6.1 Definition: Let $U \subseteq \mathbb{R}^n$ be open in \mathbb{R}^n , let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$, and let at $a \in U$, say $a = (a_1, \dots, a_n)$. We define the k^{th} partial derivative of f at a to be

$$\frac{\partial f}{\partial x_k}(a) = g_k'(a_k) , \text{ where } g_k(t) = f(a_1, \cdots, a_{k-1}, t, a_{k+1}, \cdots, a_n) ,$$

or equivalently, letting $e_k = (0, 0, \dots, 0, 1, 0, \dots, 0)$ be the k^{th} standard basis vector in \mathbb{R}^n ,

$$\frac{\partial f}{\partial x_k}(a) = h_k'(0)$$
, where $h_k(t) = f(a_1, \dots, a_{k-1}, a_k + t, a_{k+1}, \dots, a_n) = f(a + t e_k)$,

provided that the derivatives exist. Note that g_k and h_k are functions of a single variable. Sometimes $\frac{\partial f}{\partial x_k}$ is written as f_{x_k} or as f_k . When we write u = f(x), we can also write $\frac{\partial f}{\partial x_k}$ as $\frac{\partial u}{\partial x_k}$, u_{x_k} or u_k . When n = 3 and we write x, y and z instead of x_1 , x_2 and x_3 , the partial derivatives $\frac{\partial f}{\partial x_1}$, $\frac{\partial f}{\partial x_2}$ and $\frac{\partial f}{\partial x_3}$ are written as $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$, or as f_x , f_y and f_z . When n = 1 so there is only one variable $x = x_1$ we have $\frac{\partial f}{\partial x}(a) = \frac{df}{dx}(a) = f'(a)$.

6.2 Definition: Let $U \subseteq \mathbb{R}^n$ be open in \mathbb{R}^n , let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and let $a \in U$. Write $u = f(x) = (f_1(x), f_2(x), \dots, f_m(x))^T$ with $x = (x_1, x_2, \dots, x_n)^T$. We define the **derivative matrix**, or the **Jacobian matrix**, of f at a to be the matrix

$$Df(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \cdots & \frac{\partial f_1}{\partial x_n}(a) \\ \frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \cdots & \frac{\partial f_2}{\partial x_n}(a) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(a) & \frac{\partial f_m}{\partial x_2}(a) & \cdots & \frac{\partial f_m}{\partial x_n}(a) \end{pmatrix}$$

and we define the **linearization** of f at a to be the affine map $L: \mathbb{R}^n \to \mathbb{R}^m$ given by

$$L(x) = f(a) + Df(a)(x - a)$$

provided that all the partial derivatives $\frac{\partial f_k}{\partial x_l}(a)$ exist.

6.3 Definition: Let U be open in \mathbb{R}^n and let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$. We say that f is \mathcal{C}^1 in U when all the partial derivatives $\frac{\partial f_k}{\partial f_l}$ exist and are continuous in U. The second order partial derivatives of f are the functions

$$\frac{\partial^2 f_j}{\partial x_k \partial x_l} = \frac{\partial \left(\frac{\partial f_j}{\partial x_l}\right)}{\partial x_k}$$

We also write $\frac{\partial^2 f_j}{\partial x_k^2} = \frac{\partial^2 f_j}{\partial x_k \partial x_k}$. We say that f is \mathcal{C}^2 when all the partial derivatives $\frac{\partial^2 f_j}{\partial x_k \partial x_l}$ exist and are continuous in U. Higher order derivatives can be defined similarly, and we say f is \mathcal{C}^k when all the k^{th} order derivatives $\frac{\partial^k f_j}{\partial x_i_1 \partial x_i_2 \cdots \partial x_{i_k}}$ exist and are continuous in U. **6.4 Definition:** Let $a \in U$ where U is an open set in \mathbb{R} , and let $f : U \subseteq \mathbb{R} \to \mathbb{R}^m$, say $x = f(t) = (x_1(t), x_2(t), \cdots, x_m(t))$. Then we write f'(a) = Df(a) and we have

$$f'(a) = Df(a) = \begin{pmatrix} \frac{\partial x_1}{\partial t}(a) \\ \vdots \\ \frac{\partial x_m}{\partial t}(a) \end{pmatrix} = \begin{pmatrix} x_1'(a) \\ \vdots \\ x_m'(a) \end{pmatrix}$$

The vector f'(a) is called the **tangent vector** to the curve x = f(t) at the point f(a). In the case that t represents time and f(t) represents the position of a moving point, f'(a) is also called the **velocity** of the moving point at time t = a.

6.5 Definition: Let $a \in U$ where U is an open set in \mathbb{R}^n and let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$. We define the **gradient** of f at a to be the vector

$$\nabla f(a) = Df(a)^T = \left(\frac{\partial f}{\partial x_1}(a), \cdots, \frac{\partial f}{\partial x_n}(a)\right)^T = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) \\ \vdots \\ \frac{\partial f}{\partial x_n}(a) \end{pmatrix}.$$

6.6 Note: Recall that for $f: U \subseteq \mathbb{R} \to \mathbb{R}$ and $a \in U$,

f is differentiable at $a \iff \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists

 $\begin{array}{l} \Longleftrightarrow \ \exists m \in \mathbb{R} \ \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in U \quad 0 < |x-a| < \delta \Longrightarrow \left| \frac{f(x) - f(a)}{x-a} - m \right| < \epsilon \\ \Leftrightarrow \ \exists m \in \mathbb{R} \ \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in U \quad 0 < |x-a| < \delta \Longrightarrow \left| f(x) - f(a) - m(x-a) \right| < \epsilon \ |x-a| \\ \Leftrightarrow \ \exists m \in \mathbb{R} \ \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in U \quad |x-a| \le \delta \Longrightarrow \left| f(x) - \left(f(a) + m(x-a) \right) \right| \le \epsilon \ |x-a|. \end{array}$

In this case, the number $m \in \mathbb{R}$ is unique, we call it the **derivative** of f at a and denote it by f'(a), and the map $\ell(x) = f(a) + f'(a)(x-a)$ is called the **linearization** of f at a.

6.7 Definition: Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, where U is open. We say f is **differentiable** at $a \in U$ if there is an $m \times n$ matrix A such that

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in U \ \Big(|x - a| \le \delta \Longrightarrow \big| f(x) - (f(a) + A(x - a)) \Big| \le \epsilon |x - a| \Big).$$

We show below that the matrix A is unique, we call it the **derivative** (matrix) of f at a, and we denote it by Df(a). The affine map $L : \mathbb{R}^n \to \mathbb{R}^m$ given by L(x) = f(a) + Df(a)(x-a), which approximates f(x), is called the **linearization** of f at a. We say f is **differentiable** in U when it is differentiable at every point $a \in U$.

6.8 Example: If f is the affine map f(x) = Ax + b, then we have Df(a) = A for all a. Indeed given $\epsilon > 0$ we can choose $\delta > 0$ to be anything we like, and then for all x we have

 $|f(x) - f(a) - A(x - a)| = |Ax + b - Aa - b - Ax + Aa| = 0 \le \epsilon |x - a|.$

6.9 Theorem: (The Derivative is the Jacobian) Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and let $a \in U$. If f is differentiable at a then the partial derivatives $\frac{\partial f_k}{\partial x_\ell}(a)$ all exist and the matrix A which appears in the definition of the derivative is equal to the Jacobian matrix Df(a).

Proof: Suppose that f is differentiable at a. Fix indices k and ℓ and let $g(t) = f_k(a + te_\ell)$ so that $\frac{\partial f_k}{\partial x_\ell}(a) = g'(0)$ provided that the derivative g'(0) exists. Let A be a matrix as in the definition of differentiability. Let $\epsilon > 0$. Choose $\delta > 0$ such that for all $x \in U$ with $|x - a| \leq \delta$ we have $|f(x) - f(a) - A(x - a)| \leq \epsilon |x - a|$. Let $t \in \mathbb{R}$ with $|t| \leq \delta$. Let $x = a + t e_\ell$. Then we have $|x - a| = |te_\ell| = |t| \leq \delta$ and so $|f(x) - f(a) - A(x - a)| \leq \epsilon |x - a|$. Since for any vector $u \in \mathbb{R}^m$ we have $|u_k| \leq |u|$, we have

$$\begin{aligned} \left|g(t) - g(0) - A_{k,\ell} t\right| &= \left|f_k(a + te_\ell) - f_k(a) - \left(A(te_\ell)\right)_k\right| \\ &\leq \left|f(a + te_\ell) - f(a) - A(te_\ell)\right| \\ &= \left|f(x) - f(a) - A(x - a)\right| \\ &\leq \epsilon \left|x - a\right| = \epsilon \left|t\right|. \end{aligned}$$

It follows that $A_{k,\ell} = g'(0) = \frac{\partial f_k}{\partial x_\ell}(a)$, as required.

The Matrix Norm

6.10 Definition: Let $A \in M_{m \times n}(\mathbb{R})$ and let $S = \{x \in \mathbb{R}^n | |x| = 1\}$. Since S is compact, by the Extreme Value Theorem, the continuous function $f : \mathbb{R}^n \to \mathbb{R}$ given by f(x) = |Ax| attains its maximum value on S. We define the **norm** of the matrix A to be

$$||A|| = \max\{|Ax| \mid |x| = 1\}.$$

6.11 Lemma: (Properties of the Matrix Norm) Let $A \in M_{m \times n}(\mathbb{R})$. Then

(1) $|Ax| \leq ||A|| |x|$ for all $x \in \mathbb{R}^n$,

(2) if A is invertible then $|Ax| \ge \frac{|x|}{\|A^{-1}\|}$ for all $x \in \mathbb{R}^n$, (3) $\|A\| \le \sum_{k=1}^m \sum_{\ell=1}^n |A_{k,\ell}|$, and

(4) ||A|| is equal to the square root of the largest eigenvalue of the matrix $A^{T}A$.

Proof: When $x = 0 \in \mathbb{R}^n$ we have |Ax| = 0 = ||A|| |x| and when $0 \neq x \in \mathbb{R}^n$ we have

$$|Ax| = \left| |x| A \frac{x}{|x|} \right| = |x| \left| A \frac{x}{|x|} \right| \le |x| \|A\|.$$

This proves Part 1. To prove Part 2, suppose that A is invertible. Then we can choose $x \in \mathbb{R}^n$ with |x| = 1 such that $Ax \neq 0$ so we must have ||A|| > 0. Similarly, since A^{-1} is also invertible, we also have $||A^{-1}|| > 0$. By Part 1, for all $x \in \mathbb{R}^n$ we have $||x| = |A^{-1}Ax| \leq ||A^{-1}|| |Ax|$ so that $|Ax| \geq \frac{|x|}{||A^{-1}||}$, as required. To prove Part 3, let $x \in \mathbb{R}^n$ with |x| = 1. Then $|x_\ell| \leq |x| \leq 1$ for all indices ℓ , and so

$$\left|Ax\right| = \left|\sum_{k=1}^{m} (Ax)_{k} e_{k}\right| \le \sum_{k=1}^{m} \left|(Ax)_{k}\right| = \sum_{k=1}^{m} \left|\sum_{\ell=1}^{n} A_{k,\ell} x_{\ell}\right| \le \sum_{k=1}^{m} \sum_{\ell=1}^{n} |A_{k,\ell}| |x_{\ell}| \le \sum_{k=1}^{m} \sum_{\ell=1}^{n} |A_{k,\ell}|.$$

We omit the proof of Part 4, which we shall not use (it is often proven in a linear algebra course).

6.12 Theorem: (Differentiability Implies Continuity) Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$. If f is differentiable at $a \in U$, then f is continuous at a.

Proof: Suppose f is differentiable at a. Note that for all $x \in U$ we have

$$|f(x) - f(a)| = |f(x) - f(a) - Df(a)(x - a) + Df(a)(x - a)|$$

$$\leq |f(x) - f(a) - Df(a)(x - a)| + |Df(a)(x - a)|$$

$$\leq |f(x) - f(a) - Df(a)(x - a)| + ||Df(a)|| |x - a|$$

Let $\epsilon > 0$. Since f is differentiable at a we can choose δ with $0 < \delta < \frac{\epsilon}{1+\|Df(a)\|}$ such that

$$|x-a| \le \delta \Longrightarrow |f(x) - f(a) - Df(a)(x-a)| \le |x-a|$$

and then for $|x - a| \leq \delta$ we have

$$\begin{aligned} \left| f(x) - f(a) \right| &\leq \left| f(x) - f(a) - Df(a)(x - a) \right| + \left\| Df(a) \right\| |x - a| \\ &\leq |x - a| + \left\| Df(a) \right\| |x - a| = \left(1 + \left\| Df(a) \right\| \right) |x - a| \\ &\leq \left(1 + \left\| Df(a) \right\| \right) \delta < \epsilon. \end{aligned}$$

6.13 Theorem: (Continuous Partial Derivatives Implies Differentiability) Let $U \subseteq \mathbb{R}^n$ be open, let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and let $a \in U$. If the partial derivatives $\frac{\partial f_k}{\partial x_\ell}(x)$ exist in U and are continuous at a then f is differentiable at a.

Proof: Suppose that the partial derivatives $\frac{\partial f_k}{\partial x_\ell}(x)$ exist in U and are continuous at a. Let $\epsilon > 0$. Choose $\delta > 0$ so that $\overline{B}(a, \delta) \subseteq U$ and so that for all indices k, ℓ and for all $y \in U$ we have $|y - a| \leq \delta \Longrightarrow \left| \frac{\partial f_k}{\partial x_\ell}(y) - \frac{\partial f_k}{\partial x_\ell}(a) \right| \leq \frac{\epsilon}{nm}$. Let $x \in U$ with $|x - a| \leq \delta$. For $0 \leq \ell \leq n$, let $u_\ell = (x_1, \cdots, x_\ell, a_{\ell+1}, \cdots, a_n)$, with $u_0 = a$ and $u_n = x$, and note that each $u_\ell \in \overline{B}(a, \delta)$. For $1 \leq \ell \leq n$, let $\alpha_\ell(t) = (x_1, \cdots, x_{\ell-1}, t, a_{\ell+1}, \cdots, a_n)$ for t between a_ℓ and x_ℓ , For $1 \leq k \leq m$ and $1 \leq \ell \leq n$, let $g_{k,\ell}(t) = f_k(\alpha_\ell(t))$ so that $g'_{k,\ell}(t) = \frac{\partial f_k}{\partial x_\ell}(\alpha_\ell(t))$. By the Mean Value Theorem, we can choose $s_{k,\ell}$ between a_ℓ and x_ℓ so that $g'_{k,\ell}(s_{k,\ell})(x_\ell - a_\ell) = g_{k,\ell}(x_\ell) - g_{k,\ell}(a_\ell)$ or, equivalently, so that $\frac{\partial f_k}{\partial x_\ell}(\alpha_\ell(s_{k,\ell}))(x_\ell - a_\ell) = f_k(u_\ell) - f_k(u_{\ell-1})$. Then

$$f_k(x) - f_k(a) = f_k(u_n) - f_k(u_0) = \sum_{\ell=1}^n \left(f_k(u_\ell) - f_k(u_{\ell-1}) \right) = \sum_{\ell=1}^n \frac{\partial f_k}{\partial x_\ell} (\alpha_\ell(s_{k,\ell})) (x_\ell - a_\ell).$$

Let $B \in M_{m \times n}(\mathbb{R})$ be the matrix with entries $B_{k,\ell} = \frac{\partial f}{\partial x_\ell} (\alpha_\ell(s_{k,\ell}))$. Then (by Parts 1 and 3 of Lemma 6.11) we have

$$\left| f(x) - f(a) - Df(a)(x-a) \right| = \left| \left(B - Df(a) \right)(x-a) \right| \le \left\| B - Df(a) \right\| |x-a|$$
$$\le \sum_{k,\ell} \left| \frac{\partial f_k}{\partial x_\ell} (\alpha_\ell(s_{k,\ell})) - \frac{\partial f_k}{\partial x_\ell} (a) \right| |x-a| \le \epsilon |x-a|.$$

6.14 Corollary: If $U \subseteq \mathbb{R}^n$ is open and $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is \mathcal{C}^1 then f is differentiable.

6.15 Corollary: Every function $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, which can be obtained by applying the standard operations (such as multiplication and composition) on functions to basic elementary functions defined on open domains, is differentiable in U.

6.16 Exercise: For each of the following functions $f : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$, extend the domain of f(x,y) to all of \mathbb{R}^2 by defining f(0,0) = 0 and then determine whether the partial derivatives of f exist at (0,0) and whether f is differential at (0,0).

(a)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$

(b) $f(x,y) = |xy|$
(c) $f(x,y) = \sqrt{|xy|}$
(d) $f(x,y) = \frac{x^3}{x^2 + y^2}$
(e) $f(x,y) = \frac{x}{(x^2 + y^2)^{1/3}}$
(f) $f(x,y) = \frac{x^3 - 3xy^2}{x^2 + y^2}$

The Chain Rule and the Directional Derivative

6.17 Theorem: (The Chain Rule) Let $f : U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m$, let $g : V \subseteq \mathbb{R}^m \to \mathbb{R}^\ell$, and let h(x) = g(f(x)). If f is differentiable at a and g is differentiable at f(a) then h is differentiable at a and Dh(a) = Dg(f(a))Df(a).

Proof: Suppose f is differentiable at a and g is differentiable at f(a). Write y = f(x) and b = f(a). We have

$$\begin{aligned} \left| h(x) - h(a) - Dg(f(a))Df(a)(x-a) \right| &= \left| g(y) - g(b) - Dg(b)Df(a)(x-a) \right| \\ &= \left| g(y) - g(b) - Dg(b)(y-b) + Dg(b)(y-b) - Dg(b)Df(a)(x-a) \right| \\ &\leq \left| g(y) - g(b) - Dg(b)(y-b) \right| + \left\| Dg(b) \right\| \left| y - b - Df(a)(x-a) \right| \\ &\leq \left| g(y) - g(b) - Dg(b)(y-b) \right| + \left(1 + \left\| Dg(b) \right\| \right) \left| f(x) - f(a) - Df(a)(x-a) \right| \end{aligned}$$

and

$$|y - b| = |f(x) - f(a)|$$

= $|f(x) - f(a) - Df(a)(x - a) + Df(a)(x - a)|$
 $\leq |f(x) - f(a) - Df(a)(x - a)| + ||Df(a)|| |x - a|.$

Let $\epsilon > 0$ be given. Since g is differentiable at b we can choose $\delta_0 > 0$ so that

$$|y-b| \le \delta_0 \implies \left| g(y) - g(b) - Dg(b)(y-b) \right| \le \frac{\epsilon}{2(1+\|Df(a)\|)} \left| y-b \right|.$$

Since f is continuous at a we can choose $\delta_1 > 0$ so that

$$|x-a| \le \delta_1 \Longrightarrow |y-b| = |f(x) - f(a)| \le \delta_0$$

Since f is differentiable at a we can choose $\delta_2 > 0$ so that

$$|x-a| \le \delta_2 \Longrightarrow |f(x) - f(a) - Df(a)(x-a)| \le |x-a|$$

and we can choose $\delta_3 > 0$ so that

$$|x-a| \le \delta_3 \Longrightarrow \left| f(x) - f(a) - Df(a)(x-a) \right| \le \frac{\epsilon}{2(1+\|Dg(a)\|)} |x-a|.$$

Let $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. Then for $|x - a| \leq \delta$ we have

$$|y - b| \le |f(x) - f(a) - Df(a)(x - a)| + |Df(a)(x - a)|$$

$$\le |x - a| + ||Df(a)|| |x - a|$$

$$= (1 + ||Df(a)||) |x - a|$$

 \mathbf{SO}

$$|g(y) - g(b) - Dg(b)(y - b)| \le \frac{\epsilon}{2(1 + ||Df(a)||)} |y - b| \le \frac{\epsilon}{2} |x - a|$$

and we have

$$(1 + ||Dg(b)||) |f(x) - f(a) - Df(a)(x - a)| \le \frac{\epsilon}{2} |x - a|$$

and so

$$|h(x) - h(a) - Dg(f(a))Df(a)(x - a)| \le \frac{\epsilon}{2} |x - a| + \frac{\epsilon}{2} |x - a| = \epsilon |x - a|.$$

Thus h is differentiable at a with derivative Dh(a) = Dg(f(a))Df(a), as required.

6.18 Definition: Let $f : U \subseteq \mathbb{R}^n \to R$, let $a \in \mathbb{R}^n$ and let $v \in \mathbb{R}^n$. We define the **directional derivative of** f **at** a **with respect to** v, written as $D_v f(a)$, as follows: pick any differentiable function $\alpha : (-\epsilon, \epsilon) \subseteq \mathbb{R} \to U \subseteq \mathbb{R}^n$, where $\epsilon > 0$, such that $\alpha(0) = a$ and $\alpha'(0) = v$ (for example, we could pick $\alpha(t) = a + v t$), let $g(t) = f(\alpha(t))$, note that by the Chain Rule we have $g'(t) = Df(\alpha(t))\alpha'(t)$, and then define

$$D_v f(a) = g'(0) = Df(\alpha(0)) \alpha'(0) = Df(a) v = \nabla f(a) \cdot v$$

Notice that the formula for $D_v f(a)$ does not depend on the choice of the function $\alpha(t)$. The **directional derivative of** f **at** a **in the direction of** v is defined to be $D_w f(a)$ where w is the unit vector in the direction of v, that is $w = \frac{v}{|w|}$.

6.19 Remark: Some books only define the directional derivative in the case that vector is a unit vector.

6.20 Theorem: Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$ be differentiable at $a \in U$. Say f(a) = b. The gradient $\nabla f(a)$ is perpendicular to the level set f(x) = b, it is in the direction in which f increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: Let $\alpha(t)$ be any curve in the level set f(x) = b, with $\alpha(0) = a$. We wish to show that $\nabla f(a) \perp \alpha'(0)$. Since $\alpha(t)$ lies in the level set f(x) = b, we have $f(\alpha(t)) = b$ for all t. Take the derivative of both sides to get $Df(\alpha(t))\alpha'(t) = 0$. Put in t = 0 to get $Df(a)\alpha'(0) = 0$, that is $\nabla f(a) \cdot \alpha'(0) = 0$. Thus $\nabla f(a)$ is perpendicular to the level set f(x) = b.

Next, let u be a unit vector. Then $D_u f(a) = \nabla f(a) \cdot u = |\nabla f(a)| \cos \theta$, where θ is the angle between u and $\nabla f(a)$. So the maximum possible value of $D_u f(a)$ is $|\nabla f(a)|$, and this occurs when $\cos \theta = 1$, that is when $\theta = 0$, which happens when u is in the direction of $\nabla f(a)$.

The Geometry of the Linearization

6.21 Note: There are several geometric objects (curves and surfaces, and higher dimensional analogues) that we can associate with a given function $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$. The **graph** of f is the set $\operatorname{Graph}(f) = \{(x, f(x)) \mid x \in U\} \subseteq \mathbb{R}^{n+m}$. We say that the graph of f is given **explicitly** by the equation y = f(x). The **null set** of f is the set $\operatorname{Null}(f) = f^{-1}(0) = \{x \in U \mid f(x) = 0\} \subseteq \mathbb{R}^n$, and more generally, when $a \in U$ and f(a) = b, the **inverse image** of b under f, also called the **level set** $f^{-1}(b)$, is given by $f^{-1}(b) = \{x \in U \mid f(x) = b\} \subseteq \mathbb{R}^n$. We say the level set $f^{-1}(b)$ is given **implicitly** by the equation f(x) = b. The **range** of f is the set $\operatorname{Range}(f) = \{f(t) \mid t \in U\} \subseteq \mathbb{R}^m$. We say that the range of f is given **parametrically** by the equation x = f(t).

When f is differentiable at $a \in U$, it is approximated by its linearization near x = a, that is when $x \cong a$ we have

$$f(x) \cong L(x) = f(a) + Df(a)(x - a).$$

The geometric objects $\operatorname{Graph}(f)$, $\operatorname{Null}(f)$, $f^{-1}(b)$ and $\operatorname{Range}(f)$ are approximated by the affine spaces $\operatorname{Graph}(L)$, $\operatorname{Null}(L)$, $L^{-1}(b)$ and $\operatorname{Range}(L)$. Each of these affine spaces is called the (affine) **tangent space** of its corresponding geometric object: the space $\operatorname{Graph}(L)$ is called the (affine) tangent space of the set $\operatorname{Graph}(f)$ at the point (a, f(a)); when f(a) = b the space $L^{-1}(b)$ is called the (affine) tangent space to $f^{-1}(b)$ at the point a; and the space $\operatorname{Range}(L)$ is called the (affine) tangent space of the set $\operatorname{Range}(f)$ at the point f(a). When a tangent space is 1-dimensional we call it a **tangent line** and when a tangent space is 2-dimensional we call it a **tangent plane**.

6.22 Definition: For $a, b \in \mathbb{R}^n$, we define the **line segment** from a to b to be the set

$$[a,b] = \{a + t(b-a) | 0 \le t \le 1\}.$$

For $A \subseteq \mathbb{R}^n$ we say the A is **convex** when for all $a, b \in A$ we have $[a, b] \subseteq A$.

6.23 Exercise: Show, using the triangle inequality, that B(a, r) is convex for all $a \in \mathbb{R}^n$ and r > 0.

6.24 Theorem: (The Mean Value Theorem) Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ with U open in \mathbb{R}^n . Suppose that f is differentiable in U. Let $u \in \mathbb{R}^m$ and let $a, b \in U$ with $[a, b] \subseteq U$. Then there exists $c \in [a, b]$ such that

$$Df(c)(b-a) \cdot u = (f(b) - f(a)) \cdot u.$$

Proof: Let $\alpha(t) = a + t(b-a)$ and define $g : [0,1] \to \mathbb{R}$ by $g(t) = f(\alpha(t)) \cdot u$. By the Chain Rule, we have $g'(t) = (Df(\alpha(t))\alpha'(t)) \cdot u = (Df(\alpha(t))(b-a)) \cdot u$. By the Mean Value Theorem (for a real-valued function of a single variable) we can choose $s \in [0,1]$ such that g'(s) = g(1) - g(0), that is $(Df(\alpha(s))(b-a)) \cdot u = f(b) \cdot u - f(a) \cdot u = (f(b) - f(a)) \cdot u$. Thus we can take $c = \alpha(s) \in [a,b]$ to get $Df(c)(b-a) \cdot u = (f(b) - f(a)) \cdot u$.

6.25 Corollary: (Vanishing Derivative) Let $U \subseteq \mathbb{R}^n$ be open and connected and let $f: U \to \mathbb{R}^m$ be differentiable with Df(x) = O for all $x \in U$. Then f is constant in U.

Proof: Let $a \in U$ and let $A = \{x \in U | f(x) = f(a)\}$. We claim that A is open (both in \mathbb{R}^n and in U). Let $b \in A$, that is let $b \in U$ with f(b) = f(a). Since U is open we can choose r > 0 so that $B(b,r) \subseteq U$. Let $c \in B(b,r)$. Since B(b,r) is convex we have $[b,c] \subseteq B(b,r) \subseteq U$. Let u = f(c) - f(b) and choose $d \in [b,c]$, as in the Mean Value Theorem, so that $(Df(d)(c-b)) \cdot u = (f(c) - f(b)) \cdot u$. Then we have

$$|f(c) - f(b)|^2 = (f(c) - f(b)) \cdot u = (Df(d)(c - b)) \cdot u = 0$$

since Df(d) = O. Since |f(c) - f(b)| = 0 we have f(c) = f(b) = f(a), and so $c \in A$. Thus $B(b,r) \subseteq A$ and so A is open, as claimed. A similar argument shows that if $b \in U \setminus A$ and we chose r > 0 so that $B(b,r) \subseteq U$ then we have f(c) = f(b) for all $c \in B(b,r)$ hence $B(b,r) \subseteq U \setminus A$ and hence $U \setminus A$ is also open. Note that A is non-empty since $a \in A$. If $U \setminus A$ was also non-empty then U would be the union of the two non-empty open sets A and $U \setminus A$, and this is not possible since U is connected. Thus $U \setminus A = \emptyset$ so U = A. Since $U = A = \{x \in U | f(x) = f(a)\}$ we have f(x) = f(a) for all $x \in U$, so f is constant in U.

The Inverse and the Implicit Function Theorems

6.26 Theorem: (The Inverse Function Theorem) Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ where $U \subseteq \mathbb{R}^n$ is open with $a \in U$. Suppose that f is \mathcal{C}^1 in U and that Df(a) is invertible. Then there exists an open set $U_0 \subseteq U$ with $a \in U_0$ such that the set $V_0 = f(U_0)$ is open in \mathbb{R}^n and the restriction $f : U_0 \to V_0$ is bijective, and its inverse $g = f^{-1} : V_0 \to U_0$ is \mathcal{C}^1 in V_0 . In this case we have $Dg(f(a)) = Df(a)^{-1}$.

Proof: Let A = Df(a) and note that A is invertible. Since U is open and f is \mathcal{C}^1 , we can choose r > 0 so that $B(a, r) \subseteq U$ and so that $\left|\frac{\partial f_k}{\partial x_\ell}(x) - \frac{\partial f_k}{\partial f_\ell}(a)\right| \leq \frac{1}{2n^2 \|A^{-1}\|}$ for all k, ℓ . Let $U_0 = B(a, r)$ and note that for all $x \in U_0$ we have $\left\|Df(x) - A\right\| \leq \frac{1}{2\|A^{-1}\|}$.

Claim 1: for all $x \in U_0$, the matrix Df(x) is invertible.

Let $x \in U_0$ and suppose, for a contradiction, that Df(x) is not invertible. Then we can choose $u \in \mathbb{R}^n$ with |u| = 1 such that Df(x)u = 0. But then we have

$$||Df(x) - A|| \ge |(Df(a) - A)u| = |Au| \ge \frac{|u|}{||A^{-1}||} = \frac{1}{||A^{-1}||}$$

which contradicts the fact that since $x \in U_0$ we have $||Df(x) - A|| \le \frac{1}{2||A^{-1}||}$.

Claim 2: for all $b, c \in U_0$ we have $|f(c) - f(b) - A(c-b)| \leq \frac{||c-b|}{2||A^{-1}||}$. Let $b, c \in U_0$. Let $\alpha(t) = b + t(c-b)$ and note that $\alpha(t) \in U_0$ for all $t \in [0, 1]$. Let $\phi(t) = f(\alpha(t)) - L(\alpha(t))$ where L is the linearization of f at a given by L(a) = f(a) + Df(a)(x-a), and note that $\phi(1) - \phi(0) = (f(c) - L(c)) - (f(b) - L(b)) = f(c) - f(b) - A(c-b)$. By the Chain Rule, we have $\phi'(t) = Df(\alpha(t))\alpha'(t) - DL(\alpha(t))\alpha'(t) = (Df(\alpha(t)) - A)(c-b)$ and so

$$|\phi'(t)| \le ||Df(\alpha(t)) - A|| |c - b| \le \frac{|c - b|}{2||A^{-1}||}.$$

By the Mean Value Theorem, using $u = \phi(1) - \phi(0)$, we choose $t \in [0, 1]$ such that

$$\begin{aligned} \left|\phi(1) - \phi(0)\right|^2 &= (\phi(1) - \phi(0)) \cdot u = (D\phi(t)(1-0)) \cdot u = \phi'(t) \cdot u \\ &= \left|\phi'(t) \cdot (\phi(1) - \phi(0))\right| \le \left|\phi'(t)\right| \left|\phi(1) - \phi(0)\right| \end{aligned}$$

by the Cauchy Schwarz Inequality, and hence $|\phi(1) - \phi(0)| \le |\phi'(t)| \le \frac{|c-b|}{2||A^{-1}||}$, that is

$$|f(c) - f(b) - A(c - b)| \le \frac{|c - b|}{2||A^{-1}||}.$$

Claim 3: for all $b, c \in U_0$ we have $|f(c) - f(b)| \ge \frac{|c-b|}{2||A^{-1}||}$. Let $b, c \in U_0$. By the Triangle Inequality we have

$$\left| f(c) - f(b) - A(c-b) \right| \ge \left| A(c-b) \right| - \left| f(c) - f(b) \right| \ge \frac{|c-b|}{\|A^{-1}\|} - \left| f(c) - f(b) \right|$$

and so, by Claim 3, we have

$$\left|f(c) - f(b)\right| \ge \frac{|c-b|}{\|A^{-1}\|} - \left|f(c) - f(b) - A(c-b)\right| \ge \frac{|c-b|}{\|A^{-1}\|} - \frac{|c-b|}{2\|A^{-1}\|} = \frac{|c-b|}{2\|A^{-1}\|}.$$

It follows that when $b \neq c$ we have $f(b) \neq f(c)$, so the restriction of f to U_0 is injective. Claim 4: the restriction of f to U_0 is injective, hence $f: U_0 \to V_0 = f(U_0)$ is bijective. By Claim 3, when $b, c \in U_0$ with $b \neq c$ we have $|f(c) - f(b)| \geq \frac{|c-b|}{2||A^{-1}||} > 0$ so that $f(b) \neq f(c)$. Thus the restriction of f to U_0 is injective, as claimed. Claim 5: the set V_0 is open in \mathbb{R}^n .

Let $p \in V_0$. Let b = g(p) so that p = f(b). Choose s > 0 so that $\overline{B}(b,s) \subseteq U_0$. We shall show that $B\left(p, \frac{s}{4\|A^{-1}\|}\right) \subseteq V_0$. Let $q \in B\left(b, \frac{s}{4\|A^{-1}\|}\right)$. We need to show that $q \in V_0 = f(U_0)$ and in fact we shall show that $q \in f\left(B(b,s)\right)$. To do this, define $\psi : U \to \mathbb{R}$ by $\psi(x) = |f(x) - q|$. Since ψ is continuous, it attains its minimum value on the compact set $\overline{B}(b,s)$, say at $c \in \overline{B}(b,s)$. We shall show that $c \in B(b,s)$ and that f(c) = q so we have $q \in f\left(B(b,s)\right)$, hence $q \in f(U_0) = V_0$, hence $B\left(b, \frac{s}{4\|A^{-1}\|}\right) \subseteq V_0$, and hence V_0 is open.

Claim 5(a): we have $c \in B(b, s)$.

Suppose, for a contradiction, that $c \notin B(b,s)$ so we have |c-b| = s. Then

$$\begin{split} \psi(b) &= \left| f(b) - q \right| = \left| p - q \right| < \frac{s}{4 \|A^{-1}\|} \text{ and, using Claim 3,} \\ \psi(c) &= \left| f(c) - q \right| \ge \left| f(c) - f(b) \right| - \left| f(b) - q \right| \ge \frac{|c-b|}{2 \|A^{-1}\|} - |p-q| \\ &= \frac{s}{2 \|A^{-1}\|} - |p-q| > \frac{s}{2 \|A^{-1}\|} - \frac{s}{4 \|A^{-1}\|} = \frac{s}{4 \|A^{-1}\|} \end{split}$$

so that $\psi(b) < \psi(c)$. But this contradicts the fact that $\psi(c)$ is the minimum value of $\psi(x)$ in $\overline{B}(b,s)$, so we have $c \in B(b,s)$, as claimed.

Claim 5(b): we have f(c) = q.

Suppose, for a contradiction, that $f(c) \neq q$ so we have $\psi(c) > 0$. Let v = q - f(c) so that $|v| = \psi(c) > 0$. Let $u = A^{-1}v$ so that v = Au. Then for $0 \leq t \leq 1$, using Claim 2, we have

$$\begin{split} \psi(c+tu) &= \left| f(c+tu) - q \right| \le \left| f(c+tu) - f(c) - Atu \right| + \left| f(c) + Atu - q \right| \\ &\le \frac{|tu|}{2||A^{-1}||} + |tv - v| = \frac{t|A^{-1}v|}{2||A^{-1}||} + (1-t)|v| \le \frac{t}{2} |v| + (1-t)|v| = \left(1 - \frac{t}{2}\right) |v|. \end{split}$$

Since |v| > 0 we have $\psi(c + tu) \le (1 - \frac{t}{2})|v| < |v| = \psi(c)$. But this again contradicts the fact that $\psi(x)$ attains its minimum value at c, and so we have f(c) = q, as claimed.

Claim 6: the function g is differentiable in V_0 with $Dg(f(b)) = Df(b)^{-1}$ for all $b \in U_0$. Let $p \in V_0$ and let b = g(p) so that f(b) = p. Let B = Df(b). Note that B is invertible by Claim 1. Let $C = B^{-1}$. Let $y \in V_0$ and let $x = g(y) \in U_0$ so that y = f(x). Then we have

$$|g(y) - g(p) - C(y - p)| = |x - b - C(f(x) - f(b))| = |CB(x - b - C(f(x) - f(b)))|$$

= $|C(Bx - Bb - (f(x) - f(b)))| \le ||C|| |f(x) - f(b) - B(x - b)|$

Also, as shown above, we have $|y - p| = |f(x) - f(b)| \ge \frac{|x-b|}{2||A^{-1}||}$ so that

$$|x-b| \le 2||A^{-1}|| |y-p|.$$

It follows that g is differentiable at p with $Dg(p) = C = Df(b)^{-1}$, as claimed. Indeed, given $\epsilon > 0$, since f is differentiable at b with Df(b) = B we can choose $\delta_1 > 0$ so that when $|x-a| < \delta_1$ we have $|f(x) - f(b) - B(x-b)| \le \frac{\epsilon}{2||A^{-1}|| ||C||} ||x-b||$, and since g is continuous at b we can choose $\delta > 0$ so that when $|y-p| < \delta$ we have $|x-b| = |g(y) - g(b)| < \delta_1$. When $|y-p| < \delta$, the above inequalities give $|g(y) - g(b) - C(y-p)| \le \epsilon |y-p|$.

Claim 7: the function g is C^1 in V_0 .

By the cofactor formula for the inverse of a matrix, for all $y \in V_0$ and all indices k, ℓ ,

$$\frac{\partial g_k}{\partial y_\ell}(y) = \left(Dg(y)\right)_{k,\ell} = \left(Df(g(y))^{-1}\right)_{k,\ell} = \frac{(-1)^{k+\ell}}{\det Df(g(y))} \det E$$

where is E is the matrix obtained from Df(g(y)) by removing the k^{th} column and the ℓ^{th} row. Thus $\frac{\partial g_k}{\partial y_\ell}(y)$ is a continuous function of y, as claimed.

6.27 Corollary: (The Parametric Function Theorem) Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}^{n+k}$ be \mathcal{C}^1 . Let $a \in U$ and suppose that Df(a) has rank n. Then $\operatorname{Range}(f)$ is locally equal to the graph of a \mathcal{C}^1 function.

Proof: Since Df(a) has maximal rank n, it follows that some $n \times n$ submatrix of Df(a) is invertible. By reordering the variables in \mathbb{R}^{n+k} , if necessary, suppose that the top n rows of Df(a) form an invertible $n \times n$ submatrix. Write f(t) = (x(t), y(t)), where $x(t) = (x_1(t), \dots, x_n(t))$ and $y(t) = (y_1(t), \dots, y_k(t))$, so that we have

$$Df(t) = \begin{pmatrix} Dx(t) \\ Dy(t) \end{pmatrix}$$

with Dx(a) invertible. By the Inverse function Theorem, the function x(t) is locally invertible. Write the inverse function as t = t(x) and let g(x) = y(t(x)). Then, locally, we have $\operatorname{Range}(f) = \operatorname{Graph}(g)$ because if $(x, y) \in \operatorname{Graph}(g)$ and we choose t = t(x) then we have $(x, y) = (x, g(x)) = (x(t), g(x(t))) = (x(t), y(t)) \in \operatorname{Range}(f)$ and, on the other hand, if $(x, y) \in \operatorname{Range}(f)$, say (x, y) = (x(t), y(t)) then we must have t = t(x) so that y(t) = y(t(x)) = g(x) so that $(x, y) = (x(t), y(t)) = (x, g(x)) \in \operatorname{Graph}(g)$.

6.28 Corollary: (The Implicit Function Theorem) Let $f : U \subseteq \mathbb{R}^{n+k} \to \mathbb{R}^k$ be \mathcal{C}^1 . Let $p \in U$, suppose that Df(p) has rank k and let c = f(p). Then the level set $f^{-1}(c)$ is locally the graph of a \mathcal{C}^1 function.

Proof: Since Df(p) has rank k, it follows that some $k \times k$ submatrix of f is invertible. By reordering the variables in \mathbb{R}^{n+k} , if necessary, suppose that the last k columns of Df(p) form an invertible $k \times k$ matrix. Write p = (a, b) with $a = (p_1, \dots, p_n) \in \mathbb{R}^n$ and $b = (p_{n+1}, \dots, p_{n+k}) \in \mathbb{R}^k$ and write z = f(x, y) with $x \in \mathbb{R}^n$, $y \in \mathbb{R}^k$ and $z \in \mathbb{R}^k$, and write

$$Df(x,y) = \left(\frac{\partial z}{\partial x}(x,y), \frac{\partial z}{\partial y}(x,y)\right)$$

with $\frac{\partial z}{\partial y}(a,b)$ invertible. Define $F: U \subseteq \mathbb{R}^{n+k} \to \mathbb{R}^{n+k}$ by F(x,y) = (x, f(x,y)) = (w,z). Then we have

$$DF = \begin{pmatrix} I & O\\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{pmatrix}$$

with DF(a, b) invertible. By the Inverse Function Theorem, F = F(x, y) is locally invertible. Write the inverse function as (x, y) = G(w, z) = (w, g(w, z)) and let h(x) = g(x, c). Then, locally, we have $f^{-1}(c) = \text{Graph}(h)$ because

$$f(x,y) = c \iff F(x,y) = (x,c) \iff (x,y) = G(x,c)$$
$$\iff (x,y) = (x,g(x,c)) \iff (x,y) \in \operatorname{Graph}(h).$$

6.29 Remark: We can also find a formula for Dh where h is the function in the above proof. Since G(w, z) = (w, g(w, z)) we have $DG(w, z) = \begin{pmatrix} I & O \\ \frac{\partial g}{\partial w} & \frac{\partial g}{\partial z} \end{pmatrix}$ and we also have

$$DG(w,z) = DF(x,y)^{-1} = \begin{pmatrix} I & O \\ -\left(\frac{\partial z}{\partial y}\right)^{-1}\frac{\partial z}{\partial x} & \left(\frac{\partial z}{\partial y}\right)^{-1} \end{pmatrix} \text{ so, since } h(x) = g(x,c), \text{ we have}$$
$$Dh(x) = \frac{\partial g}{\partial w}(x,c) = -\left(\frac{\partial z}{\partial y}\right)^{-1}\frac{\partial z}{\partial x}(x,y).$$

Higher Order Derivatives and Taylor's Theorem

6.30 Lemma: (Iterated Limits) Let I and J be open intervals in \mathbb{R} with $a \in I$ and $b \in J$, let $U = (I \times J) \setminus \{(a, b)\}$, and let $f : U \to \mathbb{R}$. Suppose that $\lim_{y \to b} f(x, y)$ exists for every $x \in I$ and that $\lim_{(x,y)\to(a,b)} f(x,y) = u \in \mathbb{R}$. Then $\lim_{x\to a} \lim_{t\to b} f(x,y) = u$.

Proof: Define $g: I \to \mathbb{R}$ by $g(x) = \lim_{y \to b} f(x, y)$. Let $\epsilon > 0$. Since $\lim_{(x,y)\to(a,b)} f(x,y) = u$ we can choose $\delta > 0$ such that for all $(x,y) \in U$ with $0 < |(x,y) - (a,b)| \le 2\delta$ we have $|f(x,y) - u| \le \epsilon$. Let $x \in I$ with $0 < |x - a| \le \delta$. For all $y \in J$ with $0 < |y - b| \le \delta$ we have $0 < |(x,y) - (a,b)| \le |x - a| + |y - b| \le 2\delta$ and so $|f(x,y) - u| \le \epsilon$ and hence

$$|g(x) - u| \le |g(x) - f(x,y)| + |f(x,y) - u| \le |g(x) - f(x,y)| + \epsilon.$$

Take the limit as $y \to b$ on both sides to get $|g(x) - u| \le \epsilon$. Thus $\lim_{x \to a} g(x) = u$, as required.

6.31 Theorem: (Mixed Partials Commute) Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ where U is open in \mathbb{R}^n with $a \in U$, and let $k, \ell \in \{1, \dots, n\}$. Suppose $\frac{\partial^2 f}{\partial x_k \partial x_\ell}(x)$ exists in U and is continuous at a, $\frac{\partial f}{\partial x_k}(x)$ exists and is continuous in U, and $\frac{\partial^2 f}{\partial x_\ell \partial x_k}(a)$ exists. Then $\frac{\partial^2 f}{\partial x_\ell \partial x_k}(a) = \frac{\partial^2 f}{\partial x_k \partial x_\ell}(a)$.

Proof: When $k = \ell$ there is nothing to prove, so suppose that $k \neq \ell$. Choose r > 0 so that $B(a, 2r) \subseteq U$. For |x| < r and |y| < r note that the points $a, a + xe_k, a + ye_\ell$ and $a + xe_k + ye_\ell$ all lie in B(a, 2r). For |X| < r and |y| < r, define

$$g(x,y) = f(a + xe_k + ye_\ell) - f(a + xe_k) - f(a + ye_\ell) + f(a).$$

By the Mean Value Theorem, applied to the function $f(a + xe_k + ye_\ell) - f(a + ye_\ell)$ as a function of y, we can choose t between 0 and y such that

$$y\left(\frac{\partial f}{\partial x_{\ell}}(a+xe_{k}+te_{\ell})-\frac{\partial f}{\partial x_{\ell}}(a+te_{\ell})\right)=g(x,y).$$

By the Mean Value Theorem, applied to the function $\frac{\partial f}{\partial x_{\ell}}(a + xe_k + te_{\ell})$ as a function of x, we can choose s between 0 and x such that

$$x \frac{\partial^2 f}{\partial x_k \partial x_\ell} (a + se_k + te_\ell) = \frac{\partial f}{\partial x_\ell} (a + xe_k + te_\ell) - \frac{\partial f}{\partial x_\ell} (a + te_\ell).$$

Also by the Mean Value Theorem, applied to the function $f(a + xe_k + ye_\ell) - f(a + xe_k)$ as a function of x, we can choose r between 0 and x such that

$$x\left(\frac{\partial f}{\partial x_k}(a+re_k+ye_\ell)-\frac{\partial f}{\partial x_k}(a+re_\ell)\right)=g(x,y).$$

Then for |x| < r and 0 < |y| < r we have

$$\frac{\frac{\partial f}{\partial x_k}(a + re_k + ye_\ell) - \frac{\partial f}{\partial x_k}(a + re_k)}{y} = \frac{\partial^2 f}{\partial x_k \partial x_\ell}(a + se_k + te_\ell).$$

Since $\frac{\partial^2 f}{\partial x_k \partial x_\ell}$ is continuous, the limit on the right as $(x, y) \to (0, 0)$ is equal to $\frac{\partial^2 f}{\partial x_k \partial x_\ell}(a)$, and since $\frac{\partial f}{\partial x_k}$ is continuous, the limit as $y \to 0$ of the limit as $x \to 0$ on the left is equal to $\frac{\partial^2 f}{\partial x_\ell \partial x_k}(a)$, so the desired result follows from the above lemma.

6.32 Corollary: If $U \subseteq \mathbb{R}^n$ is open and $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$ is \mathcal{C}^2 in U then we have $\frac{\partial^2 f}{\partial x_\ell \partial x_k}(x) = \frac{\partial^2 f}{\partial x_k \partial x_\ell}(x)$ for all $x \in U$ and for all k, ℓ .

6.33 Exercise: Verify that for $f(x,y) = \frac{x^2}{x^2+y^2}$ we have $\lim_{x\to 0} \lim_{y\to 0} f(x,y) \neq \lim_{y\to 0} \lim_{x\to 0} f(x,y)$.

6.34 Exercise: Let $f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, \text{ if } (x,y) \neq (0,0) \\ 0, \text{ if } (x,y) = (0,0) \end{cases}$. Verify that the mixed

partial derivatives $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ and $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ both exist, but they are not equal.

6.35 Definition: for $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$, where U is open in \mathbb{R}^n with $a \in U$, we define $D^0 f(a) = f(a)$ and for $\ell \in \mathbb{Z}^+$ we define the ℓ^{th} total differential of f at a to be the map $D^\ell f(a) : \mathbb{R}^n \to \mathbb{R}$ given by

$$D^{\ell}f(a)(u) = \sum_{k_1=1}^n \sum_{k_2=1}^n \cdots \sum_{k_{\ell}=1}^n \frac{\partial^{\ell}f}{\partial x_{k_1} \partial x_{k_2} \cdots \partial x_{k_{\ell}}}(a) u_{k_1} u_{k_2} \cdots u_{k_{\ell}}$$

provided that all of the ℓ^{th} order partial derivatives exist at a.

6.36 Example: When $f: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ is \mathcal{C}^2 (so the mixed partial derivatives commute) we have

$$D^{0}f(u,v) = f(a,b)$$

$$D^{1}f(a,b)(u,v) = \frac{\partial f}{\partial x}(a,b) u + \frac{\partial f}{\partial y}(a,b) v$$

$$D^{2}f(a,b)(u,v) = \frac{\partial f}{\partial x^{2}}(a,b) u^{2} + 2\frac{\partial f}{\partial x \partial y}(a,b) uv + \frac{\partial f}{\partial y^{2}}(a,b) v^{2}$$

6.37 Theorem: (Taylor's Theorem) Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$ where U is open in \mathbb{R}^n . Suppose that the m^{th} oder partial derivatives of f all exist in U. Then for all $a, x \in U$ such that $[a, x] \subseteq U$ there exists $c \in [a, x]$ such that

$$f(x) = \sum_{\ell=0}^{m-1} \frac{1}{\ell!} D^{\ell} f(a)(x-a) + \frac{1}{m!} D^{m} f(c)(x-a).$$

Proof: Let $a, x \in U$ with $[a, x] \subseteq U$. Let $\alpha(t) = a + t(x - a)$ for all $t \in \mathbb{R}$ and note that $\alpha(t) \in U$ for $0 \leq t \leq 1$. Since U is open and α is continuous, we can choose $\delta > 0$ so that $\alpha(t) \in U$ for all $t \in I = (-\delta, 1 + \delta)$. Define $g: I \to \mathbb{R}$ by $g(t) = f(\alpha(t))$. By the Chain Rule, we have

$$g'(t) = Df(\alpha(t))\alpha'(t) = Df(\alpha(t))(x-a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\alpha(t))(x_i - a_i) = D^1f(\alpha(t))(x-a).$$

By the Chain Rule again, we have

$$g''(t) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i} (\alpha(t)) (x_j - a_j) \right) (x_i - a_i) = D^2 f(\alpha(t)) (x - a).$$

An induction argument shows that

$$g^{(\ell)}(t) = D^{\ell} f(\alpha(t))(x-a).$$

By Taylor's Theorem, applied to the function g(t) on the interval [0,1], we can choose $s \in [0,1]$ such that $g(1) = \sum_{\ell=0}^{m-1} \frac{1}{\ell!} g^{(\ell)}(0) + \frac{1}{m!} g^{(m)}(s)$, that is $f(x) = \sum_{\ell=0}^{m-1} \frac{1}{\ell!} D^{\ell} f(a)(x-a) + \frac{1}{m!} D^{m} f(\alpha(s))(x-a).$

Thus we can choose $c = \alpha(s) \in [a, x]$.

Positive Definiteness and the Second Derivative Test

6.38 Definition: For $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$, where U is open in \mathbb{R}^n with $a \in U$, we define the m^{th} Taylor polynomial of f at a to be the polynomial

$$T^{m}f(a)(x) = \sum_{\ell=0}^{m} \frac{1}{\ell!} D^{\ell}f(a)(x-a)$$

provided that all the m^{th} order partial derivatives exist at a. When f is \mathcal{C}^2 in U (so that the mixed partial derivatives commute) we have

$$T^{2}f(a)(x) = f(a) + Df(a)(x-a) + \frac{1}{2}(x-a)^{T}Hf(a)(x-a)$$

where $Hf(a) \in M_{n \times n}(\mathbb{R})$ is the symmetric matrix with entries $Hf(a)_{k,\ell} = \frac{\partial^2 f}{\partial x_k \partial x_\ell}(a)$. The matrix Hf(a) is called the **Hessian matrix** of f at a.

6.39 Definition: Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. We say that

(1) A is **positive-definite** when $u^T A u > 0$ for all $0 \neq u \in \mathbb{R}^n$,

(2) A is **negative-definite** when $u^T A u < 0$ for all $0 \neq u \in \mathbb{R}^n$, and

(3) A is indefinite when there exist $0 \neq u, v \in \mathbb{R}^n$ with $u^T A u > 0$ and $v^T A v < 0$.

6.40 Theorem: (Characterization of Positive-Definiteness by Eigenvalues) Let $A \in M_n(\mathbb{R})$ be symmetric. Then

(1) A is positive-definite if and only if all of the eigenvalues of A are positive,

(2) A is negative-definite if and only if all of the eigenvalues of A are negative, and

(3) A is indefinite if and only if A has a positive eigenvalue and a negative eigenvalue.

Proof: Suppose that A is positive definite. Let λ be an eigenvalue of A and let u be a unit eigenvector for λ . Then $\lambda = \lambda |u|^2 = \lambda (u \cdot u) = \lambda u \cdot u = Au \cdot u = u^T Au > 0$. Conversely, suppose that all of the eigenvalues of A are positive. Since A is symmetric, we can orthogonally diagonalize A. Choose a matrix $P \in M_n(\mathbb{R})$ with $P^T = P$ so that $P^{T}AP = D = \operatorname{diag}(\lambda_{1}, \cdots, \lambda_{n}).$ Given $0 \neq u \in \mathbb{R}^{n}$, let $v = P^{T}u$. Note that $v \neq 0$ since P^T is invertible. Thus $u^T A u = u^T P D P^T u = v^T D v = \sum_{i=1}^n \lambda_i v_i^2 > 0$ since every $\lambda_i > 0$ and

some $v_i \neq 0$. This proves Part (1). The proofs of Parts (2) and (3) are fairly similar.

6.41 Theorem: (Characterization of Positive-Definiteness by Determinant) Let $A \in$ $M_n(\mathbb{R})$ be symmetric. For each k with $1 \le k \le n$, let $A^{(k)}$ denote the upper-left $k \times k$ sub matrix of A. Then

(1) A is positive-definite if and only if $det(A^{(k)}) > 0$ for all k with $1 \le k \le n$, and

(2) A is negative-definite if and only if $(-1)^k \det(A^{(k)}) > 0$ for all k with $1 \le k \le n$.

Proof: Part (2) follows easily from Part (1) by noting that A is negative-definite if and only if -A is positive-definite. We shall prove one direction of Part (1). Suppose that A is positive-definite. Let $1 \leq k \leq n$. Since $u^T A u > 0$ for all $0 \neq u \in \mathbb{R}^n$, we have $\begin{pmatrix} u^T & 0 \end{pmatrix} A \begin{pmatrix} u \\ 0 \end{pmatrix} = 0$, or equivalently $u^T A^{(k)} u > 0$, for all $0 \neq u \in \mathbb{R}^k$. This shows that $A^{(k)}$ is positive definite. By the previous theorem, all of the eigenvalues of $A^{(k)}$ are positive.

Since $det(A^{(k)})$ is equal to the product of its eigenvalues, we see that $det(A^{(k)}) > 0$.

The proof of the other direction of Part (1) is more difficult. We shall omit the proof. It is often proven in a linear algebra course.

6.42 Exercise: Let $A = \begin{pmatrix} 3 & -1 & 2 \\ -1 & 2 & 1 \\ 2 & 1 & 5 \end{pmatrix}$. Determine whether A is positive-definite.

6.43 Definition: Let $f : A \subseteq \mathbb{R}^n \to \mathbb{R}$ and let $a \in A$. We say that f has a **local** maximum value at a when there exists r > 0 such that $f(a) \ge f(x)$ for all $x \in B_A(a, r)$. We say that f has a **local minimum value** at a when there exists r > 0 such that $f(a) \le x$ for all $x \in B_A(a, r)$.

6.44 Exercise: Show that when $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ where U is open in \mathbb{R}^n with $a \in U$, if f has a local maximum or minimum value at a then either Df(a) = 0 or Df(a) does not exist (that is one of the partial derivatives $\frac{\partial f}{\partial x_k}(a)$ does not exist).

6.45 Definition: Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ where U is open in \mathbb{R}^n . For $a \in U$, we say that a is a **critical point** of f when either Df(a) = 0 or Df(a) does not exist. When $a \in U$ is a critical point of f but f does not have a local maximum or minimum value at a, we say that a is a **saddle point** of f.

6.46 Theorem: (The Second Derivative Test) Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$ with U open in \mathbb{R}^n and let $a \in U$. Suppose that f is \mathcal{C}^2 in U with Df(a) = 0. Then

(1) if Hf(a) is positive definite then f has a local minimum value at a,

(2) if Hf(a) is negative definite then f has a local maximum value at a, and

(3) if Hf(a) is indefinite then f has a saddle point at a.

Proof: Suppose that Hf(a) is positive-definite. Then det $(Hf(a)^{(k)}) > 0$ for $1 \le k \le n$. Since each determinant function det $(A^{(k)})$ is continuous as a function in the entries of the matrix A, the set $V = \{x \in U \mid Hf(x)^{(k)} > 0$ for $k = 1, 2, \dots, n\}$ is open. Choose r > 0 so that $B(a, r) \subseteq V$. Then we have $u^T Hf(c) u > 0$ for all $0 \ne u \in \mathbb{R}^n$ and all $c \in B(a, r)$. Let $x \in B(a, r)$ with $x \ne a$. By Taylor's Theorem, we have

$$f(x) - f(a) - Df(a)(x - a) = (x - a)^T Hf(c) (x - a)$$

for some $c \in [a, x]$. Since Df(a) = 0 and Hf(c) is positive-definite, we have f(x) - f(a) > 0. Thus f has a local minimum value at a. This proves Part (1) and Part (2) is similar.

Let us prove Part (3). Suppose there exists $0 \neq u \in \mathbb{R}^n$ such that $u^T H f(a) u > 0$. Let r > 0 with $B(a, r) \subseteq U$ and scale the vector u if necessary so that $[a, u] \subseteq B(a, r)$. Let $\alpha(t) = a + tu$ and let $g(t) = f(\alpha(t))$ for $0 \leq t \leq 1$. As in the proof of Taylor's Theorem, we have

$$g'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\alpha(t)) u_i = Df(\alpha(t)) u, \text{ and}$$
$$g''(t) = \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} (\alpha(t)) u_i u_j = u^T Hf(\alpha(t)) u.$$

Since g(0) = f(a), g'(0) = Df(a)u = 0 and $g''(0) = u^T Hf(a)u > 0$, it follows from single-variable calculus that we can choose t_0 with $0 < t_0 < 1$ so that $g(t_0) > g(0)$. When $x = \alpha(t_0)$ we have $x \in B(a, r)$ and $f(x) = f(\alpha(t_0)) = g(t_0) > g(0) = f(a)$, and so fdoes not have a local maximum value at a. Similarly, if there exists $0 \neq v \in \mathbb{R}^n$ such that $v^T Hf(a)v < 0$ then f does not have a local minimum value at a. Thus when Hf(a) is indefinite, f has a saddle point at a.

6.47 Exercise: Find and classify the critical points of the following functions $f : \mathbb{R}^2 \to \mathbb{R}$. (a) $f(x,y) = x^3 + 2xy + y^2$ (b) $f(x,y) = x^3 + 3x^2y - 6y^2$ (c) $f(x,y) = x^2y e^{-x^2 - 2y^2}$