Chapter 6. Differentiation in Euclidean Space

6.1 Definition: Let $U \subseteq \mathbb{R}^{n}$ be open in \mathbb{R}^{n}, let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$, and let at $a \in U$, say $a=\left(a_{1}, \cdots, a_{n}\right)$. We define the $k^{t h}$ partial derivative of f at a to be

$$
\frac{\partial f}{\partial x_{k}}(a)=g_{k}^{\prime}\left(a_{k}\right), \text { where } g_{k}(t)=f\left(a_{1}, \cdots, a_{k-1}, t, a_{k+1}, \cdots a_{n}\right),
$$

or equivalently, letting $e_{k}=(0,0, \cdots, 0,1,0, \cdots, 0)$ be the $k^{\text {th }}$ standard basis vector in \mathbb{R}^{n}, $\frac{\partial f}{\partial x_{k}}(a)=h_{k}{ }^{\prime}(0)$, where $h_{k}(t)=f\left(a_{1}, \cdots, a_{k-1}, a_{k}+t, a_{k+1}, \cdots a_{n}\right)=f\left(a+t e_{k}\right)$, provided that the derivatives exist. Note that g_{k} and h_{k} are functions of a single variable.

Sometimes $\frac{\partial f}{\partial x_{k}}$ is written as $f_{x_{k}}$ or as f_{k}. When we write $u=f(x)$, we can also write $\frac{\partial f}{\partial x_{k}}$ as $\frac{\partial u}{\partial x_{k}}, u_{x_{k}}$ or u_{k}. When $n=3$ and we write x, y and z instead of x_{1}, x_{2} and x_{3}, the partial derivatives $\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}$ and $\frac{\partial f}{\partial x_{3}}$ are written as $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$, or as f_{x}, f_{y} and f_{z}. When $n=1$ so there is only one variable $x=x_{1}$ we have $\frac{\partial f}{\partial x}(a)=\frac{d f}{d x}(a)=f^{\prime}(a)$.
6.2 Definition: Let $U \subseteq \mathbb{R}^{n}$ be open in \mathbb{R}^{n}, let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let $a \in U$. Write $u=f(x)=\left(f_{1}(x), f_{2}(x), \cdots, f_{m}(x)\right)^{T}$ with $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$. We define the derivative matrix, or the Jacobian matrix, of f at a to be the matrix

$$
D f(a)=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}}(a) & \frac{\partial f_{1}}{\partial x_{2}}(a) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(a) \\
\frac{\partial f_{2}}{\partial x_{1}}(a) & \frac{\partial f_{2}}{\partial x_{2}}(a) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(a) \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(a) & \frac{\partial f_{m}}{\partial x_{2}}(a) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(a)
\end{array}\right)
$$

and we define the linearization of f at a to be the affine map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by

$$
L(x)=f(a)+D f(a)(x-a)
$$

provided that all the partial derivatives $\frac{\partial f_{k}}{\partial x_{l}}(a)$ exist.
6.3 Definition: Let U be open in \mathbb{R}^{n} and let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. We say that f is \mathcal{C}^{1} in U when all the partial derivatives $\frac{\partial f_{k}}{\partial f_{l}}$ exist and are continuous in U. The second order partial derivatives of f are the functions

$$
\frac{\partial^{2} f_{j}}{\partial x_{k} \partial x_{l}}=\frac{\partial\left(\frac{\partial f_{j}}{\partial x_{l}}\right)}{\partial x_{k}} .
$$

We also write $\frac{\partial^{2} f_{j}}{\partial x_{k}{ }^{2}}=\frac{\partial^{2} f_{j}}{\partial x_{k} \partial x_{k}}$. We say that f is \mathcal{C}^{2} when all the partial derivatives $\frac{\partial^{2} f_{j}}{\partial x_{k} \partial x_{l}}$ exist and are continuous in U. Higher order derivatives can be defined similarly, and we say f is \mathcal{C}^{k} when all the $k^{\text {th }}$ order derivatives $\frac{\partial^{k} f_{j}}{\partial x_{i_{1}} \partial x_{i_{2}} \cdots \partial x_{i_{k}}}$ exist and are continuous in U. 6.4 Definition: Let $a \in U$ where U is an open set in \mathbb{R}, and let $f: U \subseteq \mathbb{R} \rightarrow \mathbb{R}^{m}$, say $x=f(t)=\left(x_{1}(t), x_{2}(t), \cdots, x_{m}(t)\right)$. Then we write $f^{\prime}(a)=D f(a)$ and we have

$$
f^{\prime}(a)=D f(a)=\left(\begin{array}{c}
\frac{\partial x_{1}}{\partial t}(a) \\
\vdots \\
\frac{\partial x_{m}}{\partial t}(a)
\end{array}\right)=\left(\begin{array}{c}
x_{1}^{\prime}(a) \\
\vdots \\
x_{m}^{\prime}(a)
\end{array}\right)
$$

The vector $f^{\prime}(a)$ is called the tangent vector to the curve $x=f(t)$ at the point $f(a)$. In the case that t represents time and $f(t)$ represents the position of a moving point, $f^{\prime}(a)$ is also called the velocity of the moving point at time $t=a$.
6.5 Definition: Let $a \in U$ where U is an open set in \mathbb{R}^{n} and let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$. We define the gradient of f at a to be the vector

$$
\nabla f(a)=D f(a)^{T}=\left(\frac{\partial f}{\partial x_{1}}(a), \cdots, \frac{\partial f}{\partial x_{n}}(a)\right)^{T}=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(a) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(a)
\end{array}\right)
$$

6.6 Note: Recall that for $f: U \subseteq \mathbb{R} \rightarrow \mathbb{R}$ and $a \in U$,

$$
f \text { is differentiable at } a \Longleftrightarrow \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \text { exists }
$$

$\Longleftrightarrow \exists m \in \mathbb{R} \forall \epsilon>0 \exists \delta>0 \forall x \in U \quad 0<|x-a|<\delta \Longrightarrow\left|\frac{f(x)-f(a)}{x-a}-m\right|<\epsilon$
$\Longleftrightarrow \exists m \in \mathbb{R} \forall \epsilon>0 \exists \delta>0 \forall x \in U \quad 0<|x-a|<\delta \Longrightarrow|f(x)-f(a)-m(x-a)|<\epsilon|x-a|$
$\Longleftrightarrow \exists m \in \mathbb{R} \forall \epsilon>0 \exists \delta>0 \forall x \in U \quad|x-a| \leq \delta \Longrightarrow|f(x)-(f(a)+m(x-a))| \leq \epsilon|x-a|$.
In this case, the number $m \in \mathbb{R}$ is unique, we call it the derivative of f at a and denote it by $f^{\prime}(a)$, and the map $\ell(x)=f(a)+f^{\prime}(a)(x-a)$ is called the linearization of f at a.
6.7 Definition: Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, where U is open. We say f is differentiable at $a \in U$ if there is an $m \times n$ matrix A such that

$$
\forall \epsilon>0 \exists \delta>0 \forall x \in U(|x-a| \leq \delta \Longrightarrow|f(x)-(f(a)+A(x-a))| \leq \epsilon|x-a|)
$$

We show below that the matrix A is unique, we call it the derivative (matrix) of f at a, and we denote it by $D f(a)$. The affine map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $L(x)=f(a)+D f(a)(x-a)$, which approximates $f(x)$, is called the linearization of f at a. We say f is differentiable in U when it is differentiable at every point $a \in U$.
6.8 Example: If f is the affine map $f(x)=A x+b$, then we have $D f(a)=A$ for all a. Indeed given $\epsilon>0$ we can choose $\delta>0$ to be anything we like, and then for all x we have

$$
|f(x)-f(a)-A(x-a)|=|A x+b-A a-b-A x+A a|=0 \leq \epsilon|x-a|
$$

6.9 Theorem: (The Derivative is the Jacobian) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let $a \in U$. If f is differentiable at a then the partial derivatives $\frac{\partial f_{k}}{\partial x_{\ell}}(a)$ all exist and the matrix A which appears in the definition of the derivative is equal to the Jacobian matrix $D f(a)$.
Proof: Suppose that f is differentiable at a. Fix indices k and ℓ and let $g(t)=f_{k}\left(a+t e_{\ell}\right)$ so that $\frac{\partial f_{k}}{\partial x_{\ell}}(a)=g^{\prime}(0)$ provided that the derivative $g^{\prime}(0)$ exists. Let A be a matrix as in the definition of differentiability. Let $\epsilon>0$. Choose $\delta>0$ such that for all $x \in U$ with $|x-a| \leq \delta$ we have $|f(x)-f(a)-A(x-a)| \leq \epsilon|x-a|$. Let $t \in \mathbb{R}$ with $|t| \leq \delta$. Let $x=a+t e_{\ell}$. Then we have $|x-a|=\left|t e_{\ell}\right|=|t| \leq \delta$ and so $|f(x)-f(a)-A(x-a)| \leq \epsilon|x-a|$. Since for any vector $u \in \mathbb{R}^{m}$ we have $\left|u_{k}\right| \leq|u|$, we have

$$
\begin{aligned}
\left|g(t)-g(0)-A_{k, \ell} t\right| & =\left|f_{k}\left(a+t e_{\ell}\right)-f_{k}(a)-\left(A\left(t e_{\ell}\right)\right)_{k}\right| \\
& \leq\left|f\left(a+t e_{\ell}\right)-f(a)-A\left(t e_{\ell}\right)\right| \\
& =|f(x)-f(a)-A(x-a)| \\
& \leq \epsilon|x-a|=\epsilon|t| .
\end{aligned}
$$

It follows that $A_{k, \ell}=g^{\prime}(0)=\frac{\partial f_{k}}{\partial x_{\ell}}(a)$, as required.

The Matrix Norm

6.10 Definition: Let $A \in M_{m \times n}(\mathbb{R})$ and let $S=\left\{x \in \mathbb{R}^{n}| | x \mid=1\right\}$. Since S is compact, by the Extreme Value Theorem, the continuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $f(x)=|A x|$ attains its maximum value on S. We define the norm of the matrix A to be

$$
\|A\|=\max \{|A x|| | x \mid=1\}
$$

6.11 Lemma: (Properties of the Matrix Norm) Let $A \in M_{m \times n}(\mathbb{R})$. Then
(1) $|A x| \leq\|A\||x|$ for all $x \in \mathbb{R}^{n}$,
(2) if A is invertible then $|A x| \geq \frac{|x|}{\left\|A^{-1}\right\|}$ for all $x \in \mathbb{R}^{n}$,
(3) $\|A\| \leq \sum_{k=1}^{m} \sum_{\ell=1}^{n}\left|A_{k, \ell}\right|$, and
(4) $\|A\|$ is equal to the square root of the largest eigenvalue of the matrix $A^{T} A$.

Proof: When $x=0 \in \mathbb{R}^{n}$ we have $|A x|=0=\|A\||x|$ and when $0 \neq x \in \mathbb{R}^{n}$ we have

$$
|A x|=\left||x| A \frac{x}{|x|}\right|=|x|\left|A \frac{x}{|x|}\right| \leq|x|\|A\| .
$$

This proves Part 1. To prove Part 2, suppose that A is invertible. Then we can choose $x \in \mathbb{R}^{n}$ with $|x|=1$ such that $A x \neq 0$ so we must have $\|A\|>0$. Similarly, since A^{-1} is also invertible, we also have $\left\|A^{-1}\right\|>0$. By Part 1 , for all $x \in \mathbb{R}^{n}$ we have $|x|=\left|A^{-1} A x\right| \leq\left\|A^{-1}\right\||A x|$ so that $|A x| \geq \frac{|x|}{\left\|A^{-1}\right\|}$, as required. To prove Part 3, let $x \in \mathbb{R}^{n}$ with $|x|=1$. Then $\left|x_{\ell}\right| \leq|x| \leq 1$ for all indices ℓ, and so
$|A x|=\left|\sum_{k=1}^{m}(A x)_{k} e_{k}\right| \leq \sum_{k=1}^{m}\left|(A x)_{k}\right|=\sum_{k=1}^{m}\left|\sum_{\ell=1}^{n} A_{k, \ell} x_{\ell}\right| \leq \sum_{k=1}^{m} \sum_{\ell=1}^{n}\left|A_{k, \ell}\right|\left|x_{\ell}\right| \leq \sum_{k=1}^{m} \sum_{\ell=1}^{n}\left|A_{k, \ell}\right|$.
We omit the proof of Part 4, which we shall not use (it is often proven in a linear algebra course).
6.12 Theorem: (Differentiability Implies Continuity) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. If f is differentiable at $a \in U$, then f is continuous at a.
Proof: Suppose f is differentiable at a. Note that for all $x \in U$ we have

$$
\begin{aligned}
|f(x)-f(a)| & =|f(x)-f(a)-D f(a)(x-a)+D f(a)(x-a)| \\
& \leq|f(x)-f(a)-D f(a)(x-a)|+|D f(a)(x-a)| \\
& \leq|f(x)-f(a)-D f(a)(x-a)|+||D f(a)|| x-a \mid
\end{aligned}
$$

Let $\epsilon>0$. Since f is differentiable at a we can choose δ with $0<\delta<\frac{\epsilon}{1+\|D f(a)\|}$ such that

$$
|x-a| \leq \delta \Longrightarrow|f(x)-f(a)-D f(a)(x-a)| \leq|x-a|
$$

and then for $|x-a| \leq \delta$ we have

$$
\begin{aligned}
|f(x)-f(a)| & \leq|f(x)-f(a)-D f(a)(x-a)|+\|D f(a)\||x-a| \\
& \leq|x-a|+\|D f(a)\||x-a|=(1+\|D f(a)\|)|x-a| \\
& \leq(1+\|D f(a)\|) \delta<\epsilon .
\end{aligned}
$$

6.13 Theorem: (Continuous Partial Derivatives Implies Differentiability) Let $U \subseteq \mathbb{R}^{n}$ be open, let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let $a \in U$. If the partial derivatives $\frac{\partial f_{k}}{\partial x_{\ell}}(x)$ exist in U and are continuous at a then f is differentiable at a.
Proof: Suppose that the partial derivatives $\frac{\partial f_{k}}{\partial x_{\ell}}(x)$ exist in U and are continuous at a. Let $\epsilon>0$. Choose $\delta>0$ so that $\bar{B}(a, \delta) \subseteq U$ and so that for all indices k, ℓ and for all $y \in U$ we have $|y-a| \leq \delta \Longrightarrow\left|\frac{\partial f_{k}}{\partial x_{\ell}}(y)-\frac{\partial f_{k}}{\partial x_{\ell}}(a)\right| \leq \frac{\epsilon}{n m}$. Let $x \in U$ with $|x-a| \leq \delta$. For $0 \leq \ell \leq n$, let $u_{\ell}=\left(x_{1}, \cdots, x_{\ell}, a_{\ell+1}, \cdots, a_{n}\right)$, with $u_{0}=a$ and $u_{n}=x$, and note that each $u_{\ell} \in \bar{B}(a, \delta)$. For $1 \leq \ell \leq n$, let $\alpha_{\ell}(t)=\left(x_{1}, \cdots, x_{\ell-1}, t, a_{\ell+1}, \cdots, a_{n}\right)$ for t between a_{ℓ} and x_{ℓ}, For $1 \leq k \leq m$ and $1 \leq \ell \leq n$, let $g_{k, \ell}(t)=f_{k}\left(\alpha_{\ell}(t)\right)$ so that $g_{k, \ell}^{\prime}(t)=\frac{\partial f_{k}}{\partial x_{\ell}}\left(\alpha_{\ell}(t)\right)$. By the Mean Value Theorem, we can choose $s_{k, \ell}$ between a_{ℓ} and x_{ℓ} so that $g_{k, \ell}^{\prime}\left(s_{k, \ell}\right)\left(x_{\ell}-a_{\ell}\right)=$ $g_{k, \ell}\left(x_{\ell}\right)-g_{k, \ell}\left(a_{\ell}\right)$ or, equivalently, so that $\frac{\partial f_{k}}{\partial x_{\ell}}\left(\alpha_{\ell}\left(s_{k, \ell}\right)\right)\left(x_{\ell}-a_{\ell}\right)=f_{k}\left(u_{\ell}\right)-f_{k}\left(u_{\ell-1}\right)$. Then

$$
f_{k}(x)-f_{k}(a)=f_{k}\left(u_{n}\right)-f_{k}\left(u_{0}\right)=\sum_{\ell=1}^{n}\left(f_{k}\left(u_{\ell}\right)-f_{k}\left(u_{\ell-1}\right)\right)=\sum_{\ell=1}^{n} \frac{\partial f_{k}}{\partial x_{\ell}}\left(\alpha_{\ell}\left(s_{k, \ell}\right)\right)\left(x_{\ell}-a_{\ell}\right) .
$$

Let $B \in M_{m \times n}(\mathbb{R})$ be the matrix with entries $B_{k, \ell}=\frac{\partial f}{\partial x_{\ell}}\left(\alpha_{\ell}\left(s_{k, \ell}\right)\right)$. Then (by Parts 1 and 3 of Lemma 6.11) we have

$$
\begin{aligned}
\mid f(x)-f(a) & -D f(a)(x-a)|=|(B-D f(a))(x-a)| \leq\|B-D f(a)\|| x-a \mid \\
& \leq \sum_{k, \ell}\left|\frac{\partial f_{k}}{\partial x_{\ell}}\left(\alpha_{\ell}\left(s_{k, \ell}\right)\right)-\frac{\partial f_{k}}{\partial x_{\ell}}(a)\right||x-a| \leq \epsilon|x-a| .
\end{aligned}
$$

6.14 Corollary: If $U \subseteq \mathbb{R}^{n}$ is open and $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is \mathcal{C}^{1} then f is differentiable.
6.15 Corollary: Every function $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, which can be obtained by applying the standard operations (such as multiplication and composition) on functions to basic elementary functions defined on open domains, is differentiable in U.
6.16 Exercise: For each of the following functions $f: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}$, extend the domain of $f(x, y)$ to all of \mathbb{R}^{2} by defining $f(0,0)=0$ and then determine whether the partial derivatives of f exist at $(0,0)$ and whether f is differential at $(0,0)$.
(a) $f(x, y)=\frac{x y}{x^{2}+y^{2}}$
(b) $f(x, y)=|x y|$
(c) $f(x, y)=\sqrt{|x y|}$
(d) $f(x, y)=\frac{x^{3}}{x^{2}+y^{2}}$
(e) $f(x, y)=\frac{x}{\left(x^{2}+y^{2}\right)^{1 / 3}}$
(f) $f(x, y)=\frac{x^{3}-3 x y^{2}}{x^{2}+y^{2}}$

The Chain Rule and the Directional Derivative

6.17 Theorem: (The Chain Rule) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow V \subseteq \mathbb{R}^{m}$, let $g: V \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}$, and let $h(x)=g(f(x))$. If f is differentiable at a and g is differentiable at $f(a)$ then h is differentiable at a and $D h(a)=D g(f(a)) D f(a)$.

Proof: Suppose f is differentiable at a and g is differentiable at $f(a)$. Write $y=f(x)$ and $b=f(a)$. We have

$$
\begin{aligned}
\mid h(x) & -h(a)-D g(f(a)) D f(a)(x-a)|=|g(y)-g(b)-D g(b) D f(a)(x-a)| \\
& =|g(y)-g(b)-D g(b)(y-b)+D g(b)(y-b)-D g(b) D f(a)(x-a)| \\
& \leq|g(y)-g(b)-D g(b)(y-b)|+\|D g(b)\||y-b-D f(a)(x-a)| \\
& \leq|g(y)-g(b)-D g(b)(y-b)|+(1+\|D g(b)\|)|f(x)-f(a)-D f(a)(x-a)|
\end{aligned}
$$

and

$$
\begin{aligned}
|y-b| & =|f(x)-f(a)| \\
& =|f(x)-f(a)-D f(a)(x-a)+D f(a)(x-a)| \\
& \leq|f(x)-f(a)-D f(a)(x-a)|+\|D f(a)\||x-a| .
\end{aligned}
$$

Let $\epsilon>0$ be given. Since g is differentiable at b we can choose $\delta_{0}>0$ so that

$$
|y-b| \leq \delta_{0} \Longrightarrow|g(y)-g(b)-D g(b)(y-b)| \leq \frac{\epsilon}{2(1+\|D f(a)\|)}|y-b|
$$

Since f is continuous at a we can choose $\delta_{1}>0$ so that

$$
|x-a| \leq \delta_{1} \Longrightarrow|y-b|=|f(x)-f(a)| \leq \delta_{0}
$$

Since f is differentiable at a we can choose $\delta_{2}>0$ so that

$$
|x-a| \leq \delta_{2} \Longrightarrow|f(x)-f(a)-D f(a)(x-a)| \leq|x-a|
$$

and we can choose $\delta_{3}>0$ so that

$$
|x-a| \leq \delta_{3} \Longrightarrow|f(x)-f(a)-D f(a)(x-a)| \leq \frac{\epsilon}{2(1+\|D g(a)\|)}|x-a|
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$. Then for $|x-a| \leq \delta$ we have

$$
\begin{aligned}
|y-b| & \leq|f(x)-f(a)-D f(a)(x-a)|+|D f(a)(x-a)| \\
& \leq|x-a|+\|D f(a)\||x-a| \\
& =(1+\|D f(a)\|)|x-a|
\end{aligned}
$$

So

$$
|g(y)-g(b)-D g(b)(y-b)| \leq \frac{\epsilon}{2(1+\|D f(a)\|)}|y-b| \leq \frac{\epsilon}{2}|x-a|
$$

and we have

$$
(1+\|D g(b)\|)|f(x)-f(a)-D f(a)(x-a)| \leq \frac{\epsilon}{2}|x-a|
$$

and so

$$
|h(x)-h(a)-D g(f(a)) D f(a)(x-a)| \leq \frac{\epsilon}{2}|x-a|+\frac{\epsilon}{2}|x-a|=\epsilon|x-a| .
$$

Thus h is differentiable at a with derivative $D h(a)=D g(f(a)) D f(a)$, as required.
6.18 Definition: Let $f: U \subseteq \mathbb{R}^{n} \rightarrow R$, let $a \in \mathbb{R}^{n}$ and let $v \in \mathbb{R}^{n}$. We define the directional derivative of f at a with respect to v, written as $D_{v} f(a)$, as follows: pick any differentiable function $\alpha:(-\epsilon, \epsilon) \subseteq \mathbb{R} \rightarrow U \subseteq \mathbb{R}^{n}$, where $\epsilon>0$, such that $\alpha(0)=a$ and $\alpha^{\prime}(0)=v$ (for example, we could pick $\alpha(t)=a+v t$), let $g(t)=f(\alpha(t))$, note that by the Chain Rule we have $g^{\prime}(t)=D f(\alpha(t)) \alpha^{\prime}(t)$, and then define

$$
D_{v} f(a)=g^{\prime}(0)=D f(\alpha(0)) \alpha^{\prime}(0)=D f(a) v=\nabla f(a) \cdot v
$$

Notice that the formula for $D_{v} f(a)$ does not depend on the choice of the function $\alpha(t)$. The directional derivative of f at a in the direction of v is defined to be $D_{w} f(a)$ where w is the unit vector in the direction of v, that is $w=\frac{v}{|v|}$.
6.19 Remark: Some books only define the directional derivative in the case that vector is a unit vector.
6.20 Theorem: Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $a \in U$. Say $f(a)=b$. The gradient $\nabla f(a)$ is perpendicular to the level set $f(x)=b$, it is in the direction in which f increases most rapidly, and its length is the rate of increase of f in that direction.
Proof: Let $\alpha(t)$ be any curve in the level set $f(x)=b$, with $\alpha(0)=a$. We wish to show that $\nabla f(a) \perp \alpha^{\prime}(0)$. Since $\alpha(t)$ lies in the level set $f(x)=b$, we have $f(\alpha(t))=b$ for all t. Take the derivative of both sides to get $D f(\alpha(t)) \alpha^{\prime}(t)=0$. Put in $t=0$ to get $D f(a) \alpha^{\prime}(0)=0$, that is $\nabla f(a) \cdot \alpha^{\prime}(0)=0$. Thus $\nabla f(a)$ is perpendicular to the level set $f(x)=b$.

Next, let u be a unit vector. Then $D_{u} f(a)=\nabla f(a) \cdot u=|\nabla f(a)| \cos \theta$, where θ is the angle between u and $\nabla f(a)$. So the maximum possible value of $D_{u} f(a)$ is $|\nabla f(a)|$, and this occurs when $\cos \theta=1$, that is when $\theta=0$, which happens when u is in the direction of $\nabla f(a)$.

The Geometry of the Linearization

6.21 Note: There are several geometric objects (curves and surfaces, and higher dimensional analogues) that we can associate with a given function $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. The graph of f is the set $\operatorname{Graph}(f)=\{(x, f(x)) \mid x \in U\} \subseteq \mathbb{R}^{n+m}$. We say that the graph of f is given explicitlty by the equation $y=f(x)$. The null set of f is the set $\operatorname{Null}(f)=f^{-1}(0)=\{x \in U \mid f(x)=0\} \subseteq \mathbb{R}^{n}$, and more generally, when $a \in U$ and $f(a)=b$, the inverse image of b under f, also called the level set $f^{-1}(b)$, is given by $f^{-1}(b)=\{x \in U \mid f(x)=b\} \subseteq \mathbb{R}^{n}$. We say the level set $f^{-1}(b)$ is given implicitly by the equation $f(x)=b$. The range of f is the set Range $(f)=\{f(t) \mid t \in U\} \subseteq \mathbb{R}^{m}$. We say that the range of f is given parametrically by the equation $x=f(t)$.

When f is differentiable at $a \in U$, it is approximated by its linearization near $x=a$, that is when $x \cong a$ we have

$$
f(x) \cong L(x)=f(a)+D f(a)(x-a) .
$$

The geometric objects $\operatorname{Graph}(f)$, $\operatorname{Null}(f), f^{-1}(b)$ and $\operatorname{Range}(f)$ are approximated by the affine spaces $\operatorname{Graph}(L), \operatorname{Null}(L), L^{-1}(b)$ and Range (L). Each of these affine spaces is called the (affine) tangent space of its corresponding geometric object: the space $\operatorname{Graph}(L)$ is called the (affine) tangent space of the set $\operatorname{Graph}(f)$ at the point $(a, f(a))$; when $f(a)=b$ the space $L^{-1}(b)$ is called the (affine) tangent space to $f^{-1}(b)$ at the point a; and the space Range (L) is called the (affine) tangent space of the set Range (f) at the point $f(a)$. When a tangent space is 1-dimensional we call it a tangent line and when a tangent space is 2-dimensional we call it a tangent plane.

The Mean Value Theorem

6.22 Definition: For $a, b \in \mathbb{R}^{n}$, we define the line segment from a to b to be the set

$$
[a, b]=\{a+t(b-a) \mid 0 \leq t \leq 1\}
$$

For $A \subseteq \mathbb{R}^{n}$ we say the A is convex when for all $a, b \in A$ we have $[a, b] \subseteq A$.
6.23 Exercise: Show, using the triangle inequality, that $B(a, r)$ is convex for all $a \in \mathbb{R}^{n}$ and $r>0$.
6.24 Theorem: (The Mean Value Theorem) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with U open in \mathbb{R}^{n}. Suppose that f is differentiable in U. Let $u \in \mathbb{R}^{m}$ and let $a, b \in U$ with $[a, b] \subseteq U$. Then there exists $c \in[a, b]$ such that

$$
D f(c)(b-a) \cdot u=(f(b)-f(a)) \cdot u .
$$

Proof: Let $\alpha(t)=a+t(b-a)$ and define $g:[0,1] \rightarrow \mathbb{R}$ by $g(t)=f(\alpha(t)) \cdot u$. By the Chain Rule, we have $g^{\prime}(t)=\left(D f(\alpha(t)) \alpha^{\prime}(t)\right) \cdot u=(D f(\alpha(t))(b-a)) \cdot u$. By the Mean Value Theorem (for a real-valued function of a single variable) we can choose $s \in[0,1]$ such that $g^{\prime}(s)=g(1)-g(0)$, that is $(D f(\alpha(s))(b-a)) \cdot u=f(b) \cdot u-f(a) \cdot u=(f(b)-f(a)) \cdot u$. Thus we can take $c=\alpha(s) \in[a, b]$ to get $D f(c)(b-a) \cdot u=(f(b)-f(a)) \cdot u$.
6.25 Corollary: (Vanishing Derivative) Let $U \subseteq \mathbb{R}^{n}$ be open and connected and let $f: U \rightarrow \mathbb{R}^{m}$ be differentiable with $D f(x)=O$ for all $x \in U$. Then f is constant in U.

Proof: Let $a \in U$ and let $A=\{x \in U \mid f(x)=f(a)\}$. We claim that A is open (both in \mathbb{R}^{n} and in $\left.U\right)$. Let $b \in A$, that is let $b \in U$ with $f(b)=f(a)$. Since U is open we can choose $r>0$ so that $B(b, r) \subseteq U$. Let $c \in B(b, r)$. Since $B(b, r)$ is convex we have $[b, c] \subseteq B(b, r) \subseteq U$. Let $u=f(c)-f(b)$ and choose $d \in[b, c]$, as in the Mean Value Theorem, so that $(D f(d)(c-b)) \cdot u=(f(c)-f(b)) \cdot u$. Then we have

$$
|f(c)-f(b)|^{2}=(f(c)-f(b)) \cdot u=(D f(d)(c-b)) \cdot u=0
$$

since $D f(d)=O$. Since $|f(c)-f(b)|=0$ we have $f(c)=f(b)=f(a)$, and so $c \in A$. Thus $B(b, r) \subseteq A$ and so A is open, as claimed. A similar argument shows that if $b \in U \backslash A$ and we chose $r>0$ so that $B(b, r) \subseteq U$ then we have $f(c)=f(b)$ for all $c \in B(b, r)$ hence $B(b, r) \subseteq U \backslash A$ and hence $U \backslash A$ is also open. Note that A is non-empty since $a \in A$. If $U \backslash A$ was also non-empty then U would be the union of the two non-empty open sets A and $U \backslash A$, and this is not possible since U is connected. Thus $U \backslash A=\emptyset$ so $U=A$. Since $U=A=\{x \in U \mid f(x)=f(a)\}$ we have $f(x)=f(a)$ for all $x \in U$, so f is constant in U.

The Inverse and the Implicit Function Theorems

6.26 Theorem: (The Inverse Function Theorem) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ where $U \subseteq \mathbb{R}^{n}$ is open with $a \in U$. Suppose that f is \mathcal{C}^{1} in U and that $\operatorname{Df}(a)$ is invertible. Then there exists an open set $U_{0} \subseteq U$ with $a \in U_{0}$ such that the set $V_{0}=f\left(U_{0}\right)$ is open in \mathbb{R}^{n} and the restriction $f: U_{0} \rightarrow V_{0}$ is bijective, and its inverse $g=f^{-1}: V_{0} \rightarrow U_{0}$ is \mathcal{C}^{1} in V_{0}. In this case we have $D g(f(a))=D f(a)^{-1}$.
Proof: Let $A=D f(a)$ and note that A is invertible. Since U is open and f is \mathcal{C}^{1}, we can choose $r>0$ so that $B(a, r) \subseteq U$ and so that $\left|\frac{\partial f_{k}}{\partial x_{\ell}}(x)-\frac{\partial f_{k}}{\partial f_{\ell}}(a)\right| \leq \frac{1}{2 n^{2}\left\|A^{-1}\right\|}$ for all k, ℓ. Let $U_{0}=B(a, r)$ and note that for all $x \in U_{0}$ we have $\|D f(x)-A\| \leq \frac{1}{2\left\|A^{-1}\right\|}$.
Claim 1: for all $x \in U_{0}$, the matrix $D f(x)$ is invertible.
Let $x \in U_{0}$ and suppose, for a contradiction, that $D f(x)$ is not invertible. Then we can choose $u \in \mathbb{R}^{n}$ with $|u|=1$ such that $D f(x) u=0$. But then we have

$$
\|D f(x)-A\| \geq|(D f(a)-A) u|=|A u| \geq \frac{|u|}{\left\|A^{-1}\right\|}=\frac{1}{\left\|A^{-1}\right\|}
$$

which contradicts the fact that since $x \in U_{0}$ we have $\|D f(x)-A\| \leq \frac{1}{2\left\|A^{-1}\right\|}$.
Claim 2: for all $b, c \in U_{0}$ we have $|f(c)-f(b)-A(c-b)| \leq \frac{\| c-b \mid}{2\left\|A^{-1}\right\|}$.
Let $b, c \in U_{0}$. Let $\alpha(t)=b+t(c-b)$ and note that $\alpha(t) \in U_{0}$ for all $t \in[0,1]$. Let $\phi(t)=$ $f(\alpha(t))-L(\alpha(t))$ where L is the linearization of f at a given by $L(a)=f(a)+D f(a)(x-a)$, and note that $\phi(1)-\phi(0)=(f(c)-L(c))-(f(b)-L(b))=f(c)-f(b)-A(c-b)$. By the Chain Rule, we have $\phi^{\prime}(t)=D f(\alpha(t)) \alpha^{\prime}(t)-D L(\alpha(t)) \alpha^{\prime}(t)=(D f(\alpha(t))-A)(c-b)$ and so

$$
\left|\phi^{\prime}(t)\right| \leq\|D f(\alpha(t))-A\||c-b| \leq \frac{|c-b|}{2\left\|A^{-1}\right\|}
$$

By the Mean Value Theorem, using $u=\phi(1)-\phi(0)$, we choose $t \in[0,1]$ such that

$$
\begin{aligned}
|\phi(1)-\phi(0)|^{2} & =(\phi(1)-\phi(0)) \cdot u=(D \phi(t)(1-0)) \cdot u=\phi^{\prime}(t) \cdot u \\
& =\left|\phi^{\prime}(t) \cdot(\phi(1)-\phi(0))\right| \leq\left|\phi^{\prime}(t)\right||\phi(1)-\phi(0)|
\end{aligned}
$$

by the Cauchy Schwarz Inequality, and hence $|\phi(1)-\phi(0)| \leq\left|\phi^{\prime}(t)\right| \leq \frac{|c-b|}{2\left\|A^{-1}\right\|}$, that is

$$
|f(c)-f(b)-A(c-b)| \leq \frac{|c-b|}{2\left\|A^{-1}\right\|}
$$

Claim 3: for all $b, c \in U_{0}$ we have $|f(c)-f(b)| \geq \frac{|c-b|}{2\left\|A^{-1}\right\|}$.
Let $b, c \in U_{0}$. By the Triangle Inequality we have

$$
|f(c)-f(b)-A(c-b)| \geq|A(c-b)|-|f(c)-f(b)| \geq \frac{|c-b|}{\left\|A^{-1}\right\|}-|f(c)-f(b)|
$$

and so, by Claim 3, we have

$$
|f(c)-f(b)| \geq \frac{|c-b|}{\left\|A^{-1}\right\|}-|f(c)-f(b)-A(c-b)| \geq \frac{|c-b|}{\left\|A^{-1}\right\|}-\frac{|c-b|}{2\left\|A^{-1}\right\|}=\frac{|c-b|}{2\left\|A^{-1}\right\|}
$$

It follows that when $b \neq c$ we have $f(b) \neq f(c)$, so the restriction of f to U_{0} is injective.
Claim 4: the restriction of f to U_{0} is injective, hence $f: U_{0} \rightarrow V_{0}=f\left(U_{0}\right)$ is bijective.
By Claim 3, when $b, c \in U_{0}$ with $b \neq c$ we have $|f(c)-f(b)| \geq \frac{|c-b|}{2\left\|A^{-1}\right\|}>0$ so that $f(b) \neq f(c)$. Thus the restriction of f to U_{0} is injective, as claimed.

Claim 5: the set V_{0} is open in \mathbb{R}^{n}.
Let $p \in V_{0}$. Let $b=g(p)$ so that $p=f(b)$. Choose $s>0$ so that $\bar{B}(b, s) \subseteq U_{0}$. We shall show that $B\left(p, \frac{s}{4\left\|A^{-1}\right\|}\right) \subseteq V_{0}$. Let $q \in B\left(b, \frac{s}{4\left\|A^{-1}\right\|}\right)$. We need to show that $q \in V_{0}=f\left(U_{0}\right)$ and in fact we shall show that $q \in f(B(b, s))$. To do this, define $\psi: U \rightarrow \mathbb{R}$ by $\psi(x)=|f(x)-q|$. Since ψ is continuous, it attains its minimum value on the compact set $\bar{B}(b, s)$, say at $c \in \bar{B}(b, s)$. We shall show that $c \in B(b, s)$ and that $f(c)=q$ so we have $q \in f(B(b, s))$, hence $q \in f\left(U_{0}\right)=V_{0}$, hence $B\left(b, \frac{s}{4\left\|A^{-1}\right\|}\right) \subseteq V_{0}$, and hence V_{0} is open.
Claim 5(a): we have $c \in B(b, s)$.
Suppose, for a contradiction, that $c \notin B(b, s)$ so we have $|c-b|=s$. Then

$$
\begin{aligned}
\psi(b) & =|f(b)-q|=|p-q|<\frac{s}{4\left\|A^{-1}\right\|} \text { and, using Claim 3, } \\
\psi(c) & =|f(c)-q| \geq|f(c)-f(b)|-|f(b)-q| \geq \frac{|c-b|}{2\left\|A^{-1}\right\|}-|p-q| \\
& =\frac{s}{2\left\|A^{-1}\right\|}-|p-q|>\frac{s}{2\left\|A^{-1}\right\|}-\frac{s}{4\left\|A^{-1}\right\|}=\frac{s}{4\left\|A^{-1}\right\|}
\end{aligned}
$$

so that $\psi(b)<\psi(c)$. But this contradicts the fact that $\psi(c)$ is the minimum value of $\psi(x)$ in $\bar{B}(b, s)$, so we have $c \in B(b, s)$, as claimed.

Claim 5(b): we have $f(c)=q$.
Suppose, for a contradiction, that $f(c) \neq q$ so we have $\psi(c)>0$. Let $v=q-f(c)$ so that $|v|=\psi(c)>0$. Let $u=A^{-1} v$ so that $v=A u$. Then for $0 \leq t \leq 1$, using Claim 2, we have

$$
\begin{aligned}
\psi(c+t u) & =|f(c+t u)-q| \leq|f(c+t u)-f(c)-A t u|+|f(c)+A t u-q| \\
& \leq \frac{|t u|}{2\left\|A^{-1}\right\|}+|t v-v|=\frac{t\left|A^{-1} v\right|}{2\left\|A^{-1}\right\|}+(1-t)|v| \leq \frac{t}{2}|v|+(1-t)|v|=\left(1-\frac{t}{2}\right)|v|
\end{aligned}
$$

Since $|v|>0$ we have $\psi(c+t u) \leq\left(1-\frac{t}{2}\right)|v|<|v|=\psi(c)$. But this again contradicts the fact that $\psi(x)$ attains its minimum value at c, and so we have $f(c)=q$, as claimed.
Claim 6: the function g is differentiable in V_{0} with $D g(f(b))=D f(b)^{-1}$ for all $b \in U_{0}$.
Let $p \in V_{0}$ and let $b=g(p)$ so that $f(b)=p$. Let $B=D f(b)$. Note that B is invertible by
Claim 1. Let $C=B^{-1}$. Let $y \in V_{0}$ and let $x=g(y) \in U_{0}$ so that $y=f(x)$. Then we have

$$
\begin{aligned}
\mid g(y)-g(p) & -C(y-p)|=|x-b-C(f(x)-f(b))|=|C B(x-b-C(f(x)-f(b)))| \\
& =|C(B x-B b-(f(x)-f(b)))| \leq\|C\||f(x)-f(b)-B(x-b)|
\end{aligned}
$$

Also, as shown above, we have $|y-p|=|f(x)-f(b)| \geq \frac{|x-b|}{2\left\|A^{-1}\right\|}$ so that

$$
|x-b| \leq 2\left\|A^{-1}\right\||y-p| .
$$

It follows that g is differentiable at p with $D g(p)=C=D f(b)^{-1}$, as claimed. Indeed, given $\epsilon>0$, since f is differentiable at b with $D f(b)=B$ we can choose $\delta_{1}>0$ so that when $|x-a|<\delta_{1}$ we have $|f(x)-f(b)-B(x-b)| \leq \frac{\epsilon}{2\left\|A^{-1}\right\|\|C\|}|x-b|$, and since g is continuous at b we can choose $\delta>0$ so that when $|y-p|<\delta$ we have $|x-b|=|g(y)-g(b)|<\delta_{1}$. When $|y-p|<\delta$, the above inequalities give $|g(y)-g(b)-C(y-p)| \leq \epsilon|y-p|$.
Claim 7: the function g is \mathcal{C}^{1} in V_{0}.
By the cofactor formula for the inverse of a matrix, for all $y \in V_{0}$ and all indices k, ℓ,

$$
\frac{\partial g_{k}}{\partial y_{\ell}}(y)=(D g(y))_{k, \ell}=\left(D f(g(y))^{-1}\right)_{k, \ell}=\frac{(-1)^{k+\ell}}{\operatorname{det} D f(g(y))} \operatorname{det} E
$$

where is E is the matrix obtained from $D f(g(y))$ by removing the $k^{\text {th }}$ column and the $\ell^{\text {th }}$ row. Thus $\frac{\partial g_{k}}{\partial y_{\ell}}(y)$ is a continuous function of y, as claimed.
6.27 Corollary: (The Parametric Function Theorem) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+k}$ be \mathcal{C}^{1}. Let $a \in U$ and suppose that $D f(a)$ has rank n. Then Range (f) is locally equal to the graph of a \mathcal{C}^{1} function.

Proof: Since $D f(a)$ has maximal rank n, it follows that some $n \times n$ submatrix of $D f(a)$ is invertible. By reordering the variables in \mathbb{R}^{n+k}, if necessary, suppose that the top n rows of $D f(a)$ form an invertible $n \times n$ submatrix. Write $f(t)=(x(t), y(t))$, where $x(t)=\left(x_{1}(t), \cdots, x_{n}(t)\right)$ and $y(t)=\left(y_{1}(t), \cdots, y_{k}(t)\right)$, so that we have

$$
D f(t)=\binom{D x(t)}{D y(t)}
$$

with $D x(a)$ invertible. By the Inverse function Theorem, the function $x(t)$ is locally invertible. Write the inverse function as $t=t(x)$ and let $g(x)=y(t(x))$. Then, locally, we have Range $(f)=\operatorname{Graph}(g)$ because if $(x, y) \in \operatorname{Graph}(g)$ and we choose $t=t(x)$ then we have $(x, y)=(x, g(x))=(x(t), g(x(t)))=(x(t), y(t)) \in \operatorname{Range}(f)$ and, on the other hand, if $(x, y) \in$ Range (f), say $(x, y)=(x(t), y(t))$ then we must have $t=t(x)$ so that $y(t)=y(t(x))=g(x)$ so that $(x, y)=(x(t), y(t))=(x, g(x)) \in \operatorname{Graph}(g)$.
6.28 Corollary: (The Implicit Function Theorem) Let $f: U \subseteq \mathbb{R}^{n+k} \rightarrow \mathbb{R}^{k}$ be \mathcal{C}^{1}. Let $p \in U$, suppose that $D f(p)$ has rank k and let $c=f(p)$. Then the level set $f^{-1}(c)$ is locally the graph of a \mathcal{C}^{1} function.

Proof: Since $D f(p)$ has rank k, it follows that some $k \times k$ submatrix of f is invertible. By reordering the variables in \mathbb{R}^{n+k}, if necessary, suppose that the last k columns of $D f(p)$ form an invertible $k \times k$ matrix. Write $p=(a, b)$ with $a=\left(p_{1}, \cdots, p_{n}\right) \in \mathbb{R}^{n}$ and $b=\left(p_{n+1}, \cdots, p_{n+k}\right) \in \mathbb{R}^{k}$ and write $z=f(x, y)$ with $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{k}$ and $z \in \mathbb{R}^{k}$, and write

$$
D f(x, y)=\left(\frac{\partial z}{\partial x}(x, y), \frac{\partial z}{\partial y}(x, y)\right)
$$

with $\frac{\partial z}{\partial y}(a, b)$ invertible. Define $F: U \subseteq \mathbb{R}^{n+k} \rightarrow \mathbb{R}^{n+k}$ by $F(x, y)=(x, f(x, y))=(w, z)$. Then we have

$$
D F=\left(\begin{array}{cc}
I & O \\
\frac{\partial z}{\partial x} & \frac{\partial z}{\partial y}
\end{array}\right)
$$

with $D F(a, b)$ invertible. By the Inverse Function Theorem, $F=F(x, y)$ is locally invertible. Write the inverse function as $(x, y)=G(w, z)=(w, g(w, z))$ and let $h(x)=g(x, c)$. Then, locally, we have $f^{-1}(c)=\operatorname{Graph}(h)$ because

$$
\begin{aligned}
f(x, y)=c & \Longleftrightarrow F(x, y)=(x, c) \Longleftrightarrow(x, y)=G(x, c) \\
& \Longleftrightarrow(x, y)=(x, g(x, c)) \Longleftrightarrow(x, y) \in \operatorname{Graph}(h)
\end{aligned}
$$

6.29 Remark: We can also find a formula for $D h$ where h is the function in the above proof. Since $G(w, z)=(w, g(w, z))$ we have $D G(w, z)=\left(\begin{array}{cc}I & O \\ \frac{\partial g}{\partial w} & \frac{\partial g}{\partial z}\end{array}\right)$ and we also have $D G(w, z)=D F(x, y)^{-1}=\left(\begin{array}{cc}I & O \\ -\left(\frac{\partial z}{\partial y}\right)^{-1} \frac{\partial z}{\partial x} & \left(\frac{\partial z}{\partial y}\right)^{-1}\end{array}\right)$ so, since $h(x)=g(x, c)$, we have

$$
D h(x)=\frac{\partial g}{\partial w}(x, c)=-\left(\frac{\partial z}{\partial y}\right)^{-1} \frac{\partial z}{\partial x}(x, y) .
$$

Higher Order Derivatives and Taylor's Theorem

6.30 Lemma: (Iterated Limits) Let I and J be open intervals in \mathbb{R} with $a \in I$ and $b \in J$, let $U=(I \times J) \backslash\{(a, b)\}$, and let $f: U \rightarrow \mathbb{R}$. Suppose that $\lim _{y \rightarrow b} f(x, y)$ exists for every $x \in I$ and that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=u \in \mathbb{R}$. Then $\lim _{x \rightarrow a} \lim _{t \rightarrow b} f(x, y)=u$.

Proof: Define $g: I \rightarrow \mathbb{R}$ by $g(x)=\lim _{y \rightarrow b} f(x, y)$. Let $\epsilon>0$. Since $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=u$ we can choose $\delta>0$ such that for all $(x, y) \in U$ with $0<|(x, y)-(a, b)| \leq 2 \delta$ we have $|f(x, y)-u| \leq \epsilon$. Let $x \in I$ with $0<|x-a| \leq \delta$. For all $y \in J$ with $0<|y-b| \leq \delta$ we have $0<|(x, y)-(a, b)| \leq|x-a|+|y-b| \leq 2 \delta$ and so $|f(x, y)-u| \leq \epsilon$ and hence

$$
|g(x)-u| \leq|g(x)-f(x, y)|+|f(x, y)-u| \leq|g(x)-f(x, y)|+\epsilon
$$

Take the limit as $y \rightarrow b$ on both sides to get $|g(x)-u| \leq \epsilon$. Thus $\lim _{x \rightarrow a} g(x)=u$, as required.
6.31 Theorem: (Mixed Partials Commute) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ where U is open in \mathbb{R}^{n} with $a \in U$, and let $k, \ell \in\{1, \cdots, n\}$. Suppose $\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}(x)$ exists in U and is continuous at a, $\frac{\partial f}{\partial x_{k}}(x)$ exists and is continuous in U, and $\frac{\partial^{2} f}{\partial x_{\ell} \partial x_{k}}(a)$ exists. Then $\frac{\partial^{2} f}{\partial x_{\ell} \partial x_{k}}(a)=\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}(a)$.
Proof: When $k=\ell$ there is nothing to prove, so suppose that $k \neq \ell$. Choose $r>0$ so that $B(a, 2 r) \subseteq U$. For $|x|<r$ and $|y|<r$ note that the points $a, a+x e_{k}, a+y e_{\ell}$ and $a+x e_{k}+y e_{\ell}$ all lie in $B(a, 2 r)$. For $|X|<r$ and $|y|<r$, define

$$
g(x, y)=f\left(a+x e_{k}+y e_{\ell}\right)-f\left(a+x e_{k}\right)-f\left(a+y e_{\ell}\right)+f(a) .
$$

By the Mean Value Theorem, applied to the function $f\left(a+x e_{k}+y e_{\ell}\right)-f\left(a+y e_{\ell}\right)$ as a function of y, we can choose t between 0 and y such that

$$
y\left(\frac{\partial f}{\partial x_{\ell}}\left(a+x e_{k}+t e_{\ell}\right)-\frac{\partial f}{\partial x_{\ell}}\left(a+t e_{\ell}\right)\right)=g(x, y) .
$$

By the Mean Value Theorem, applied to the function $\frac{\partial f}{\partial x_{\ell}}\left(a+x e_{k}+t e_{\ell}\right)$ as a function of x, we can choose s between 0 and x such that

$$
x \frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}\left(a+s e_{k}+t e_{\ell}\right)=\frac{\partial f}{\partial x_{\ell}}\left(a+x e_{k}+t e_{\ell}\right)-\frac{\partial f}{\partial x_{\ell}}\left(a+t e_{\ell}\right) .
$$

Also by the Mean Value Theorem, applied to the function $f\left(a+x e_{k}+y e_{\ell}\right)-f\left(a+x e_{k}\right)$ as a function of x, we can choose r between 0 and x such that

$$
x\left(\frac{\partial f}{\partial x_{k}}\left(a+r e_{k}+y e_{\ell}\right)-\frac{\partial f}{\partial x_{k}}\left(a+r e_{\ell}\right)\right)=g(x, y) .
$$

Then for $|x|<r$ and $0<|y|<r$ we have

$$
\frac{\frac{\partial f}{\partial x_{k}}\left(a+r e_{k}+y e_{\ell}\right)-\frac{\partial f}{\partial x_{k}}\left(a+r e_{k}\right)}{y}=\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}\left(a+s e_{k}+t e_{\ell}\right) .
$$

Since $\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}$ is continuous, the limit on the right as $(x, y) \rightarrow(0,0)$ is equal to $\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}(a)$, and since $\frac{\partial f}{\partial x_{k}}$ is continuous, the limit as $y \rightarrow 0$ of the limit as $x \rightarrow 0$ on the left is equal to $\frac{\partial^{2} f}{\partial x_{\ell} \partial x_{k}}(a)$, so the desired result follows from the above lemma.
6.32 Corollary: If $U \subseteq \mathbb{R}^{n}$ is open and $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is \mathcal{C}^{2} in U then we have $\frac{\partial^{2} f}{\partial x_{\ell} \partial x_{k}}(x)=\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}(x)$ for all $x \in U$ and for all k, ℓ.
6.33 Exercise: Verify that for $f(x, y)=\frac{x^{2}}{x^{2}+y^{2}}$ we have $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y) \neq \lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)$.
6.34 Exercise: Let $f(x, y)=\left\{\begin{array}{cc}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & , \text { if }(x, y) \neq(0,0) \\ 0 & , \text { if }(x, y)=(0,0)\end{array}\right\}$. Verify that the mixed partial derivatives $\frac{\partial^{2} f}{\partial x \partial y}(0,0)$ and $\frac{\partial^{2} f}{\partial y \partial x}(0,0)$ both exist, but they are not equal.
6.35 Definition: for $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$, where U is open in \mathbb{R}^{n} with $a \in U$, we define $D^{0} f(a)=f(a)$ and for $\ell \in \mathbb{Z}^{+}$we define the $\ell^{\text {th }}$ total differential of f at a to be the map $D^{\ell} f(a): \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
D^{\ell} f(a)(u)=\sum_{k_{1}=1}^{n} \sum_{k_{2}=1}^{n} \cdots \sum_{k_{\ell}=1}^{n} \frac{\partial^{\ell} f}{\partial x_{k_{1}} \partial x_{k_{2}} \cdots \partial x_{k_{\ell}}}(a) u_{k_{1}} u_{k_{2}} \cdots u_{k_{\ell}}
$$

provided that all of the $\ell^{\text {th }}$ order partial derivatives exist at a.
6.36 Example: When $f: U \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ is \mathcal{C}^{2} (so the mixed partial derivatives commute) we have

$$
\begin{aligned}
D^{0} f(u, v) & =f(a, b) \\
D^{1} f(a, b)(u, v) & =\frac{\partial f}{\partial x}(a, b) u+\frac{\partial f}{\partial y}(a, b) v \\
D^{2} f(a, b)(u, v) & =\frac{\partial f}{\partial x^{2}}(a, b) u^{2}+2 \frac{\partial f}{\partial x \partial y}(a, b) u v+\frac{\partial f}{\partial y^{2}}(a, b) v^{2}
\end{aligned}
$$

6.37 Theorem: (Taylor's Theorem) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ where U is open in \mathbb{R}^{n}. Suppose that the $m^{\text {th }}$ oder partial derivatives of f all exist in U. Then for all $a, x \in U$ such that $[a, x] \subseteq U$ there exists $c \in[a, x]$ such that

$$
f(x)=\sum_{\ell=0}^{m-1} \frac{1}{\ell!} D^{\ell} f(a)(x-a)+\frac{1}{m!} D^{m} f(c)(x-a) .
$$

Proof: Let $a, x \in U$ with $[a, x] \subseteq U$. Let $\alpha(t)=a+t(x-a)$ for all $t \in \mathbb{R}$ and note that $\alpha(t) \in U$ for $0 \leq t \leq 1$. Since U is open and α is continuous, we can choose $\delta>0$ so that $\alpha(t) \in U$ for all $t \in I=(-\delta, 1+\delta)$. Define $g: I \rightarrow \mathbb{R}$ by $g(t)=f(\alpha(t))$. By the Chain Rule, we have

$$
g^{\prime}(t)=D f(\alpha(t)) \alpha^{\prime}(t)=D f(\alpha(t))(x-a)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\alpha(t))\left(x_{i}-a_{i}\right)=D^{1} f(\alpha(t))(x-a)
$$

By the Chain Rule again, we have

$$
g^{\prime \prime}(t)=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\alpha(t))\left(x_{j}-a_{j}\right)\right)\left(x_{i}-a_{i}\right)=D^{2} f(\alpha(t))(x-a) .
$$

An induction argument shows that

$$
g^{(\ell)}(t)=D^{\ell} f(\alpha(t))(x-a) .
$$

By Taylor's Theorem, applied to the function $g(t)$ on the interval $[0,1]$, we can choose $s \in[0,1]$ such that $g(1)=\sum_{\ell=0}^{m-1} \frac{1}{\ell!} g^{(\ell)}(0)+\frac{1}{m!} g^{(m)}(s)$, that is

$$
f(x)=\sum_{\ell=0}^{m-1} \frac{1}{\ell!} D^{\ell} f(a)(x-a)+\frac{1}{m!} D^{m} f(\alpha(s))(x-a)
$$

Thus we can choose $c=\alpha(s) \in[a, x]$.

Positive Definiteness and the Second Derivative Test

6.38 Definition: For $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$, where U is open in \mathbb{R}^{n} with $a \in U$, we define the $m^{\text {th }}$ Taylor polynomial of f at a to be the polynomial

$$
T^{m} f(a)(x)=\sum_{\ell=0}^{m} \frac{1}{\ell!} D^{\ell} f(a)(x-a)
$$

provided that all the $m^{\text {th }}$ order partial derivatives exist at a. When f is \mathcal{C}^{2} in U (so that the mixed partial derivatives commute) we have

$$
T^{2} f(a)(x)=f(a)+D f(a)(x-a)+\frac{1}{2}(x-a)^{T} H f(a)(x-a)
$$

where $H f(a) \in M_{n \times n}(\mathbb{R})$ is the symmetric matrix with entries $H f(a)_{k, \ell}=\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}(a)$. The matrix $H f(a)$ is called the Hessian matrix of f at a.
6.39 Definition: Let $A \in M_{n}(\mathbb{R})$ be a symmetric matrix. We say that
(1) A is positive-definite when $u^{T} A u>0$ for all $0 \neq u \in \mathbb{R}^{n}$,
(2) A is negative-definite when $u^{T} A u<0$ for all $0 \neq u \in \mathbb{R}^{n}$, and
(3) A is indefinite when there exist $0 \neq u, v \in \mathbb{R}^{n}$ with $u^{T} A u>0$ and $v^{T} A v<0$.
6.40 Theorem: (Characterization of Positive-Definiteness by Eigenvalues) Let $A \in M_{n}(\mathbb{R})$ be symmetric. Then
(1) A is positive-definite if and only if all of the eigenvalues of A are positive,
(2) A is negative-definite if and only if all of the eigenvalues of A are negative, and
(3) A is indefinite if and only if A has a positive eigenvalue and a negative eigenvalue.

Proof: Suppose that A is positive definite. Let λ be an eigenvalue of A and let u be a unit eigenvector for λ. Then $\lambda=\lambda|u|^{2}=\lambda(u \cdot u)=\lambda u \cdot u=A u \cdot u=u^{T} A u>0$. Conversely, suppose that all of the eigenvalues of A are positive. Since A is symmetric, we can orthogonally diagonalize A. Choose a matrix $P \in M_{n}(\mathbb{R})$ with $P^{T}=P$ so that $P^{T} A P=D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$. Given $0 \neq u \in \mathbb{R}^{n}$, let $v=P^{T} u$. Note that $v \neq 0$ since P^{T} is invertible. Thus $u^{T} A u=u^{T} P D P^{T} u=v^{T} D v=\sum_{i=1}^{n} \lambda_{i} v_{i}{ }^{2}>0$ since every $\lambda_{i}>0$ and some $v_{i} \neq 0$. This proves Part (1). The proofs of Parts (2) and (3) are fairly similar.
6.41 Theorem: (Characterization of Positive-Definiteness by Determinant) Let $A \in$ $M_{n}(\mathbb{R})$ be symmetric. For each k with $1 \leq k \leq n$, let $A^{(k)}$ denote the upper-left $k \times k$ sub matrix of A. Then
(1) A is positive-definite if and only if $\operatorname{det}\left(A^{(k)}\right)>0$ for all k with $1 \leq k \leq n$, and
(2) A is negative-definite if and only if $(-1)^{k} \operatorname{det}\left(A^{(k}\right)>0$ for all k with $1 \leq k \leq n$.

Proof: Part (2) follows easily from Part (1) by noting that A is negative-definite if and only if $-A$ is positive-definite. We shall prove one direction of Part (1). Suppose that A is positive-definite. Let $1 \leq k \leq n$. Since $u^{T} A u>0$ for all $0 \neq u \in \mathbb{R}^{n}$, we have $\left(\begin{array}{ll}u^{T} & 0\end{array}\right) A\binom{u}{0}=0$, or equivalently $u^{T} A^{(k)} u>0$, for all $0 \neq u \in \mathbb{R}^{k}$. This shows that $A^{(k)}$ is positive definite. By the previous theorem, all of the eigenvalues of $A^{(k)}$ are positive. Since $\operatorname{det}\left(A^{(k)}\right)$ is equal to the product of its eigenvalues, we see that $\operatorname{det}\left(A^{(k)}\right)>0$.

The proof of the other direction of Part (1) is more difficult. We shall omit the proof. It is often proven in a linear algebra course.
6.42 Exercise: Let $A=\left(\begin{array}{ccc}3 & -1 & 2 \\ -1 & 2 & 1 \\ 2 & 1 & 5\end{array}\right)$. Determine whether A is positive-definite.
6.43 Definition: Let $f: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ and let $a \in A$. We say that f has a local maximum value at a when there exists $r>0$ such that $f(a) \geq f(x)$ for all $x \in B_{A}(a, r)$. We say that f has a local minimum value at a when there exists $r>0$ such that $f(a) \leq x$ for all $x \in B_{A}(a, r)$.
6.44 Exercise: Show that when $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ where U is open in \mathbb{R}^{n} with $a \in U$, if f has a local maximum or minimum value at a then either $D f(a)=0$ or $D f(a)$ does not exist (that is one of the partial derivatives $\frac{\partial f}{\partial x_{k}}(a)$ does not exist).
6.45 Definition: Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ where U is open in \mathbb{R}^{n}. For $a \in U$, we say that a is a critical point of f when either $D f(a)=0$ or $D f(a)$ does not exist. When $a \in U$ is a critical point of f but f does not have a local maximum or minimum value at a, we say that a is a saddle point of f.
6.46 Theorem: (The Second Derivative Test) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ with U open in \mathbb{R}^{n} and let $a \in U$. Suppose that f is \mathcal{C}^{2} in U with $\operatorname{Df}(a)=0$. Then
(1) if $\operatorname{Hf}(a)$ is positive definite then f has a local minimum value at a,
(2) if $\operatorname{Hf}(a)$ is negative definite then f has a local maximum value at a, and
(3) if $\operatorname{Hf}(a)$ is indefinite then f has a saddle point at a.

Proof: Suppose that $H f(a)$ is positive-definite. Then $\operatorname{det}\left(H f(a)^{(k)}\right)>0$ for $1 \leq k \leq n$. Since each determinant function $\operatorname{det}\left(A^{(k)}\right)$ is continuous as a function in the entries of the matrix A, the set $V=\left\{x \in U \mid H f(x)^{(k)}>0\right.$ for $\left.k=1,2, \cdots, n\right\}$ is open. Choose $r>0$ so that $B(a, r) \subseteq V$. Then we have $u^{T} H f(c) u>0$ for all $0 \neq u \in \mathbb{R}^{n}$ and all $c \in B(a, r)$. Let $x \in B(a, r)$ with $x \neq a$. By Taylor's Theorem, we have

$$
f(x)-f(a)-D f(a)(x-a)=(x-a)^{T} H f(c)(x-a)
$$

for some $c \in[a, x]$. Since $D f(a)=0$ and $H f(c)$ is positive-definite, we have $f(x)-f(a)>0$. Thus f has a local minimum value at a. This proves Part (1) and Part (2) is similar.

Let us prove Part (3). Suppose there exists $0 \neq u \in \mathbb{R}^{n}$ such that $u^{T} H f(a) u>0$. Let $r>0$ with $B(a, r) \subseteq U$ and scale the vector u if necessary so that $[a, u] \subseteq B(a, r)$. Let $\alpha(t)=a+t u$ and let $g(t)=f(\alpha(t))$ for $0 \leq t \leq 1$. As in the proof of Taylor's Theorem, we have

$$
\begin{aligned}
g^{\prime}(t) & =\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\alpha(t)) u_{i}=D f(\alpha(t)) u, \text { and } \\
g^{\prime \prime}(t) & =\sum_{i, j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\alpha(t)) u_{i} u_{j}=u^{T} H f(\alpha(t)) u .
\end{aligned}
$$

Since $g(0)=f(a), g^{\prime}(0)=D f(a) u=0$ and $g^{\prime \prime}(0)=u^{T} H f(a) u>0$, it follows from single-variable calculus that we can choose t_{0} with $0<t_{0}<1$ so that $g\left(t_{0}\right)>g(0)$. When $x=\alpha\left(t_{0}\right)$ we have $x \in B(a, r)$ and $f(x)=f\left(\alpha\left(t_{0}\right)\right)=g\left(t_{0}\right)>g(0)=f(a)$, and so f does not have a local maximum value at a. Similarly, if there exists $0 \neq v \in \mathbb{R}^{n}$ such that $v^{T} H f(a) v<0$ then f does not have a local minimum value at a. Thus when $H f(a)$ is indefinite, f has a saddle point at a.
6.47 Exercise: Find and classify the critical points of the following functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(a) $f(x, y)=x^{3}+2 x y+y^{2}$
(b) $f(x, y)=x^{3}+3 x^{2} y-6 y^{2}$
(c) $f(x, y)=x^{2} y e^{-x^{2}-2 y^{2}}$

