jk is the set of j ∈ {1, 2, · · · ,mj}
such that Sk,j ∩A 6= ∅. By Note 7.4, we have

∑mk

j=1 |Sk,j | = |Rk|, and so

U(A, Y ) =
∑
k∈I

∑
j∈Jk
|Sk,j | ≤

∑
k∈I

mj∑
j=1

|Sk,j | =
∑
k∈I
|Rk| = U(A,X).

and also U(A,X) =
∑
k∈I
|Rk| ≤

∑
k∈K(X)

|Rk| = |R|. Thus we have U(A, Y ) ≤ U(A,X) ≤ |R|.

The proof that L(A,X) ≤ L(A, Y ) is similar, and it is clear that 0 ≤ L(A,X) and easy to
see that L(A, Y ) ≤ U(A, Y ).

Note that Part 2 follows from Part 1 because, given any partitions X and Y for R,
we can choose a partition Z which is finer than both X and Y , and then we have

0 ≤ L(A,X) ≤ L(A,Z) ≤ U(A,Z) ≤ U(A, Y ) ≤ |R|.
Finally, to prove Part 3, note that

U(A,X)− L(A,X) =
∑
k∈L
|Rk| and U(∂A,X) =

∑
k∈M
|Rk|

where L is the set of indices k ∈ K(X) such that Rk ∩A 6= ∅ and Rk 6⊆ Ao, and M is the
set of indices k ∈ K(X) such that Rk ∩ ∂A 6= ∅ (since ∂A is closed so that ∂A = ∂A).
We shall show that K = M . When A = ∅ we have K = M = ∅, so suppose A 6= ∅. If
k ∈ L, that is if Rk ∩ A 6= ∅ and Rk 6⊆ Ao then we must have Rk ∩ ∂A 6= ∅ because Rk
is connected (indeed, if we had Rk ∩ ∂A = ∅ then Rk would be separated by the disjoint
nonempty open sets Ao and A

c
: note that we have Ao 6= ∅ because Rk ∩ A 6= ∅, and we

have A
c 6= ∅ because Rk 6⊆ Ao) and hence L ⊆M . If k ∈M , that is if Rk ∩ ∂A 6= ∅ then,

since ∂A ⊆ A we have Rk ∩ A 6= ∅, and since Ao and ∂A are disjoint we have Rk 6⊆ Ao,
and hence k ∈M . Thus K = M , as required.
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7.7 Definition: Let A ⊆ Rn be bounded. We define the upper (or outer) volume (or
Jordan content), and the lower (or inner) volume (or Jordan content), of A to be

U(A) = inf
{
U(A,X)

∣∣X is a partition of some rectangle R with A ⊆ R
}

L(A) = sup
{
L(A,X)

∣∣X is a partition of some rectangle R with A ⊆ R
}
.

7.8 Theorem: (Basic Properties of Upper and Lower Volumes) Let A ⊆ Rn be bounded.

(1) If R is any rectangle with A ⊆ R then U(A) = inf
{
U(A,X)

∣∣X is a partition of R
}
.

(2) U(A)− L(A) = U(∂A).

Proof: Given a rectangleR withA ⊆ R, let UR(A) = inf
{
U(A,X)

∣∣X is a partition of R
}

.
To prove Part 1, it suffices to show that for any two rectangles R,S in Rn which contain
A, we have UR(A) = US(A). Let R and S be rectangles in Rn which contain A, say
R = [a1, b1]× · · · × [an, bn] and S = [c1, d1]× · · · × [cn, dn].

Suppose first that R ⊆ S with cj < aj and bj < dj . Given any partition Y of S, we
can extend Y to a finer partition Z of S by adding the endpoints of R, that is by letting
Zj = Yj ∪ {aj , bj}, and then we can restrict Z to a partition X of R as follows: if, for a
fixed index j, we have Zj = {z0, · · · , zk, · · · , z`, · · · , zm} with z0 = cj , zk = aj , z` = bj and
zm = dj , then we take Xj = {zk, · · · , z`}. Then we have U(A,X) ≤ U(A,Z) ≤ U(A, Y ).
Since for every partition Y of S there exists a corresponding partition X of R for which
U(A,X) ≤ U(A, Y ), it follows that

inf
{
U(A,X)

∣∣X is a partition of R
}
≤ inf

{
U(A, Y )

∣∣Y is a partition of S
}
,

that is UR(A) ≤ US(A). Now let ε > 0 and suppose that we are given a partition X
of R. Choose sj and tj with cj < sj < aj and bj < tj < bj so that for the rectangle
T = [s1, t1]×· · ·×[sn, tn] we have |T |−|R| ≤ ε. Extend the partition X of R to the partition
Y of S by adding the endpoints of S and T , that is by letting Yj = Xj ∪ {cj , sj , tj , dj}.
Note that the sub-rectangles of S which intersect with A include all of the sub-rectangles
of R which intersect with A together with some of the sub-rectangles which lie in T but not
R, and so we have U(A, Y ) ≤ U(A,X) + |T | − |R| ≤ U(A,X) + ε. Since for each partition
X of R there is a corresponding partition Y of S for which U(A, Y ) ≤ U(A,X) + ε, it
follows that

inf
{
U(A, Y )

∣∣Y is a partition of S
}
≤ inf

{
U(A,X)

∣∣X is a partition of R
}

+ ε,

that is US(A) ≤ UR(A) + ε, and since ε > 0 was arbitrary, it follows that US(A) ≤ UR(A).
Thus we have proven that UR(A) = US(A) in the case that R ⊆ S with cj < aj < bj < dj .

In the general case that R = [a1, b1]× · · · × [an, bn] and S = [c1, d1]× · · · × [cn, dn] are
any rectangles which both contain A, we can choose a rectangle T = [s1, t1]× · · · × [sn, tn]
with sj < min{aj , cj} and tj > max{bj , dj}, and then we can apply the result of the above
paragraph to obtain UR(A) = UT (A) = US(A), as required, proving Part 1.

Let us prove Part 2. Given any partition X of any rectangle R containing A, we
have U(A)− L(A) ≤ U(A,X)− L(A,X) = U(∂A,X), and hence (by taking the infemum
on both sides) U(A) − L(A) ≤ U(∂A). It remains to show that U(A) − L(A) ≥ U(∂A).
Let ε > 0. Choose a rectangle R containing A, and choose a partition X of R such that
L(A)− ε < L(A,X) ≤ L(A). By Part 1, we can choose a partition Y of the same rectangle
R such that U(A) ≤ U(A, Y ) < U(A)+ε. Let Z be a partition of R which is finer than both
X and Y . Then we have L(A)−ε < L(A,X) ≤ L(A,Z) and U(A,Z) ≤ U(A, Y ) < U(A)+ε
and hence U(∂A) ≤ U(∂A,Z) = U(A,Z)− L(A,Z) < U(A)− L(A) + 2ε. Since ε > 0 was
arbitrary, we have U(∂A) ≤ U(A)− L(A), as required.
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7.9 Theorem: For bounded sets A,B ⊆ Rn, we have U(A ∪B) ≤ U(A) + U(B).

Proof: First we note that for any sets A,B ⊆ Rn we have A ∪B = A ∪ B: Indeed, since
A ⊆ A ∪ B and B ⊆ A ∪ B we have A ⊆ A ∪B and B ⊆ A ∪B so that A ∪ B ⊆ A ∪B.
On the other hand, since A ⊆ A and B ⊆ B, we have A ∪B ⊆ A ∪B and so, since A ∪B
is closed, and contains A ∪B, it follows that A ∪B ⊆ A ∪B.

Let A,B ⊆ Rn be bounded. Let R be a rectangle which contains A ∪ B. Let ε > 0.
Choose a partition X of R so that U(A) ≤ U(A,X) + ε

2 and U(B) ≤ U(B,X) ≤ ε
2

(we can do this by Part 1 of Theorems 7.8 and 7.6: let Y be a partition of R such that
U(A) ≤ U(A, Y ) + ε

2 let Z be a partition of R such that U(B) ≤ U(B,Z) + ε
2 , then let

X be a partition finer than both Y and Z). Let K = K(X), let I(A ∪B) = I(A ∪B,X),
I(A) = I(A,X) and I(B) = I(B,X), as in Definition 7.5. Since A ∪B = A ∪ B, for each
index k ∈ K we have

k∈I(A∪B) ⇐⇒ Rk∩A ∪B 6= ∅ ⇐⇒ (Rk∩A)∪(Rk∩B) 6= ∅ ⇐⇒
(
k∈I(A) or k∈I(B)

)
,

U(A∪B,X) =
∑

k∈I(A∪B)

|Rk| ≤
∑

k∈I(A)

|Rk|+
∑

k∈I(B)

|Rk| = U(A,X)+U(B,X) ≤ U(A)+U(B)+ε.

Since U(A∪B,X) ≤ U(A) +U(B) + ε for all partitions X of R, it follows (from Part 1 of
Theorem 7.8) that U(A∪B) ≤ U(A) +U(B) + ε, and since ε > 0 was arbitrary, it follows
that U(A ∪B) ≤ U(A) + U(B), as required.

7.10 Definition: Let A ⊆ Rn be bounded. We say that A has well-defined volume
(or Jordan content), or that A is Jordan measurable, or that A is a Jordan region,
when U(A) = L(A), or equivalently (by Part 2 of Theorem 7.8) when U(∂A) = 0. In this
case, we define the (n-dimensional) volume of A (or the Jordan content) of A to be

Vol(A) = U(A) = L(A).

7.11 Theorem: Every rectangle R in Rn is Jordan measurable with Vol(R) = |R|.

Proof: Let R = [a1, b1] × · · · × [an, bn] be a ractangle in Rn. By Note 7.4, we have
U(R,X) = |R| for every partition X of R, so by Part 1 of Theorem 7.8, it follows that
U(R) = |R|. By Part 2 of Theorem 7.8, we have U(R) − L(R) = U(∂R) ≥ 0 so that
L(R) ≤ U(R). Let ε > 0. Choose a rectangle S of the form S = [c1, d1]×· · ·× [cn, dn] with
a1 < c1 and d1 < b1 (so that S ⊆ Ro) such that |R| − |S| < ε. Let X be the partition of R
given by Xj = {aj , cj , dj , bj}. Since S is a sub-rectangle for this partition with S ⊆ Ro we
have L(R,X) ≥ |S|, and so L(R) ≥ L(R,X) ≥ |S| > |R| − ε. Since ε > 0 was arbitrary, it
follows that L(R) ≥ |R|. Thus we have L(R) = |R| = U(R).

7.12 Theorem: (Properties of Jordan Content) Let A,B ⊆ Rn be Jordan measurable.

(1) If A ⊆ B then Vol(A) ≤ Vol(B).
(2) Ao and A are Jordan measurable with Vol(Ao) = Vol(A) = Vol(A).
(3) A∪B, A∩B and A\B are Jordan measurable with Vol(A\B) = Vol(A)−Vol(A∩B) and
Vol(A∪B) = Vol(A)+Vol(B)−Vol(A∩B). If A∩B = ∅ then Vol(A∪B) = Vol(A)+Vol(B).

Proof: To prove Part 1, suppose that A ⊆ B. Let R be a rectangle containing B and let
X be a partition of R into the sub-rectangles Rk with k ∈ K(X). Since A ⊆ B, we have
A ⊆ B, so for k ∈ K(X), if Rk∩A 6= ∅ then Rk∩B 6= ∅. This shows that I(A,X) ⊆ I(B,X)
and hence U(A,X) =

∑
k∈I(A,X)

|Rk| ≤
∑

k∈I(B,X)

|Rk| = U(B,X). Since U(A,X) ≤ U(B,X)

for every partition X of R, we have U(A) ≤ U(B) (by Part 1 of Theorem 7.8). Since A
and B are measurable, this means that Vol(A) ≤ Vol(B), as required.
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Let us prove Part 2. Since Ao is open we have (Ao)o = Ao, and since Ao ⊆ A we have
Ao ⊆ A, and hence ∂(Ao) = Ao \ (Ao)o = Ao \ Ao ⊆ A \ Ao = ∂A. Since ∂Ao ⊆ ∂A we
have U(∂Ao) ≤ U(∂A) (by Part 1), and since A is measurable we have U(∂A) = 0. Thus

U(∂Ao) = 0 so that Ao is Jordan measurable. Similarly, we have A = A and Ao ⊆ A
o

so that ∂A = A \ Ao = A \ A0 ⊆ A \ Ao = ∂A and hence U(∂A) ≤ U(∂A) = 0 so that
A is Jordan measurable. Now let R be a rectangle containing A and let X be a partition
of R. From the definition of U(A,X) it is immediate that U(A,X) = U(A,X), and from
the definition of L(A,X) it is immediate that L(A,X) = L(Ao, X). Since this holds for
all partitions X of R, we have U(A) = U(A) and L(A) = L(Ao). Since A is measurable,
this gives L(Ao) = L(A) = U(A) = U(A), and since Ao and A are measurable, this gives
Vol(Ao) = Vol(A) = Vol(A), as required.

We move on to the proof of Part 3. To prove that A ∪ B is Jordan measurable, we
note that ∂(A∪B) ⊆ ∂A∪ ∂B: indeed, recall (as shown in the proof of Theorem 7.9) that
A ∪B = A ∪ B. Also note that since A ⊆ A ∪ B and B ⊆ A ∪ B we have Ao ⊆ (A ∪ B)o

and Bo ⊆ (A ∪B)o so that Ao ∪Bo ⊆ (A ∪B)o. Thus

x ∈ ∂(A ∪B) =⇒ x ∈ A ∪B and x /∈ (A ∪B)o

=⇒ x ∈ A ∪B and x /∈ Ao ∪Bo

=⇒
(
x ∈ A and x /∈ Ao

)
and

(
x ∈ B and x /∈ Bo

)
=⇒ x ∈ ∂A ∪ ∂B.

Since ∂(A∪B) ⊆ ∂A+∂B, Theorem 7.9 gives U(∂(A∪B)) ≤ U(∂A)+U(∂B). Since A and
B are Jordan measurable so that U(∂A) = 0 and U(∂B) = 0, we also have U(∂(A∪B)) = 0
so that A ∪ B is Jordan measurable. We can prove that A ∩ B and A \ B are measuable
in the same way, by showing that ∂(A ∩B) ⊆ ∂A ∪ ∂B and ∂(A \B) ⊆ ∂A ∪ ∂B, and we
leave this as an exercise.

It remains to prove the various volume formulas. First, suppose that A ∩ B = ∅.
We know, from Theorem 7.9 that U(A ∩ B) ≤ U(A) + U(B). Let R be a rectangle
which contains A ∪ B, and let X be a partition of R such that L(A,X) ≥ L(A) − ε

2 and

L(B,X) ≥ L(B)− ε
2 . Since Ao ⊆ A ⊆ A∪B ⊆ A ∪B, it follows that if k ∈ J(Ao, X), that is

if Rk ⊆ A0, then we have Rk ⊆ A ∪B so that Rk∩A ∪B 6= ∅, that is k ∈ I(A∩B,X), so we
have J(A,X) ⊆ I(A∪B,X). Similarly, since Bo ⊆ A ∪B, we have J(B,X) ⊆ I(A∪B,X).
Also note that since A ∩ B = ∅, we also have Ao ∩ Bo = ∅, so it is not possible to have
both Rk ⊆ Ao and Rk ⊆ Bo, and it follows that J(A,X) ∩ J(B,X) = ∅. Thus

U(A∪B,X) =
∑

k∈I(A∩B,X)

|Rk| ≥
∑

k∈J(A,X)

|Rk|+
∑

k∈J(B,X)

|Rk| = L(A,X)+L(B,X) ≥ L(A)+L(B)−ε.

Since U(A ∪ B,X) ≥ L(A) + L(B) − ε for all partitions X of R, and since ε > 0 was
arbitrary, we have U(A ∪B) ≥ L(A) + L(B). Together with Theorem 7.9, this gives

L(A) + L(B) ≤ U(A ∪B) ≤ U(A) + U(B).

Since L(A) = U(A) = Vol(A) and L(B) = U(B) = Vol(B) and U(A ∪ B) = Vol(A ∪ B),
we have proven that, if A ∩B = ∅ then Vol(A ∪B) = Vol(A) + Vol(B).

Finally, we note that the other two formulas (which apply whether or not A and
B are disjoint), follow from the special case of disjoint sets: Indeed, the set A is the
disjoint union A = (A \B) ∪ (A ∩B), so we have Vol(A) = Vol(A \B) + Vol(A ∩B), and
A ∪ B is the disjoint union A ∪ B = (A \ B) ∪ (B \ A) ∪ (A ∩ H) so that Vol(A ∪ B) =
Vol(A \B) + Vol(B \A) + Vol(A ∩B) = Vol(A) + Vol(B)−Vol(A ∩B).
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7.13 Definition: A cube in Rn is a rectangle Q = [a1, b1]×· · ·× [an, bn] in Rn with equal
side lengths, that is with bk − ak = b` − a` for all k 6= `.

7.14 Theorem: (Alternate Characterizations of Outer Jordan Content) Let A ⊆ Rn be
bounded. Then

U(A) = inf
{ m∑
j=1

|Rj |
∣∣∣R1, R2, · · · , Rm are rectangles A ⊆

m⋃
j=1

Rj

}
= inf

{ m∑
j=1

|Qj |
∣∣∣Q1, Q2, · · · , Qm are cubes of equal size with A ⊆

m⋃
j=1

Qj

}
.

Proof: Let

R =
{ m∑
Rk∩A 6=∅

|Rk|
∣∣∣X is a partition of some rectangle R with A ⊆ R

}
,

S =
{ m∑
j=1

|Rj |
∣∣∣R1, R2, · · · , Rm are rectangles with A ⊆

m⋃
j=1

Rj

}
, and

T =
{ m∑
j=1

|Qj |
∣∣∣Q1, Q2, · · · , Qm are squares of equal size with A ⊆

m⋃
j=1

Qj

}
.

and note that U(A) = infR. We leave the proof that U(A) = inf S as an exercise, and we
prove that U(A) = inf T . When Q1, · · · , Qm are cubes of equal size with A ⊆

⋃m
k=1Qk,

we know that U(A) ≤
∑m
k=1 |Qk| by Theorem 7.9, and hence U(A) ≤ inf S. It remains to

show that inf S ≤ U(A).
Let ε > 0. Choose a rectangle R with A ⊆ R, and choose a partition X of R into

sub-rectangles Rk such that U(A,X) ≤ U(A) + ε
2 . Let k1, · · · , km be the values of k for

which Rk ∩ A 6= ∅, so we have A ⊆
⋃m
i=1Rki and

∑m
i=1 |Rki | = U(A,X) ≤ U(A) + ε

2 .
For each index i, choose a rectangle Si with Rki ⊆ Si such that the endpoints of all the
component intervals of all the rectangles Si are rational and

∑m
i=1 |Si| ≤

∑m
i=1 |Rki | +

ε
2 .

Let d be a common denominator of all the endpoints of all the rectangles Si, and partition
each rectangle Si into cubes Qi,1, Qi,2, · · · , Qi,`i all with sides of length 1

d . Then we have

A ⊆
⋃m
i=1 Si =

⋃m
i=1

⋃`i
j=1Qi,j and

m∑
i=1

`i∑
j=1

|Qi,j | =
m∑
i=1

|Si| ≤
∑m
i=1 |Rki |+

ε
2 ≤ U(A) + ε.

Thus inf S ≤ U(A) + ε. Since ε > 0 was arbitrary, we have inf S ≤ U(a), as required.

7.15 Definition: For a map g : A ⊆ Rn → B ⊆ Rm, we say that g is Lipschitz
continuous on A when there is a constant c ≥ 0 such that |g(x)− g(y)| ≤ c|x− y| for all
x, y ∈ A, and we say that g is open when g(U) is open in B for every open set U in A.

7.16 Theorem: Let A ⊆ Rn be bounded and let g : A→ Rn be Lipschitz continuous.

(1) If U(A) = 0 and g is Lipschitz continuous then U(g(A)) = 0.
(2) If A is Jordan measurable and g is open then g(A) is Jordan measurable.

Proof: The proof is left as an exercise.
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7.17 Definition: Let A ⊆ Rn be a Jordan region and let f : A → R be a bounded
function. Let X be a partition of a rectangle R in Rn which contains A, and let Rk, k ∈ K
be the sub-rectangles. Extend f to a function g : R → R by defining g(x) = f(x) when
x ∈ A and g(x) = 0 when x ∈ R \ A. The upper Riemann sum of f on A for the
partition X and the lower Riemann sum of f on A for X are given by

U(f,X) =
∑
k∈K

Mk |Rk| and L(f,X) =
∑
k∈K

mk |Rk|

where Mk = sup
{
g(x) |x ∈ Rk} and mk = inf{f(x) |x ∈ Rk}. The upper integral of f

on A and the lower integral of f on A are given by

U(f) = inf
{
U(f,X)

∣∣ X is a partition of some rectangle R with A ⊆ R
}

L(f) = sup
{
L(f,X)

∣∣X is a partition of some rectangle R with A ⊆ R
}
.

We say that f is (Riemann) integrable on A when U(f) = L(f) and, in this case, we
define the (Riemann) integral of f on A to be∫

A

f =

∫
A

f(x) dV =

∫
A

f(x1, · · · , xn) dx1dx2 · · · dxn = U(f) = L(f).

7.18 Theorem: (Properties of Upper and Lower Riemann Sums) Let A ⊆ Rn be a Jordan
region, let f : A → R be a bounded function, let R be a rectangle which contains A, and
let X and Y be two partitions of R.

(1) If Y is finer than X then L(f,X) ≤ L(f, Y ) ≤ U(f, Y ) ≤ U(f,X).
(2) We have L(f,X) ≤ U(f, Y ).

Proof: Let g : R → R be the extension of f by zero. When Mk = sup{g(x) |x∈Rk} and
mk = inf{g(x) |x∈Rk}, we have mk ≤Mk for all k ∈ K = K(X) so that

L(f,X) =
∑
k∈K

mk|Rk| ≤
∑
k∈K

Mk|Rk| = U(f,X).

Similarly, we have L(f, Y ) ≤ U(f, Y ).
Suppose that Y is finer than X. Note that each of the sub-rectangles Rk for the

partition X is itself further partitioned into smaller sub-rectangles which are sub-rectangles
for the partition Y , and denote these smaller sub-rectangles by Sk,1, · · · , Sk,mk

. Note that
|Rk|=

∑mk

j=1 |Sk,j | by Note 7.4. Let Mk=sup{g(x)|x∈Rk} and Nk,j =sup{g(x)|x∈Sk,j}.
Since Rk =

⋃mk

j=1 Sk,j , we have Mk = max{Nk,j |1≤j≤mk} and hence

U(f,X) =
∑
k∈K

Mk|Rk| =
∑
k∈K

mk∑
j=1

Mk|Sk,j | ≥
∑
k∈K

mk∑
j=1

Nk,j |Sk,j | = U(f, Y ).

A similar argument shows that L(f,X) ≤ L(f, Y ). This completes the proof of Part 1.
Part 2 follows from Part 1. Indeed, given any partitions X and Y of R, we can choose

a partition Z which is finer than both X and Y , and then we have

L(f,X) ≤ L(f, Z) ≤ U(f, Z) ≤ U(f, Y ).

7.19 Theorem: (Properties of Upper and Lower Integrals) Let A ⊆ Rn be a Jordan
region, and let f : A→ R be a bounded function.

(1) If R is any rectangle with A ⊆ Rn then U(f) = inf
{
U(f,X)

∣∣X is a partition of R
}

and L(f) = sup
{
L(f,X)

∣∣X is a partition of R
}

.
(2) We have L(f) ≤ U(f).

Proof: To prove Part 1, imitate the proof of Part 1 of Theorem 7.8. Part 2 follows from
Part 1 of this theorem together with Part 2 of the previous theorem.
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7.20 Theorem: (Characterization of Integrability) Let A ⊆ Rn be a Jordan region, and
let f : A→ R be a bounded function. Then f is integrable on A if and only if for every ε > 0
there exits a partition X of a rectangle R with A ⊆ R such that U(f,X)− L(f,X) < ε.

Proof: Suppose that f is integrable on A, so we have U(f) = L(f). Let R be a rectangle
with A ⊆ R. By Part 1 of Theorem 7.19, we can choose a partition Y of R such that
U(f, Y ) < U(f) + ε

2 , and we can choose a partition Z of R such that L(f, Z) > L(f)− ε
2 .

Let X be a partition of R which is finer than both Y and Z. By Part 1 of Theorem 7.18,
we have U(f,X) ≤ U(f, Y ) and L(f,X) ≥ L(f, Z), and hence

U(f,X)−L(f,X) ≤ U(f, Y )−L(f, Z) <
(
U(f) + ε

2

)
−
(
L(f)− ε

2

)
= U(f)−L(f) + ε = ε.

Suppose, conversely, that for every ε > 0 there exists a partition X of a rectangle
R with A ⊆ R such that U(f,X) − L(f,X) < ε. Let ε > 0. Choose R and X so that
U(f,X)− L(f,X) < ε. By the definition of U(f) and L(f), we have U(f) ≤ U(f,X) and
L(f) ≥ L(f,X), and so U(f)− L(f) ≤ U(f,X)− L(f,X) < ε. Since U(f)− L(f) < ε for
every ε > 0, it follows that U(f) ≤ L(f). On the other hand, we have U(f) ≥ L(f) by
Part 2 of Theorem 7.19. Thus U(f) = L(f) so that f is integrable.

7.21 Theorem: (Continuity and Integrability) Let A ⊆ Rn be a Jordan region, and let
f : A→ R be a bounded function. If f is uniformly continuous on A, then f is integrable.

Proof: Suppose that f is bounded and uniformly continuous on A. Choose a rectangle
R with A ⊆ R and |R| > 0. Let ε > 0. Since f is bounded, we can choose M > 0 so
that |f(x)| ≤ M for all x ∈ A. Since f is uniformly continuous on A, we can choose
δ > 0 such that for all x, y ∈ A, if |x − y| < δ then |f(x) − f(y)| < ε

2|R| . Choose a

partition X of R, into sub-rectangles Rk, which is fine enough so that firstly, we have
x, y ∈ Rk =⇒ |x − y| < δ and, secondly, we have U(∂A,X) =

∑
Rk∩∂A 6=∅ |Rk| <

ε
2M (we

can do this since U(∂A) = 0). Since A is the disjoint union A = Ao ∪ ∂A, the rectangles
Rk come in three varieties: Rk ∩A = ∅, Rk ∩ ∂A 6= ∅ or Rk ⊆ Ao. Let g be the extension
of f by zero to R, and write Mk = sup{g(x)|x∈Rk} and mk = inf{g(x)|x∈Rk}. When
Rk ∩A = ∅, we have g(x) = 0 for all x ∈ Rk, and so∑

Rk∩A=∅
(Mk −mk)|Rk| = 0.

When Rk ∩ ∂A 6= ∅ we have |g(x)| ≤M for all x ∈ Rk so that∑
Rk∩∂A6=∅

(Mk −mk)|Rk| ≤ 2M
∑

Rk∩∂A6=∅
|Rk| < ε

2 .

When Rk ⊆ Ao, for all x, y ∈ Rk we have x, y ∈ A with |x− y| < δ so that |g(x)− g(y)| =
|f(x)− f(y)| < ε

2|R| , and hence Mk −mk ≤ ε
2|R| so that∑

Rk⊆Ao

(Mk −mk)|Rk| ≤ ε
2|R|

∑
Rk⊆Ao

|Rk| ≤ ε
2 .

Thus

U(f,X)−L(f,X) =
∑

Rk∩A=∅
(Mk −mk)|Rk|+

∑
Rk∩∂A 6=∅

(Mk −mk)|Rk|+
∑

Rk⊆Ao

(Mk −mk)|Rk| < ε.

Thus f is integrable, by Theorem 7.20.
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7.22 Theorem: (Integration and Volume) If A ⊆ Rn is a Jordan region then

Vol(A) =

∫
A

1 dV.

Proof: Suppose that A is Jordan measurable, so we have U(A) = L(A) = Vol(A). Let R
be a rectangle with A ⊆ R. Let f : A → R be the constant function f(x) = 1, and let
g : R → R be the extension of f by zero. Choose a partition X of R, with sub-rectangles
Rk, such that U(A,X) ≤ U(A)−ε = Vol(A)−ε and L(A,X) ≥ L(A)−ε = Vol(A)−ε. Let
Mk = sup{g(x)|x∈Rk} and mk = inf{g(x)|x∈Rk}. When Rk ∩ A = ∅ we have g(x) = 0
for all x ∈ Rk so that Mk = 0, and for all k we have Mk ≤ 1, and so

U(f) ≤ U(f,X) =
∑

Rk∩A6=∅
Mk|Rk| ≤

∑
Rk∩A6=∅

|Rk| = U(A,X) ≤ Vol(A) + ε.

When Rk ⊆ Ao we have g(x) = 1 for all x ∈ Rk so that mk = 1, and for all k we have
mk ≥ 0, and so

L(f) ≥ L(f,X) ≥
∑

Rk⊆Ao

mk|Rk| =
∑

Rk⊆Ao

|Rk| = L(A,X) ≥ Vol(A)− ε.

Since Vol(A) − ε ≤ L(f) ≤ U(f) ≤ Vol(A) + ε for every ε > 0, we have U(f) = L(f) =
Vol(A), which means that f is integrable on A with

∫
A

1 =
∫
A
f = Vol(A), as required.

7.23 Theorem: (Linearity) Let A ⊆ Rn be a Jordan region and let f, g : A → R be
integrable. Then f + g is integrable, and cf is integrable for every c ∈ R, and we have∫

A

(f + g) =

∫
A

f +

∫
A

g and

∫
A

cf = c

∫
A

f.

Proof: The proof is left as an exercise.

7.24 Theorem: (Decomposition) Let A and B be Jordan regions in Rn with Vol(A∩B) =
0, and let f : A ∪B → R be bounded. Let g : A→ R be the restrictions of f to A and let
h : B → R be the restriction of f to B. Then f is integrable on A ∪ B if and only if g is
integrable on A and h is integrable on B and, in this case, we have∫

A∪B
f =

∫
A

g +

∫
B

h.

Proof: The proof is left as an exercise.

7.25 Theorem: (Comparison) Let A be a Jordan region in Rn and let f, g : A → R be
integrable. If f(x) ≤ g(x) for all x ∈ A then

∫
A
f ≤

∫
A
d.

Proof: The proof is left as an exercise.

7.26 Theorem: (Absolute Value) Let A be a Jordan region in Rn and let f : A→ R be
integrable. Then the function |f | is integrable and

∣∣ ∫
A
f
∣∣ ≤ ∫

A
|f |.

Proof: The proof is left as an exercise.
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7.27 Theorem: (Fubini’s Theorem for a Rectangle in R2) Let R = [a, b] × [c, d] ⊆ R2,
and let f : R ⊆ R2 → R be bounded. For each x ∈ [a, b] define gx : [c, d] → R by
gx(y) = f(x, y), and for each y ∈ [c, d], define hy : [a, b]→ R by hy(x) = f(x, y). Suppose
that f is integrable on R, gx is integrable on [c, d] for every c ∈ [a, b], and hy is integrable
on [a, b] for every y ∈ [c, d]. Then∫∫

R

f(x, y) dA =

∫ b

x=a

(∫ d

y=c

f(x, y) dy

)
dx =

∫ d

y=c

(∫ b

x=a

f(x, y) dx

)
dy.

Proof: Since gx and hy are integrable, we can define G : [a, b]→ R and H : [c, d]→ R by

G(x) =

∫ d

y=c

gx(y) dy =

∫ d

y=c

f(x, y) dy and H(y) =

∫ b

x=a

hy(x) dx =

∫ b

x=a

f(x, y) dx.

Let ε > 0 and choose a partition Z of R such that U(f) ≤ U(f, Z) < U(f) + ε. Say Z1 =
X = {x0, x1, · · · , xn} with a = x0 < x1 < · · · < xn = b and Z2 = Y = {y0, y1, · · · , ym}
with c = y0 < y1 < · · · < ym = d. For all indices i, j, let Ri,j = [xi−1, xi] × [yj−1, yj ] and

let Mi,j = sup
{
f(x, y)

∣∣ (x, y) ∈ Ri,j
}

so that U(f, Z) =
n∑
i=1

m∑
j=1

Mi,j(xi−xi−1)(yj −yj−1).

Note that

G(x) =

∫ d

y=c

f(x, y) dy =
m∑
j=1

Gj(x) where Gj(x) =

∫ yj

y=yj−1

f(x, y) dy

and note that when x ∈ [xi−1, xi] we have Gj(x) ≤ Mi,j(yj−1 − yj). Also note that for
any bounded maps φ, ψ : [a, b]→ R we have U

(
(φ+ψ), X

)
≤ U(φ,X) + U(ψ,X) because

sup
{
φ(x)+ψ(x)

∣∣x ∈ [xi−1, xi]
}
≤ sup

{
φ(x)

∣∣x ∈ [xi−1, xi]
}

+ sup
{
ψ(x)

∣∣x ∈ [xi−1, xi]
}

.
Thus we have

U(G,X) = U
( m∑
j=1

Gj , X) ≤
m∑
j=1

U(Gj , X)

=
m∑
j=1

n∑
i=1

sup
{
Gj(x)

∣∣x ∈ [xi−1, xi]
}

(xi − xi−1)

≤
m∑
j=1

n∑
i=1

Mi,j(yj − yj−1)(xi − xi−1) = U(f, Z) < U(f) + ε.

Since U(G) ≤ U(G,X) < U(f) + ε for all ε > 0, it follows that U(G) ≤ U(f). A similar
argument shows that L(G) ≥ L(f), so we have

L(f) ≤ L(G) ≤ U(G) ≤ U(f).

Since f is integrable so that L(f) = U(f), it follows that L(f) = L(G) = U(G) = U(f) so

that G is integrable on [a, b] with

∫
[a,b]

G =

∫∫
R

f , that is

∫∫
R

f(x, y) dA =

∫ b

x=a

G(x) dx =

∫ b

x=a

(∫ d

y=c

f(x, y) dy

)
dx.

Similarly, L(f) = L(H) = U(H) = U(f) so that∫∫
R

f(x, y) dA =

∫ d

y=c

H(y) dy =

∫ b

x=a

(∫ d

y=c

f(x, y) dx

)
dy.
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7.28 Definition: For `∈ {1, 2, · · · , n}, the `th projection map p` :Rn→Rn−1 is given
by

p`(x1, x2, · · · , x`−1, y, x`, x`+1, · · · , xn−1) = (x1, x2, · · · , xn−1).

7.29 Theorem: (Fubini’s Theorem for a Rectangle in Rn). Fix ` ∈ {1, 2, · · · , n}. Let
R = [a1, b1] × [a2, b2] × · · · × [an, bn] ⊆ Rn and let S = p`(R) ⊆ Rn−1. Let f : R → R be
integrable on R. For each x ∈ S, define gx : [a`, b`]→ R by

gx(y) = f(x1, · · · , x`−1, y, x`, · · · , xn−1)

so that p`(gx(y)) = x. Suppose that gx is integrable on [a`, b`] for every x ∈ S. Define
G : S → R by

G(x) =

∫ b`

y=a`

gx(y) dy.

Then G is integrable on [a`, b`] and we have∫
R

f =

∫
S

G =

∫
S

(∫ b`

y=a`

gx(y) dy

)
dV =

∫
S

(∫ b`

y=a`

gx(y) dy

)
dx1dx2 · · · dxn−1.

Proof: For convenience of notation, we give the proof in the case that ` = n, so we

have S = [a1, b1] × · · · × [an−1, bn−1], gx(y) = f(x, y) and G(x) =
∫ bn
y=an

f(x, y) dy, with

x ∈Rn−1, y ∈R. Let ε > 0. Choose a partition Z of R with U(f) ≤ U(f, Z)<U(f)+ε.
The first n − 1 components Z1, Z2, · · · , Zn−1 of Z determine a partition X of S into
sub-rectangles Sk with k ∈ K = K(X), and the last component of Z gives a partition
Y = Zn = {y0, y1, · · · , ym} of [an, bn], and then Z partitions R into the sub-rectangles
Rk,j = Sk×[yj−1, yj ] with |Rk,j | = |Sk|(yj−yj−1). Let Mk,j = sup

{
f(x, y)

∣∣ (x, y) ∈ Rk,j
}

so that U(f, Z) =
∑
k∈K

m∑
j=1

Mk,j |Sk|(yj − yj−1).

Note that

G(x) =

∫ d

y=c

f(x, y) dy =
m∑
j=1

Gj(x) where Gj(x) =

∫ yj

y=yj−1

f(x, y) dy

and note that when (x, y)∈Rk,j we have f(x, y)≤Mk,j so Gj(x)≤Mk,j(yj−1−yj). Also
note that for any bounded maps p, q : S → R we have U

(
(p+q), X

)
≤ U(p,X) + U(q,X)

because sup
{
p(x)+q(x)

∣∣x∈Sk} ≤ sup
{
p(x)

∣∣x∈Sk}+ sup
{
q(x)

∣∣x∈Sk}. Thus we have

U(G,X) = U
( m∑
j=1

Gj , X) ≤
m∑
j=1

U(Gj , X) =
m∑
j=1

∑
k∈K

sup
{
Gj(x)

∣∣x∈Sk} |Sk|
≤

m∑
j=1

∑
k∈K

Mk,j(yj − yj−1) |Sk| = U(f, Z) < U(f) + ε.

Since U(G) ≤ U(G,X) < U(f) + ε for all ε > 0, it follows that U(G) ≤ U(f). A similar
argument shows that L(G) ≥ L(f), so we have

L(f) ≤ L(G) ≤ U(G) ≤ U(f).

Since f is integrable so that L(f) = U(f), it follows that L(f) = L(G) = U(G) = U(f) so
that G is integrable on S and

∫
S
G =

∫
R
f , that is∫

R

f =

∫
S

G =

∫
S

(∫ bn

y=an

f(x, y) dy

)
dx1dx2 · · · dxn−1.
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7.30 Theorem: (Iterated Integration) Fix ` ∈ {1, 2, · · · , n}. Let B ⊆ Rn−1 be a closed
Jordan region. Let g, h : B → R be continuous with g(x) ≤ h(x) for all x ∈ B. Let

A =
{

(x1, x2, · · · , x`−1, y, x`, · · · , xn−1)∈Rn
∣∣x∈B , g(x)≤y≤h(x)

}
.

Then

(1) A is a Jordan region in Rn, and
(2) when f : A→ R is continuous, we have∫

A

f =

∫
B

(∫ b`

y=a`

f(x1, · · · , x`−1, y, x`, · · · , xn−1) dy

)
dx1dx2 · · · dxn−1

Proof: For notational convenience, we give a proof in the case that ` = n, so we have

A =
{

(x, y)
∣∣x∈B , g(x)≤y≤h(x)

}
.

Verify, as an exercise that ∂A = C ∪G ∪H where

C =
{

(x, y)
∣∣x∈∂B , g(x)≤y≤h(x)

}
,

G =
{

(x, y)
∣∣x∈B , y=g(x)

}
, and

H =
{

(x, y)
∣∣x∈B , y=h(x)

}
.

Choose a rectangle S in Rn−1 which contains B. Note that B is compact and g and h are
continuous, hence bounded, so we can choose an interval [a, b] which contains the range of
both g and h, so that the rectangle R = S × [a, b] contains A.

We claim that U(C) = 0. Let ε > 0. Since B is Jordan measurable we can choose a
partition X for S, into sub rectangles Sk with k ∈ K, such that U(∂B,X) ≤ ε

b−a . Let Z
be the partition of R into sub-rectangles Rk = Sk × [a, b]. Note that for each k ∈ K, we
have Rk ∩ C 6= ∅ ⇐⇒ Sk ∩ ∂B 6= ∅, and hence

U(C) ≤ U(C,Z) =
∑

Rk∩C 6=∅
|Rk| =

∑
Sk∩∂B 6=∅

|Sk|(b− a) = U(∂B,X) (b− a) ≤ ε.

Since U(C) ≤ ε for all ε > 0, it follows that U(C) = 0, as claimed.

We claim that U(G) = U(H) = 0. Let ε > 0. Choose m ∈ Z+ so that b−a
m ≤ ε

2(U(B)+1)

and let Y = {y0, y1, · · · , ym} be the partition of [a, b] into m equal-sized subintervals, each
of size b−a

m . Since B is compact and g is continuous, hence uniformly continuous, we can

choose δ > 0 so that when x1, x2 ∈ B with |x1 − x2| < δ, we have |g(x1) − g(x2)| < b−a
2m .

Choose a partition X of S into sub-rectangles Sk with k ∈ K, so that firstly, we have
U(B,X) ≤ U(B) + 1, and secondly, for each k we have |x1 − x2| < δ for all x1, x2 ∈ Sk.
Let Z be the partition of R determined by X and Y , that is the partition into the sub-
rectangles Rk,j = Sk × [yj−1, yj ]. Note that when Rk,j ∩G 6= ∅ we have Sk ∩ B 6= ∅, and
note that for each k there are at most 2 values of j for which Rk,j ∩ G 6= ∅ because, if
we had (xi, g(xi)) ∈ G ∩ Rk,ji with j1 < j2 < j3 then we would have x1, x3 ∈ B with
g(x3)− g(x1) ≥ b−a

m . Thus

U(G) ≤ U(G,Z) =
∑

Rk,j∩G 6=∅
|Sk| b−am ≤ 2 ·

∑
Sk∩B 6=∅

|Sk| b−am = 2U(B,X) b−am ≤ ε.

Since U(G) ≤ ε for all ε > 0, we have U(B) = 0. The same argument shows that U(H) = 0.

Finally, we note that since ∂A = C ∪ G ∪H, we have U(∂A) ≤ ∂C ∪ ∂G ∪ ∂H = 0
(by Theorem 7.9), and hence A is Jordan measurable. This completes the proof of Part 1.
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To prove Part 2, note that by Definition 7.17 (the definition of the integral), when we
extend the domain of a function from a Jordan region to a containing rectangle, by defining
the function to be zero outside the Jordan region, the original function is integrable if and
only if the extended function is integrable, and they have the same integral. Extend the
map f : A → R by zero to obtain the map f : R → R with f(x, y) = 0 when (x, y) /∈ A.
By the definition of the integral, this extended map f is integrable on R with

∫
R
f =

∫
A
f .

By Fubini’s Theorem, we have
∫
A
f =

∫
R
f =

∫
S
G where G(x) =

∫ b
y=a

f(x, y) dy, which

is integrable on S. When x ∈ B we have f(x, y) = 0 unless g(x) ≤ y ≤ h(x), and so

G(x) =
∫ b
y=a

f(x, y) dy =
∫ h(x)
y=g(x)

f(x, y) dy. When x /∈ B we have f(x, y) = 0 for all y so

that G(x) = 0. By the definition of the integral again, since G(x) = 0 whenever x /∈ B we
have

∫
S
G =

∫
B
G, and so∫

A

f =

∫
R

f =

∫
S

G =

∫
B

G =

∫
B

(∫ h(x)

y=g(x)

f(x, y) dy

)
dx1dx2 · · · dxn−1.

7.31 Theorem: (Local Change of Variables). Let U ⊆ Rn be open and let g : U → Rn
be C1 with detDg 6= 0 on U . Then for every a ∈ U there exists an open set W with
a ∈ W ⊆ U such that g(W ) is open and g : W → g(W ) is bijective and its inverse is C1,
and such that for every Jordan region A with A ⊆ W and for every continuous function
f : g(A)→ R, we have ∫

g(A)

f =

∫
A

(f ◦ g)
∣∣detDg

∣∣.
Proof: We begin by noting that given a ∈ U , using the Inverse Function Theorem we can
choose an open set W with a ∈ W ⊆ U such that g(W ) is open and g : W → g(W ) is
bijective and its inverse is C1. Later in the proof we shrink W to make the theorem hold.

We claim that if |R| =
∫
g−1(R)

∣∣detDg
∣∣ for every rectangle R in g(W ), then we

have
∫
g(A)

f =
∫
A

(f ◦g)
∣∣ detDg

∣∣ for every Jordan measurable set A with A ⊆ U and every

continuous function f : g(A)→ R. Suppose that |R| =
∫
g−1(A)

∣∣ detDg
∣∣ for every rectangle

R in g(W ), let A be a Jordan region with A ⊆ U and let f : g(A) → R be continuous.

Note that the functions f+ = |f |+f
2 and f− = |f |−f

2 are both continuous and non-negative
with f = f+ − f−, so it suffices to consider the case that f is non-negative.

Let ε > 0. Choose a rectangle R in Rn with g(A) ⊆ R and choose a partition X of
R into sub-rectangles Rk, k ∈ K such that U(f,X) ≤ U(f) + ε and such that for all k,
if Rk ∩ g(A) 6= ∅ then Rk ⊆ g(W ) (we can do this since g(A) is compact and g(W ) is
open). Recall that to obtain U(f,X), we first extend f by zero to all of R, and then we
let Mk = sup

{
f(y)

∣∣y ∈ Rk}. Note that when Rk ∩ g(A) = ∅ we have Mk = 0, and so we
have U(f,X) =

∑
Rk∩g(A) 6=∅Mk|Rk| =

∑
Rk∩g(A) 6=∅Mk|Rk| with

Mk = sup{f(y)|y∈Rk} = sup{f(g(x))|x∈g−1(Rk)}.
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Since the set {Rk|Rk ∩ g(A) 6= ∅} is a set of Jordan regions with disjoint interiors which
covers g(A), it follows that the set {g−1(Rk)|Rk ∩ g(A) 6= ∅} is a set of Jordan regions
with disjoint interiors which covers A. Let B =

⋃
Rk∩g(A)6=∅ g

−1(Rk). We have∫
g(A)

f + ε ≥ U(f,X) =
∑

Rk∩g(A) 6=∅
Mk |Rk| =

∑
Rk∩g(A) 6=∅

Mk

∫
g−1(Rk)

∣∣detDg
∣∣

≥
∑

Rk∩g(A) 6=∅

∫
g−1(Rk)

(f ◦ g)
∣∣ detDg

∣∣ =

∫
B

(f ◦ g)
∣∣detDg

∣∣
≥
∫
A

(f ◦ g)
∣∣ detDg

∣∣.
Since ε > 0 was arbitrary, it follows that

∫
g(A)

f ≥
∫
A

(f ◦ g)
∣∣ detDg

∣∣. A similar argument

using L(f,X) shows that
∫
g(A)

f ≤
∫
A

(f ◦ g)
∣∣detDg

∣∣. This proves the claim.

We shall now use the claim to prove the theorem by induction on n. When n = 1,
the theorem holds by the single variable Change of Variables Theorem. Let n ≥ 2 and
suppose, inductively, that the theorem holds in Rn−1. Let a ∈ U . Since detDg(a) 6= 0, by
expanding the determinant along the last row, we see that one of the matrices obtained
from Dg(a) by removing the nth row and jth column must have non-zero determinant. For
notational convenience, suppose that the upper left (n− 1)× (n− 1) submatrix of Dg(a)
is invertible. Write elements in W as (x, y) with x ∈ Rn−1 and y ∈ R, re-write the given
point a ∈W as (a, b) ∈W , and write g : W → g(W ) as g(x, y) =

(
h(x, y), gn(x, y)

)
with

h(x, y) =
(
g1(x, y), g2(x, y), · · · , gn−1(x, y)

)
.

Define p : W → Rn by
p(x, y) =

(
h(x, y), y

)
and note that Dp is the matrix obtained from Dg by replacing the last row by (0, · · · , 0, 1).
In particular detDp(a, b) is the determinant of the upper left (n− 1)× (n− 1) submatrix
of detDg(a, b), which we are assuming is non-zero. By the Inverse Function Theorem, we
can shrink the open set W , if necessary, so that W and p(W ) are open with (a, b) ∈ W ,
and p : W → p(W ) is invertible with p and p−1 both C1. Define q : p(W )→ Rn by

q(u, v) =
(
u, gn(p−1(u, v))

)
and note that q(p(x, y)) = g(x, y) for all (x, y) ∈W so that g is the composite g = q◦p, and
Dp(x, y) = Dq(p(x, y))Dp(x, y) for all (x, y) ∈W . The sets W , p(W ) and q(p(W )) = g(W )
are all open, the maps g : W → g(W ), p : W → p(W ) and q : p(W ) → q(p(W )) = g(W )
are all bijective, and these maps and their inverses are all C1.

Let R = [a1, b1]×· · ·×[an, bn] be a rectangle in p(W ). let S = [a1, b1]×· · ·×[an−1, bn−1]
so that R = S × [an, bn]. For each y ∈ [an, bn], define h : S → Rn−1 by hy(x) = h(x, y).
By the induction hypothesis, we have |S| =

∫
hy

−1(S)

∣∣detDhy
∣∣, and so

|R| = |S|(bn − an) =

∫ bn

y=an

|S| dy =

∫ bn

y=an

∫
hy

−1(S)

∣∣detDhy
∣∣

=

∫ bn

y=an

∫
hy

−1(S)

∣∣ detDp
∣∣ =

∫
p−1(R)

∣∣detDp
∣∣.
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By the claim proven above, it follows that for every Jordan measurable set A with A ⊆W
and for every continuous map f : p(A)→ R we have∫

p(A)

f =

∫
A

(f ◦ p)
∣∣detDp

∣∣ . (1)

We can give a similar argument for the function q. Let R = S × I with I = [an, bn] be
a rectangle in q(p(W )) = g(W ). For each u ∈ S let ku : I → R be given by ku(v) =
k(u, v) = gn(p−1(u, v)). By the single variable Change of Variables Theorem, we have
|I| =

∫
ku−1(I)

∣∣detDku
∣∣ and so

|R| = |S| |I| =
∫
S

|I| =
∫
S

∫
ku−1(I)

∣∣detDku
∣∣ =

∫
ku−1(R)

∣∣ detDku
∣∣ =

∫
ku−1(R)

∣∣detDq
∣∣.

By the claim, it follows that for every Jordan measurable set B with B ⊆ p(W ) and every
continuous map f : q(B)→ R we have∫

q(B)

f =

∫
B

(f ◦ q)
∣∣detDq

∣∣. (2)

Combining (1) and (2), we see that for every Jordan measurable set A with A ⊆ W and
for every continuous map f : A→ R, letting b = p(A) so that B ⊆ p(W ), we have∫

g(A)=q(B)

f =

∫
B=p(A)

(f ◦ q)
∣∣detDq

∣∣ =

∫
A

(
(f ◦ q)

∣∣ detDq
∣∣ ◦ p)∣∣ detDp

∣∣
=

∫
A

((f ◦ q) ◦ p)
∣∣(detDq) ◦ p

∣∣ ∣∣ detDp
∣∣ =

∫
A

(f ◦ g)
∣∣ detDp

∣∣.
7.32 Theorem: (Change of Variables) Let U ⊆ Rn be open, let g : U → Rn be C1
with detDg 6= 0 on U , let A be a Jordan region with A ⊆ U , and let f : g(A) → R be
continuous. Then ∫

g(A)

f =

∫
A

(f ◦ g)
∣∣detDg

∣∣.
Proof: I may include a proof later.
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