
Chapter 6. Differentiation in Euclidean Space

6.1 Definition: Let U ⊆ Rn be open in Rn, let f : U ⊆ Rn → R, and let at a ∈ U , say
a = (a1, · · · , an). We define the kth partial derivative of f at a to be

∂f
∂xk

(a) = gk
′(ak) , where gk(t) = f(a1, · · · , ak−1, t, ak+1, · · · an) ,

or equivalently, letting ek = (0, 0, · · · , 0, 1, 0, · · · , 0) be the kth standard basis vector in Rn,
∂f
∂xk

(a) = hk
′(0) , where hk(t) = f(a1, · · · , ak−1, ak + t, ak+1, · · · an) = f(a+ t ek) ,

provided that the derivatives exist. Note that gk and hk are functions of a single variable.
Sometimes ∂f

∂xk
is written as fxk

or as fk. When we write u = f(x), we can also write
∂f
∂xk

as ∂u
∂xk

, uxk
or uk. When n = 3 and we write x, y and z instead of x1, x2 and x3, the

partial derivatives ∂f
∂x1

, ∂f
∂x2

and ∂f
∂x3

are written as ∂f
∂x , ∂f

∂y and ∂f
∂z , or as fx, fy and fz.

When n = 1 so there is only one variable x = x1 we have ∂f
∂x (a) = df

dx (a) = f ′(a).

6.2 Definition: Let U ⊆ Rn be open in Rn, let f : U ⊆ Rn → Rm and let a ∈ U .

Write u = f(x) =
(
f1(x), f2(x), · · · , fm(x)

)T
with x = (x1, x2, · · · , xn)T . We define the

derivative matrix, or the Jacobian matrix, of f at a to be the matrix

Df(a) =


∂f1
∂x1

(a) ∂f1
∂x2

(a) · · · ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) · · · ∂f2
∂xn

(a)

...
...

...
∂fm
∂x1

(a) ∂fm
∂x2

(a) · · · ∂fm
∂xn

(a)


and we define the linearization of f at a to be the affine map L : Rn → Rm given by

L(x) = f(a) +Df(a)(x− a)

provided that all the partial derivatives ∂fk
∂xl

(a) exist.

6.3 Definition: Let U be open in Rn and let f : U ⊆ Rn → Rm. We say that f is C1 in
U when all the partial derivatives ∂fk

∂fl
exist and are continuous in U . The second order

partial derivatives of f are the functions

∂2fj
∂xk∂xl

=
∂
(∂fj
∂xl

)
∂xk

.

We also write
∂2fj
∂xk

2 =
∂2fj

∂xk∂xk
. We say that f is C2 when all the partial derivatives

∂2fj
∂xk∂xl

exist and are continuous in U . Higher order derivatives can be defined similarly, and we

say f is Ck when all the kth order derivatives
∂kfj

∂xi1∂xi2 ···∂xik
exist and are continuous in U .

6.4 Definition: Let a ∈ U where U is an open set in R, and let f : U ⊆ R → Rm, say
x = f(t) =

(
x1(t), x2(t), · · · , xm(t)

)
. Then we write f ′(a) = Df(a) and we have

f ′(a) = Df(a) =


∂x1

∂t (a)
...

∂xm

∂t (a)

 =

 x1
′(a)
...

xm
′(a)

 .

The vector f ′(a) is called the tangent vector to the curve x = f(t) at the point f(a). In
the case that t represents time and f(t) represents the position of a moving point, f ′(a) is
also called the velocity of the moving point at time t = a.
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6.5 Definition: Let a ∈ U where U is an open set in Rn and let f : U ⊆ Rn → R. We
define the gradient of f at a to be the vector

∇f(a) = Df(a)T =
( ∂f
∂x1

(a), · · · , ∂f
∂xn

(a)
)T

=


∂f
∂x1

(a)

...
∂f
∂xn

(a)

 .

6.6 Note: Recall that for f : U ⊆ R→ R and a ∈ U ,

f is differentiable at a ⇐⇒ lim
x→a

f(x)− f(a)

x− a
exists

⇐⇒ ∃m∈R ∀ε>0 ∃δ>0 ∀x∈U 0< |x−a|<δ =⇒
∣∣∣f(x)− f(a)

x− a
−m

∣∣∣ < ε

⇐⇒ ∃m∈R ∀ε>0 ∃δ>0 ∀x∈U 0< |x−a|< δ =⇒
∣∣f(x)− f(a)−m(x− a)

∣∣ < ε |x− a|
⇐⇒ ∃m∈R ∀ε>0 ∃δ>0 ∀x∈U |x−a| ≤ δ =⇒

∣∣f(x)−
(
f(a) +m(x− a)

)∣∣ ≤ ε |x− a|.
In this case, the number m ∈ R is unique, we call it the derivative of f at a and denote
it by f ′(a), and the map `(x) = f(a) + f ′(a)(x− a) is called the linearization of f at a.

6.7 Definition: Let f : U ⊆ Rn → Rm, where U is open. We say f is differentiable at
a ∈ U if there is an m× n matrix A such that

∀ ε>0 ∃ δ>0 ∀x∈U
(
|x− a| ≤ δ =⇒

∣∣f(x)− (f(a) +A(x− a))
∣∣ ≤ ε|x− a|).

We show below that the matrix A is unique, we call it the derivative (matrix) of f at a, and
we denote it by Df(a). The affine map L : Rn → Rm given by L(x) = f(a)+Df(a)(x−a),
which approximates f(x), is called the linearization of f at a. We say f is differentiable
in U when it is differentiable at every point a ∈ U .

6.8 Example: If f is the affine map f(x) = Ax + b, then we have Df(a) = A for all a.
Indeed given ε > 0 we can choose δ > 0 to be anything we like, and then for all x we have∣∣f(x)− f(a)−A(x− a)

∣∣ =
∣∣Ax+ b−Aa− b−Ax+Aa

∣∣ = 0 ≤ ε|x− a|.

6.9 Theorem: (The Derivative is the Jacobian) Let f : U ⊆ Rn → Rm and let a ∈ U .
If f is differentiable at a then the partial derivatives ∂fk

∂x`
(a) all exist and the matrix A

which appears in the definition of the derivative is equal to the Jacobian matrix Df(a).

Proof: Suppose that f is differentiable at a. Fix indices k and ` and let g(t) = fk(a+ te`)
so that ∂fk

∂x`
(a) = g′(0) provided that the derivative g′(0) exists. Let A be a matrix as in

the definition of differentiability. Let ε > 0. Choose δ > 0 such that for all x ∈ U with
|x − a| ≤ δ we have

∣∣f(x) − f(a) − A(x − a)
∣∣ ≤ ε |x − a|. Let t ∈ R with |t| ≤ δ. Let

x = a+t e`. Then we have |x−a| = |te`| = |t| ≤ δ and so
∣∣f(x)−f(a)−A(x−a)

∣∣ ≤ ε |x−a|.
Since for any vector u ∈ Rm we have |uk| ≤ |u|, we have∣∣g(t)− g(0)−Ak,` t

∣∣ =
∣∣fk(a+ te`)− fk(a)−

(
A(te`)

)
k

∣∣
≤
∣∣f(a+ te`)− f(a)−A(te`)

∣∣
=
∣∣f(x)− f(a)−A(x− a)

∣∣
≤ ε |x− a| = ε |t|.

It follows that Ak,` = g′(0) = ∂fk
∂x`

(a), as required.
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The Matrix Norm

6.10 Definition: Let A ∈Mm×n(R) and let S =
{
x ∈ Rn

∣∣ |x| = 1
}

. Since S is compact,

by the Extreme Value Theorem, the continuous function f : Rn → R given by f(x) =
∣∣Ax∣∣

attains its maximum value on S. We define the norm of the matrix A to be

‖A‖ = max
{
|Ax|

∣∣ |x| = 1
}
.

6.11 Lemma: (Properties of the Matrix Norm) Let A ∈Mm×n(R). Then

(1) |Ax| ≤ ‖A‖ |x| for all x ∈ Rn,

(2) if A is invertible then |Ax| ≥ |x|
‖A−1‖ for all x ∈ Rn,

(3) ‖A‖ ≤
m∑
k=1

n∑̀
=1

|Ak,`|, and

(4) ‖A‖ is equal to the square root of the largest eigenvalue of the matrix ATA.

Proof: When x = 0 ∈ Rn we have |Ax| = 0 = ‖A‖ |x| and when 0 6= x ∈ Rn we have

|Ax| =
∣∣∣|x|A x

|x|

∣∣∣ = |x|
∣∣A x
|x|
∣∣ ≤ |x| ‖A‖.

This proves Part 1. To prove Part 2, suppose that A is invertible. Then we can choose
x ∈ Rn with |x| = 1 such that Ax 6= 0 so we must have ‖A‖ > 0. Similarly, since
A−1 is also invertible, we also have ‖A−1‖ > 0. By Part 1, for all x ∈ Rn we have

|x| =
∣∣A−1Ax∣∣ ≤ ‖A−1‖ |Ax| so that |Ax| ≥ |x|

‖A−1‖ , as required. To prove Part 3, let

x ∈ Rn with |x| = 1. Then |x`| ≤ |x| ≤ 1 for all indices `, and so∣∣Ax∣∣ =
∣∣∣ m∑
k=1

(Ax)kek

∣∣∣ ≤ m∑
k=1

∣∣(Ax)k
∣∣ =

m∑
k=1

∣∣∣ n∑̀
=1

Ak,`x`

∣∣∣ ≤ m∑
k=1

n∑̀
=1

|Ak,`| |x`| ≤
m∑
k=1

n∑̀
=1

|Ak,`|.

We omit the proof of Part 4, which we shall not use (it is often proven in a linear algebra
course).

6.12 Theorem: (Differentiability Implies Continuity) Let f : U ⊆ Rn → Rm. If f is
differentiable at a ∈ U , then f is continuous at a.

Proof: Suppose f is differentiable at a. Note that for all x ∈ U we have

|f(x)− f(a)| =
∣∣f(x)− f(a)−Df(a)(x− a) +Df(a)(x− a)

∣∣
≤
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣+ |Df(a) (x− a)
∣∣

≤
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣+ ‖Df(a)‖ |x− a|

Let ε > 0. Since f is differentiable at a we can choose δ with 0 < δ <
ε

1+‖Df(a)‖ such that

|x− a| ≤ δ =⇒
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣ ≤ |x− a|
and then for |x− a| ≤ δ we have∣∣f(x)− f(a)

∣∣ ≤ ∣∣f(x)− f(a)−Df(a)(x− a)
∣∣+ ‖Df(a)‖ |x− a|

≤ |x− a|+ ‖Df(a)‖ |x− a| =
(
1 + ‖Df(a)‖

)
|x− a|

≤
(
1 + ‖Df(a)‖

)
δ < ε.
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6.13 Theorem: (Continuous Partial Derivatives Implies Differentiability) Let U ⊆ Rn be
open, let f : U ⊆ Rn → Rm and let a ∈ U . If the partial derivatives ∂fk

∂x`
(x) exist in U and

are continuous at a then f is differentiable at a.

Proof: Suppose that the partial derivatives ∂fk
∂x`

(x) exist in U and are continuous at a.

Let ε > 0. Choose δ > 0 so that B(a, δ) ⊆ U and so that for all indices k, ` and for all
y ∈ U we have |y − a| ≤ δ =⇒

∣∣∂fk
∂x`

(y) − ∂fk
∂x`

(a)
∣∣ ≤ ε

nm . Let x ∈ U with |x − a| ≤ δ. For

0 ≤ ` ≤ n, let u` = (x1, · · · , x`, a`+1, · · · , an), with u0 = a and un = x, and note that each
u`∈B(a, δ). For 1≤`≤n, let α`(t)=(x1, · · · , x`−1, t, a`+1, · · · , an) for t between a` and x`,
For 1≤ k≤m and 1≤ `≤ n, let gk,`(t) = fk

(
α`(t)

)
so that g′k,`(t) = ∂fk

∂x`

(
α`(t)

)
. By the

Mean Value Theorem, we can choose sk,` between a` and x` so that g′k,`(sk,`)(x` − a`) =

gk,`(x`)−gk,`(a`) or, equivalently, so that ∂fk
∂x`

(
α`(sk,`)

)
(x`−a`) = fk(u`)−fk(u`−1). Then

fk(x)− fk(a) = fk(un)− fk(u0) =
n∑̀
=1

(
fk(u`)− fk(u`−1)

)
=

n∑̀
=1

∂fk
∂x`

(
α`(sk,`)

)
(x` − a`).

Let B ∈Mm×n(R) be the matrix with entries Bk,` = ∂f
∂x`

(
α`(sk,`)

)
. Then (by Parts 1 and

3 of Lemma 6.11) we have∣∣∣f(x)− f(a)−Df(a)(x− a)
∣∣∣ =

∣∣∣(B −Df(a)
)
(x− a)

∣∣∣ ≤ ∥∥B −Df(a)
∥∥ |x− a|

≤
∑
k,`

∣∣∂fk
∂x`

(α`(sk,`))− ∂fk
∂x`

(a)
∣∣ |x− a| ≤ ε|x− a|.

6.14 Corollary: If U ⊆ Rn is open and f : U ⊆ Rn → Rm is C1 then f is differentiable.

6.15 Corollary: Every function f : U ⊆ Rn → Rm, which can be obtained by applying
the standard operations (such as multiplication and composition) on functions to basic
elementary functions defined on open domains, is differentiable in U .

6.16 Exercise: For each of the following functions f : R2 \ {(0, 0)} → R, extend the
domain of f(x, y) to all of R2 by defining f(0, 0) = 0 and then determine whether the
partial derivatives of f exist at (0, 0) and whether f is differential at (0, 0).

(a) f(x, y) = xy
x2+y2 (b) f(x, y) = |xy| (c) f(x, y) =

√
|xy|

(d) f(x, y) = x3

x2+y2 (e) f(x, y) = x
(x2+y2)1/3

(f) f(x, y) = x3−3xy2
x2+y2
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The Chain Rule and the Directional Derivative

6.17 Theorem: (The Chain Rule) Let f : U ⊆ Rn → V ⊆ Rm, let g : V ⊆ Rm → R`,
and let h(x) = g(f(x)). If f is differentiable at a and g is differentiable at f(a) then h is
differentiable at a and Dh(a) = Dg(f(a))Df(a).

Proof: Suppose f is differentiable at a and g is differentiable at f(a). Write y = f(x) and
b = f(a). We have∣∣h(x)− h(a)−Dg(f(a))Df(a)(x− a)

∣∣ =
∣∣g(y)− g(b)−Dg(b)Df(a)(x− a)

∣∣
=
∣∣g(y)− g(b)−Dg(b)(y − b) +Dg(b)(y − b)−Dg(b)Df(a)(x− a)

∣∣
≤
∣∣g(y)− g(b)−Dg(b)(y − b)

∣∣+ ‖Dg(b)‖
∣∣y − b−Df(a)(x− a)

∣∣
≤
∣∣g(y)− g(b)−Dg(b)(y − b)

∣∣+
(
1 + ‖Dg(b)‖

)∣∣f(x)− f(a)−Df(a)(x− a)
∣∣

and
|y − b| = |f(x)− f(a)|

=
∣∣f(x)− f(a)−Df(a)(x− a) +Df(a)(x− a)

∣∣
≤
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣+ ‖Df(a)‖ |x− a| .

Let ε > 0 be given. Since g is differentiable at b we can choose δ0 > 0 so that

|y − b| ≤ δ0 =⇒
∣∣g(y)− g(b)−Dg(b)(y − b)

∣∣ ≤ ε
2(1+‖Df(a)‖)

|y − b| .

Since f is continuous at a we can choose δ1 > 0 so that

|x− a| ≤ δ1 =⇒ |y − b| = |f(x)− f(a)| ≤ δ0
Since f is differentiable at a we can choose δ2 > 0 so that

|x− a| ≤ δ2 =⇒
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣ ≤ |x− a|
and we can choose δ3 > 0 so that

|x− a| ≤ δ3 =⇒
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣ ≤ ε
2(1+‖Dg(a)‖)

|x− a| .

Let δ = min{δ1, δ2, δ3}. Then for |x− a| ≤ δ we have

|y − b| ≤
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣+
∣∣Df(a)(x− a)

∣∣
≤ |x− a|+ ‖Df(a)‖ |x− a|
= (1 + ‖Df(a)‖) |x− a|

so ∣∣g(y)− g(b)−Dg(b)(y − b)
∣∣ ≤ ε

2(1+‖Df(a)‖)
|y − b| ≤ ε

2 |x− a|

and we have (
1 + ‖Dg(b)‖

)∣∣f(x)− f(a)−Df(a)(x− a)
∣∣ ≤ ε

2 |x− a|

and so ∣∣h(x)− h(a)−Dg(f(a))Df(a)(x− a)
∣∣ ≤ ε

2 |x− a|+
ε
2 |x− a| = ε|x− a|.

Thus h is differentiable at a with derivative Dh(a) = Dg(f(a))Df(a), as required.
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6.18 Definition: Let f : U ⊆ Rn → R, let a ∈ Rn and let v ∈ Rn. We define the
directional derivative of f at a with respect to v, written as Dvf(a), as follows: pick
any differentiable function α : (−ε, ε) ⊆ R → U ⊆ Rn, where ε > 0, such that α(0) = a
and α′(0) = v (for example, we could pick α(t) = a+ v t), let g(t) = f(α(t)), note that by
the Chain Rule we have g′(t) = Df(α(t))α′(t), and then define

Dvf(a) = g′(0) = Df(α(0))α′(0) = Df(a) v = ∇f(a) . v .
Notice that the formula for Dvf(a) does not depend on the choice of the function α(t).
The directional derivative of f at a in the direction of v is defined to be Dwf(a)
where w is the unit vector in the direction of v, that is w = v

|v| .

6.19 Remark: Some books only define the directional derivative in the case that vector
is a unit vector.

6.20 Theorem: Let f : U ⊆ Rn → R be differentiable at a ∈ U . Say f(a) = b. The
gradient ∇f(a) is perpendicular to the level set f(x) = b, it is in the direction in which f
increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: Let α(t) be any curve in the level set f(x) = b, with α(0) = a. We wish to show that
∇f(a) ⊥ α′(0). Since α(t) lies in the level set f(x) = b, we have f(α(t)) = b for all t. Take
the derivative of both sides to get Df(α(t))α′(t) = 0. Put in t = 0 to get Df(a)α′(0) = 0,
that is ∇f(a) .α′(0) = 0. Thus ∇f(a) is perpendicular to the level set f(x) = b.

Next, let u be a unit vector. Then Duf(a) = ∇f(a) .u = |∇f(a)| cos θ, where θ is the
angle between u and ∇f(a). So the maximum possible value of Duf(a) is |∇f(a)|, and this
occurs when cos θ = 1, that is when θ = 0, which happens when u is in the direction of
∇f(a).

The Geometry of the Linearization

6.21 Note: There are several geometric objects (curves and surfaces, and higher di-
mensional analogues) that we can associate with a given function f : U ⊆ Rn → Rm.
The graph of f is the set Graph(f) =

{
(x, f(x))

∣∣x ∈ U} ⊆ Rn+m. We say that the
graph of f is given explicitlty by the equation y = f(x). The null set of f is the set
Null(f) = f−1(0) =

{
x ∈ U

∣∣ f(x) = 0
}
⊆ Rn, and more generally, when a ∈ U and

f(a) = b, the inverse image of b under f , also called the level set f−1(b), is given by
f−1(b) =

{
x∈U

∣∣ f(x) = b
}
⊆ Rn. We say the level set f−1(b) is given implicitly by the

equation f(x) = b. The range of f is the set Range(f) =
{
f(t)

∣∣ t∈U} ⊆ Rm. We say
that the range of f is given parametrically by the equation x = f(t).

When f is differentiable at a ∈ U , it is approximated by its linearization near x = a,
that is when x ∼= a we have

f(x) ∼= L(x) = f(a) +Df(a)(x− a) .

The geometric objects Graph(f), Null(f), f−1(b) and Range(f) are approximated by the
affine spaces Graph(L), Null(L), L−1(b) and Range(L). Each of these affine spaces is called
the (affine) tangent space of its corresponding geometric object: the space Graph(L) is
called the (affine) tangent space of the set Graph(f) at the point

(
a, f(a)

)
; when f(a) = b

the space L−1(b) is called the (affine) tangent space to f−1(b) at the point a; and the space
Range(L) is called the (affine) tangent space of the set Range(f) at the point f(a). When
a tangent space is 1-dimensional we call it a tangent line and when a tangent space is
2-dimensional we call it a tangent plane.
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The Mean Value Theorem

6.22 Definition: For a, b ∈ Rn, we define the line segment from a to b to be the set

[a, b] =
{
a+ t(b− a)

∣∣0 ≤ t ≤ 1
}
.

For A ⊆ Rn we say the A is convex when for all a, b ∈ A we have [a, b] ⊆ A.

6.23 Exercise: Show, using the triangle inequality, that B(a, r) is convex for all a ∈ Rn
and r > 0.

6.24 Theorem: (The Mean Value Theorem) Let f : U ⊆ Rn → Rm with U open in Rn.
Suppose that f is differentiable in U . Let u ∈ Rm and let a, b ∈ U with [a, b] ⊆ U . Then
there exists c ∈ [a, b] such that

Df(c)(b− a) .u =
(
f(b)− f(a)

) .u.
Proof: Let α(t) = a+ t(b−a) and define g : [0, 1]→ R by g(t) = f

(
α(t)

) .u. By the Chain

Rule, we have g′(t) =
(
Df(α(t))α′(t)

) .u =
(
Df(α(t))(b − a)

) .u. By the Mean Value
Theorem (for a real-valued function of a single variable) we can choose s ∈ [0, 1] such that
g′(s) = g(1)− g(0), that is

(
Df(α(s))(b− a)

) .u = f(b) .u− f(a) .u =
(
f(b)− f(a)

) .u.

Thus we can take c = α(s) ∈ [a, b] to get Df(c)(b− a) .u =
(
f(b)− f(a)

) .u.

6.25 Corollary: (Vanishing Derivative) Let U ⊆ Rn be open and connected and let
f : U → Rm be differentiable with Df(x) = O for all x ∈ U . Then f is constant in U .

Proof: Let a ∈ U and let A =
{
x ∈ U

∣∣f(x) = f(a)
}

. We claim that A is open (both
in Rn and in U). Let b ∈ A, that is let b ∈ U with f(b) = f(a). Since U is open we
can choose r > 0 so that B(b, r) ⊆ U . Let c ∈ B(b, r). Since B(b, r) is convex we have
[b, c] ⊆ B(b, r) ⊆ U . Let u = f(c) − f(b) and choose d ∈ [b, c], as in the Mean Value
Theorem, so that

(
Df(d)(c− b)

) .u =
(
f(c)− f(b)

) .u. Then we have∣∣f(c)− f(b)
∣∣2 =

(
f(c)− f(b)

) .u =
(
Df(d)(c− b)

) .u = 0

since Df(d) = O . Since
∣∣f(c)− f(b)

∣∣ = 0 we have f(c) = f(b) = f(a), and so c ∈ A. Thus
B(b, r) ⊆ A and so A is open, as claimed. A similar argument shows that if b ∈ U \ A
and we chose r > 0 so that B(b, r) ⊆ U then we have f(c) = f(b) for all c ∈ B(b, r) hence
B(b, r) ⊆ U \ A and hence U \ A is also open. Note that A is non-empty since a ∈ A. If
U \ A was also non-empty then U would be the union of the two non-empty open sets A
and U \A, and this is not possible since U is connected. Thus U \A = ∅ so U = A. Since
U = A =

{
x ∈ U

∣∣f(x) = f(a)
}

we have f(x) = f(a) for all x ∈ U , so f is constant in U .
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The Inverse and the Implicit Function Theorems

6.26 Theorem: (The Inverse Function Theorem) Let f : U ⊆ Rn → Rn where U ⊆ Rn
is open with a ∈ U . Suppose that f is C1 in U and that Df(a) is invertible. Then there
exists an open set U0 ⊆ U with a ∈ U0 such that the set V0 = f(U0) is open in Rn and the
restriction f : U0 → V0 is bijective, and its inverse g = f−1 : V0 → U0 is C1 in V0. In this
case we have Dg(f(a)

)
= Df(a)−1.

Proof: Let A = Df(a) and note that A is invertible. Since U is open and f is C1, we can
choose r > 0 so that B(a, r) ⊆ U and so that

∣∣∂fk
∂x`

(x)− ∂fk
∂f`

(a)
∣∣ ≤ 1

2n2‖A−1‖ for all k, `. Let

U0 = B(a, r) and note that for all x ∈ U0 we have
∥∥Df(x)−A

∥∥ ≤ 1
2‖A−1‖ .

Claim 1: for all x ∈ U0, the matrix Df(x) is invertible.
Let x ∈ U0 and suppose, for a contradiction, that Df(x) is not invertible. Then we can
choose u ∈ Rn with |u| = 1 such that Df(x)u = 0. But then we have∥∥Df(x)−A

∥∥ ≥ ∣∣(Df(a)−A)u
∣∣ =

∣∣Au| ≥ |u|
‖A−1‖ = 1

‖A−1‖

which contradicts the fact that since x ∈ U0 we have
∥∥Df(x)−A

∥∥ ≤ 1
2‖A−1‖ .

Claim 2: for all b, c ∈ U0 we have
∣∣f(c)− f(b)−A(c− b)

∣∣ ≤ ‖c−b|
2‖A−1‖ .

Let b, c ∈ U0. Let α(t) = b+ t(c− b) and note that α(t) ∈ U0 for all t ∈ [0, 1]. Let φ(t) =
f
(
α(t)

)
−L
(
α(t)

)
where L is the linearization of f at a given by L(a) = f(a)+Df(a)(x−a),

and note that φ(1) − φ(0) =
(
f(c) − L(c)

)
−
(
f(b) − L(b)

)
= f(c) − f(b) − A(c − b). By

the Chain Rule, we have φ′(t) = Df
(
α(t)

)
α′(t)−DL

(
α(t)

)
α′(t) =

(
Df
(
α(t)

)
− A

)
(c− b)

and so ∣∣φ′(t)∣∣ ≤ ∥∥Df(α(t)
)
−A

∥∥ |c− b| ≤ |c−b|
2‖A−1‖ .

By the Mean Value Theorem, using u = φ(1)− φ(0), we choose t ∈ [0, 1] such that∣∣φ(1)− φ(0)
∣∣2 = (φ(1)− φ(0)) .u = (Dφ(t)(1− 0)) .u = φ′(t) .u

=
∣∣φ′(t) . (φ(1)− φ(0))

∣∣ ≤ ∣∣φ′(t)∣∣ ∣∣φ(1)− φ(0)
∣∣

by the Cauchy Schwarz Inequality, and hence |φ(1)− φ(0)| ≤ |φ′(t)| ≤ |c−b|
2‖A−1‖ , that is∣∣f(c)− f(b)−A(c− b)

∣∣ ≤ |c−b|
2‖A−1‖ .

Claim 3: for all b, c ∈ U0 we have
∣∣f(c)− f(b)

∣∣ ≥ |c−b|
2‖A−1‖ .

Let b, c ∈ U0. By the Triangle Inequality we have∣∣f(c)− f(b)−A(c− b)
∣∣ ≥ ∣∣A(c− b)

∣∣− ∣∣f(c)− f(b)
∣∣ ≥ |c−b|

‖A−1‖ −
∣∣f(c)− f(b)

∣∣
and so, by Claim 3, we have∣∣f(c)− f(b)

∣∣ ≥ |c−b|
‖A−1‖ −

∣∣f(c)− f(b)−A(c− b)
∣∣ ≥ |c−b|

‖A−1‖ −
|c−b|

2‖A−1‖ = |c−b|
2‖A−1‖ .

It follows that when b 6= c we have f(b) 6= f(c), so the restriction of f to U0 is injective.

Claim 4: the restriction of f to U0 is injective, hence f : U0 → V0 = f(U0) is bijective.

By Claim 3, when b, c ∈ U0 with b 6= c we have
∣∣f(c) − f(b)

∣∣ ≥ |c−b|
2‖A−1‖ > 0 so that

f(b) 6= f(c). Thus the restriction of f to U0 is injective, as claimed.
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Claim 5: the set V0 is open in Rn.
Let p ∈ V0. Let b = g(p) so that p = f(b). Choose s > 0 so that B(b, s) ⊆ U0.
We shall show that B

(
p, s

4‖A−1‖

)
⊆ V0. Let q ∈ B

(
b, s

4‖A−1‖

)
. We need to show that

q ∈ V0 = f(U0) and in fact we shall show that q ∈ f
(
B(b, s)

)
. To do this, define ψ : U → R

by ψ(x) =
∣∣f(x)− q

∣∣. Since ψ is continuous, it attains its minimum value on the compact

set B(b, s), say at c ∈ B(b, s). We shall show that c ∈ B(b, s) and that f(c) = q so we have
q ∈ f

(
B(b, s)

)
, hence q ∈ f(U0) = V0, hence B

(
b, s

4‖A−1‖

)
⊆ V0, and hence V0 is open.

Claim 5(a): we have c ∈ B(b, s).
Suppose, for a contradiction, that c /∈ B(b, s) so we have |c− b| = s. Then

ψ(b) =
∣∣f(b)− q

∣∣ = |p− q| < s
4‖A−1‖ and, using Claim 3,

ψ(c) =
∣∣f(c)− q

∣∣ ≥ ∣∣f(c)− f(b)
∣∣− ∣∣f(b)− q

∣∣ ≥ |c−b|
2‖A−1‖ − |p− q|

= s
2‖A−1‖ − |p− q| >

s
2‖A−1‖ −

s
4‖A−1‖ = s

4‖A−1‖

so that ψ(b) < ψ(c). But this contradicts the fact that ψ(c) is the minimum value of ψ(x)
in B(b, s), so we have c ∈ B(b, s), as claimed.

Claim 5(b): we have f(c) = q.
Suppose, for a contradiction, that f(c) 6= q so we have ψ(c) > 0. Let v = q − f(c) so that
|v| = ψ(c) > 0. Let u = A−1v so that v = Au. Then for 0 ≤ t ≤ 1, using Claim 2, we have

ψ(c+ tu) =
∣∣f(c+ tu)− q

∣∣ ≤ ∣∣f(c+ tu)− f(c)−Atu
∣∣+
∣∣f(c) +Atu− q

∣∣
≤ |tu|

2‖A−1‖ + |tv − v| = t|A−1v|
2‖A−1‖ + (1− t)|v| ≤ t

2 |v|+ (1− t)|v| =
(
1− t

2

)∣∣v|.
Since |v| > 0 we have ψ(c+ tu) ≤

(
1− t

2

)
|v| < |v| = ψ(c). But this again contradicts the

fact that ψ(x) attains its minimum value at c, and so we have f(c) = q, as claimed.

Claim 6: the function g is differentiable in V0 with Dg
(
f(b)

)
= Df(b)−1 for all b ∈ U0.

Let p ∈ V0 and let b = g(p) so that f(b) = p. Let B = Df(b). Note that B is invertible by
Claim 1. Let C = B−1. Let y ∈ V0 and let x = g(y) ∈ U0 so that y = f(x). Then we have∣∣g(y)− g(p)− C(y − p)

∣∣ =
∣∣x− b− C(f(x)− f(b))

∣∣ =
∣∣CB(x− b− C(f(x)− f(b))

)∣∣
=
∣∣C(Bx−Bb− (f(x)− f(b))

)∣∣ ≤ ‖C‖∣∣f(x)− f(b)−B(x− b)
∣∣ .

Also, as shown above, we have |y − p| =
∣∣f(x)− f(b)

∣∣ ≥ |x−b|
2‖A−1‖ so that

|x− b| ≤ 2‖A−1‖ |y − p|.
It follows that g is differentiable at p with Dg(p) = C = Df(b)−1, as claimed. Indeed,
given ε > 0, since f is differentiable at b with Df(b) = B we can choose δ1 > 0 so that when
|x−a| < δ1 we have

∣∣f(x)− f(b)−B(x− b)
∣∣ ≤ ε

2‖A−1‖ ‖C‖ |x− b|, and since g is continuous

at b we can choose δ > 0 so that when |y − p| < δ we have |x − b| = |g(y) − g(b)| < δ1.
When |y − p| < δ, the above inequalities give

∣∣g(y)− g(b)− C(y − p)
∣∣ ≤ ε |y − p|.

Claim 7: the function g is C1 in V0.
By the cofactor formula for the inverse of a matrix, for all y ∈ V0 and all indices k, `,

∂gk
∂y`

(y) =
(
Dg(y)

)
k,`

=
(
Df(g(y))−1

)
k,`

=
(−1)k+`

detDf(g(y))
detE

where is E is the matrix obtained from Df(g(y)) by removing the kth column and the `th

row. Thus ∂gk
∂y`

(y) is a continuous function of y, as claimed.
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6.27 Corollary: (The Parametric Function Theorem) Let f : U ⊆ Rn → Rn+k be C1.
Let a ∈ U and suppose that Df(a) has rank n. Then Range(f) is locally equal to the
graph of a C1 function.

Proof: Since Df(a) has maximal rank n, it follows that some n × n submatrix of Df(a)
is invertible. By reordering the variables in Rn+k, if necessary, suppose that the top
n rows of Df(a) form an invertible n × n submatrix. Write f(t) =

(
x(t), y(t)

)
, where

x(t) =
(
x1(t), · · · , xn(t)

)
and y(t) =

(
y1(t), · · · , yk(t)

)
, so that we have

Df(t) =

(
Dx(t)
Dy(t)

)
with Dx(a) invertible. By the Inverse function Theorem, the function x(t) is locally
invertible. Write the inverse function as t = t(x) and let g(x) = y

(
t(x)

)
. Then, locally,

we have Range(f) = Graph(g) because if (x, y) ∈ Graph(g) and we choose t = t(x) then
we have (x, y) =

(
x, g(x)

)
=
(
x(t), g(x(t))

)
=
(
x(t), y(t)

)
∈ Range(f) and, on the other

hand, if (x, y) ∈ Range(f), say (x, y) =
(
x(t), y(t)

)
then we must have t = t(x) so that

y(t) = y
(
t(x)

)
= g(x) so that (x, y) =

(
x(t), y(t)

)
=
(
x, g(x)

)
∈ Graph(g).

6.28 Corollary: (The Implicit Function Theorem) Let f : U ⊆ Rn+k → Rk be C1. Let
p ∈ U , suppose that Df(p) has rank k and let c = f(p). Then the level set f−1(c) is locally
the graph of a C1 function.

Proof: Since Df(p) has rank k, it follows that some k × k submatrix of f is invertible.
By reordering the variables in Rn+k, if necessary, suppose that the last k columns of
Df(p) form an invertible k × k matrix. Write p = (a, b) with a = (p1, · · · , pn) ∈ Rn and
b = (pn+1, · · · , pn+k) ∈ Rk and write z = f(x, y) with x ∈ Rn, y ∈ Rk and z ∈ Rk, and
write

Df(x, y) =
(
∂z
∂x (x, y), ∂z∂y (x, y)

)
with ∂z

∂y (a, b) invertible. Define F : U ⊆ Rn+k → Rn+k by F (x, y) =
(
x, f(x, y)

)
= (w, z).

Then we have

DF =

(
I O
∂z
∂x

∂z
∂y

)
with DF (a, b) invertible. By the Inverse Function Theorem, F = F (x, y) is locally invert-
ible. Write the inverse function as (x, y) = G(w, z) =

(
w, g(w, z)

)
and let h(x) = g(x, c).

Then, locally, we have f−1(c) = Graph(h) because

f(x, y) = c ⇐⇒ F (x, y) = (x, c) ⇐⇒ (x, y) = G(x, c)

⇐⇒ (x, y) =
(
x, g(x, c)

)
⇐⇒ (x, y) ∈ Graph(h).

6.29 Remark: We can also find a formula for Dh where h is the function in the above

proof. Since G(w, z) =
(
w, g(w, z)

)
we have DG(w, z) =

(
I O
∂g
∂w

∂g
∂z

)
and we also have

DG(w, z) = DF (x, y)−1 =

(
I O

−
(
∂z
∂y

)−1 ∂z
∂x

(
∂z
∂y

)−1) so, since h(x) = g(x, c), we have

Dh(x) = ∂g
∂w (x, c) = −

(
∂z
∂y

)−1 ∂z
∂x (x, y).
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Higher Order Derivatives and Taylor’s Theorem

6.30 Lemma: (Iterated Limits) Let I and J be open intervals in R with a ∈ I and b ∈ J ,
let U = (I × J) \ {(a, b)}, and let f : U → R. Suppose that lim

y→b
f(x, y) exists for every

x ∈ I and that lim
(x,y)→(a,b)

f(x, y) = u ∈ R. Then lim
x→a

lim
t→b

f(x, y) = u.

Proof: Define g : I → R by g(x) = lim
y→b

f(x, y). Let ε > 0. Since lim
(x,y)→(a,b)

f(x, y) = u

we can choose δ > 0 such that for all (x, y) ∈ U with 0 <
∣∣(x, y) − (a, b)

∣∣ ≤ 2δ we have∣∣f(x, y) − u
∣∣ ≤ ε. Let x ∈ I with 0 < |x − a| ≤ δ. For all y ∈ J with 0 < |y − b| ≤ δ we

have 0 <
∣∣(x, y)− (a, b)

∣∣ ≤ |x− a|+ |y − b| ≤ 2δ and so
∣∣f(x, y)− u

∣∣ ≤ ε and hence

|g(x)− u| ≤
∣∣g(x)− f(x, y)

∣∣+
∣∣f(x, y)− u

∣∣ ≤ ∣∣g(x)− f(x, y)
∣∣+ ε.

Take the limit as y → b on both sides to get |g(x)−u| ≤ ε. Thus lim
x→a

g(x) = u, as required.

6.31 Theorem: (Mixed Partials Commute) Let f : U ⊆ Rn → R where U is open in Rn

with a ∈ U , and let k, ` ∈ {1, · · · , n}. Suppose ∂2f
∂xk∂x`

(x) exists in U and is continuous at a,
∂f
∂xk

(x) exists and is continuous in U , and ∂2f
∂x`∂xk

(a) exists. Then ∂2f
∂x`∂xk

(a) = ∂2f
∂xk∂x`

(a).

Proof: When k = ` there is nothing to prove, so suppose that k 6= `. Choose r > 0 so
that B(a, 2r) ⊆ U . For |x| < r and |y| < r note that the points a, a + xek, a + ye` and
a+ xek + ye` all lie in B(a, 2r). For |X| < r and |y| < r, define

g(x, y) = f(a+ xek + ye`)− f(a+ xek)− f(a+ ye`) + f(a).

By the Mean Value Theorem, applied to the function f(a + xek + ye`) − f(a + ye`) as a
function of y, we can choose t between 0 and y such that

y
(
∂f
∂x`

(a+ xek + te`)− ∂f
∂x`

(a+ te`)
)

= g(x, y).

By the Mean Value Theorem, applied to the function ∂f
∂x`

(a + xek + te`) as a function of
x, we can choose s between 0 and x such that

x ∂2f
∂xk∂x`

(a+ sek + te`) = ∂f
∂x`

(a+ xek + te`)− ∂f
∂x`

(a+ te`).

Also by the Mean Value Theorem, applied to the function f(a + xek + ye`)− f(a + xek)
as a function of x, we can choose r between 0 and x such that

x
(
∂f
∂xk

(a+ rek + ye`)− ∂f
∂xk

(a+ re`)
)

= g(x, y).

Then for |x| < r and 0 < |y| < r we have

∂f
∂xk

(a+ rek + ye`)− ∂f
∂xk

(a+ rek)

y
=

∂2f

∂xk∂x`
(a+ sek + te`).

Since ∂2f
∂xk∂x`

is continuous, the limit on the right as (x, y) → (0, 0) is equal to ∂2f
∂xk∂x`

(a),

and since ∂f
∂xk

is continuous, the limit as y → 0 of the limit as x → 0 on the left is equal

to ∂2f
∂x`∂xk

(a), so the desired result follows from the above lemma.

6.32 Corollary: If U ⊆ Rn is open and f : U ⊆ Rn → R is C2 in U then we have
∂2f

∂x`∂xk
(x) = ∂2f

∂xk∂x`
(x) for all x ∈ U and for all k, `.

6.33 Exercise: Verify that for f(x, y) = x2

x2+y2 we have lim
x→0

lim
y→0

f(x, y) 6= lim
y→0

lim
x→0

f(x, y).
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6.34 Exercise: Let f(x, y) =


xy(x2 − y2)

x2 + y2
, if (x, y) 6= (0, 0)

0 , if (x, y) = (0, 0)

 . Verify that the mixed

partial derivatives ∂2f
∂x∂y (0, 0) and ∂2f

∂y∂x (0, 0) both exist, but they are not equal.

6.35 Definition: for f : U ⊆ Rn → R, where U is open in Rn with a ∈ U , we define
D0f(a) = f(a) and for ` ∈ Z+ we define the `th total differential of f at a to be the map
D`f(a) : Rn → R given by

D`f(a)(u) =
n∑

k1=1

n∑
k2=1

· · ·
n∑

k`=1

∂`f
∂xk1

∂xk2
···∂xk`

(a)uk1uk2 · · ·uk`

provided that all of the `th order partial derivatives exist at a.

6.36 Example: When f : U ⊆ R2 → R is C2 (so the mixed partial derivatives commute)
we have

D0f(u, v) = f(a, b)

D1f(a, b)(u, v) = ∂f
∂x (a, b)u+ ∂f

∂y (a, b) v

D2f(a, b)(u, v) = ∂f
∂x2 (a, b)u2 + 2 ∂f

∂x∂y (a, b)uv + ∂f
∂y2 (a, b) v2.

6.37 Theorem: (Taylor’s Theorem) Let f : U ⊆ Rn → R where U is open in Rn. Suppose
that the mth oder partial derivatives of f all exist in U . Then for all a, x ∈ U such that
[a, x] ⊆ U there exists c ∈ [a, x] such that

f(x) =
m−1∑̀
=0

1
`! D

`f(a)(x− a) + 1
m! D

mf(c)(x− a).

Proof: Let a, x ∈ U with [a, x] ⊆ U . Let α(t) = a + t(x − a) for all t ∈ R and note that
α(t) ∈ U for 0 ≤ t ≤ 1. Since U is open and α is continuous, we can choose δ > 0 so that
α(t) ∈ U for all t ∈ I = (−δ, 1 + δ). Define g : I → R by g(t) = f(α(t)). By the Chain
Rule, we have

g′(t) = Df
(
α(t)

)
α′(t) = Df

(
α(t)

)
(x− a) =

n∑
i=1

∂f
∂xi

(
α(t)

)
(xi − ai) = D1f

(
α(t)

)
(x− a).

By the Chain Rule again, we have

g′′(t) =
n∑
i=1

( n∑
j=1

∂2f
∂xj∂xi

(
α(t)

)
(xj − aj)

)
(xi − ai) = D2f

(
α(t)

)
(x− a).

An induction argument shows that

g(`)(t) = D`f
(
α(t)

)
(x− a).

By Taylor’s Theorem, applied to the function g(t) on the interval [0, 1], we can choose

s ∈ [0, 1] such that g(1) =
m−1∑̀
=0

1
`!g

(`)(0) + 1
m!g

(m)(s), that is

f(x) =
m−1∑̀
=0

1
`!D

`f(a)(x− a) + 1
m!D

mf
(
α(s)

)
(x− a).

Thus we can choose c = α(s) ∈ [a, x].
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Positive Definiteness and the Second Derivative Test

6.38 Definition: For f : U ⊆ Rn → R, where U is open in Rn with a ∈ U , we define the
mth Taylor polynomial of f at a to be the polynomial

Tmf(a)(x) =
m∑̀
=0

1
`! D

`f(a)(x− a)

provided that all the mth order partial derivatives exist at a. When f is C2 in U (so that
the mixed partial derivatives commute) we have

T 2f(a)(x) = f(a) +Df(a)(x− a) + 1
2 (x− a)THf(a) (x− a)

where Hf(a) ∈Mn×n(R) is the symmetric matrix with entries Hf(a)k,` = ∂2f
∂xk∂x`

(a). The

matrix Hf(a) is called the Hessian matrix of f at a.

6.39 Definition: Let A ∈Mn(R) be a symmetric matrix. We say that

(1) A is positive-definite when uTAu > 0 for all 0 6= u ∈ Rn,
(2) A is negative-definite when uTAu < 0 for all 0 6= u ∈ Rn, and
(3) A is indefinite when there exist 0 6= u, v ∈ Rn with uTAu > 0 and vTAv < 0.

6.40 Theorem: (Characterization of Positive-Definiteness by Eigenvalues) Let A∈Mn(R)
be symmetric. Then

(1) A is positive-definite if and only if all of the eigenvalues of A are positive,
(2) A is negative-definite if and only if all of the eigenvalues of A are negative, and
(3) A is indefinite if and only if A has a positive eigenvalue and a negative eigenvalue.

Proof: Suppose that A is positive definite. Let λ be an eigenvalue of A and let u be
a unit eigenvector for λ. Then λ = λ|u|2 = λ(u .u) = λu .u = Au .u = uTAu > 0.
Conversely, suppose that all of the eigenvalues of A are positive. Since A is symmetric,
we can orthogonally diagonalize A. Choose a matrix P ∈ Mn(R) with PT = P so that
PTAP = D = diag(λ1, · · · , λn). Given 0 6= u ∈ Rn, let v = PTu. Note that v 6= 0 since

PT is invertible. Thus uTAu = uTPDPTu = vTDv =
n∑
i=1

λivi
2 > 0 since every λi > 0 and

some vi 6= 0. This proves Part (1). The proofs of Parts (2) and (3) are fairly similar.

6.41 Theorem: (Characterization of Positive-Definiteness by Determinant) Let A ∈
Mn(R) be symmetric. For each k with 1 ≤ k ≤ n, let A(k) denote the upper-left k× k sub
matrix of A. Then

(1) A is positive-definite if and only if det(A(k)) > 0 for all k with 1 ≤ k ≤ n, and
(2) A is negative-definite if and only if (−1)k det(A(k) > 0 for all k with 1 ≤ k ≤ n.

Proof: Part (2) follows easily from Part (1) by noting that A is negative-definite if and
only if −A is positive-definite. We shall prove one direction of Part (1). Suppose that
A is positive-definite. Let 1 ≤ k ≤ n. Since uTAu > 0 for all 0 6= u ∈ Rn, we have(
uT 0

)
A

(
u
0

)
= 0, or equivalently uTA(k)u > 0, for all 0 6= u ∈ Rk. This shows that

A(k) is positive definite. By the previous theorem, all of the eigenvalues of A(k) are positive.
Since det(A(k)) is equal to the product of its eigenvalues, we see that det(A(k)) > 0.

The proof of the other direction of Part (1) is more difficult. We shall omit the proof.
It is often proven in a linear algebra course.
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6.42 Exercise: Let A =

 3 −1 2
−1 2 1

2 1 5

. Determine whether A is positive-definite.

6.43 Definition: Let f : A ⊆ Rn → R and let a ∈ A. We say that f has a local
maximum value at a when there exists r > 0 such that f(a) ≥ f(x) for all x ∈ BA(a, r).
We say that f has a local minimum value at a when there exists r > 0 such that
f(a) ≤ x for all x ∈ BA(a, r).

6.44 Exercise: Show that when f : U ⊆ Rn → R where U is open in Rn with a ∈ U , if
f has a local maximum or minimum value at a then either Df(a) = 0 or Df(a) does not
exist (that is one of the partial derivatives ∂f

∂xk
(a) does not exist).

6.45 Definition: Let f : U ⊆ Rn → R where U is open in Rn. For a ∈ U , we say that a
is a critical point of f when either Df(a) = 0 or Df(a) does not exist. When a ∈ U is a
critical point of f but f does not have a local maximum or minimum value at a, we say
that a is a saddle point of f .

6.46 Theorem: (The Second Derivative Test) Let f : U ⊆ Rn → R with U open in Rn
and let a ∈ U . Suppose that f is C2 in U with Df(a) = 0. Then

(1) if Hf(a) is positive definite then f has a local minimum value at a,
(2) if Hf(a) is negative definite then f has a local maximum value at a, and
(3) if Hf(a) is indefinite then f has a saddle point at a.

Proof: Suppose that Hf(a) is positive-definite. Then det
(
Hf(a)(k

)
> 0 for 1 ≤ k ≤ n.

Since each determinant function det(A(k)) is continuous as a function in the entries of the
matrix A, the set V =

{
x ∈ U

∣∣Hf(x)(k) > 0 for k = 1, 2, · · · , n
}

is open. Choose r > 0
so that B(a, r) ⊆ V . Then we have uTHf(c)u > 0 for all 0 6= u ∈ Rn and all c ∈ B(a, r).
Let x ∈ B(a, r) with x 6= a. By Taylor’s Theorem, we have

f(x)− f(a)−Df(a)(x− a) = (x− a)THf(c) (x− a)

for some c ∈ [a, x]. Since Df(a) = 0 and Hf(c) is positive-definite, we have f(x)−f(a) > 0.
Thus f has a local minimum value at a. This proves Part (1) and Part (2) is similar.

Let us prove Part (3). Suppose there exists 0 6= u ∈ Rn such that uTHf(a)u > 0. Let
r > 0 with B(a, r) ⊆ U and scale the vector u if necessary so that [a, u] ⊆ B(a, r). Let
α(t) = a + tu and let g(t) = f

(
α(t)

)
for 0 ≤ t ≤ 1. As in the proof of Taylor’s Theorem,

we have

g′(t) =
n∑
i=1

∂f
∂xi

(
α(t)

)
ui = Df

(
α(t)

)
u , and

g′′(t) =
n∑

i,j=1

∂2f
∂xi∂xj

(
α(t)

)
uiuj = uTHf

(
α(t)

)
u .

Since g(0) = f(a), g′(0) = Df(a)u = 0 and g′′(0) = uTHf(a)u > 0, it follows from
single-variable calculus that we can choose t0 with 0 < t0 < 1 so that g(t0) > g(0). When
x = α(t0) we have x ∈ B(a, r) and f(x) = f

(
α(t0)

)
= g(t0) > g(0) = f(a), and so f

does not have a local maximum value at a. Similarly, if there exists 0 6= v ∈ Rn such that
vTHf(a) v < 0 then f does not have a local minimum value at a. Thus when Hf(a) is
indefinite, f has a saddle point at a.

6.47 Exercise: Find and classify the critical points of the following functions f : R2 → R.

(a) f(x, y) = x3+2xy+y2 (b) f(x, y) = x3+3x2y−6y2 (c) f(x, y) = x2y e−x
2−2y2
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