## Chapter 3. The Riemann Integral

## The Riemann Integral

3.1 Definition: A partition of the closed interval $[a, b]$ is a set $X=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ with

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b .
$$

The intervals $\left[x_{i-1}, x_{i}\right]$ are called the subintervals of $[a, b]$, and we write

$$
\Delta_{i} x=x_{i}-x_{i-1}
$$

for the size of the $i^{\text {th }}$ subinterval. Note that

$$
\sum_{i=1}^{n} \Delta_{i} x=b-a
$$

The size of the partition $X$, denoted by $|X|$ is

$$
|X|=\max \left\{\Delta_{i} x \mid 1 \leq i \leq n\right\} .
$$

3.2 Definition: Let $X$ be a partition of $[a, b]$, and let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. A Riemann sum for $f$ on $X$ is a sum of the form

$$
S=\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x \quad \text { for some } t_{i} \in\left[x_{i-1}, x_{i}\right]
$$

The points $t_{i}$ are called sample points.
3.3 Definition: Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. We say that $f$ is (Riemann) integrable on $[a, b]$ when there exists a number $I$ with the property that for every $\epsilon>0$ there exists $\delta>0$ such that for every partition $X$ of $[a, b]$ with $|X|<\delta$ we have $|S-I|<\epsilon$ for every Riemann sum for $f$ on $X$, that is

$$
\left|\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x-I\right|<\epsilon
$$

for every choice of $t_{i} \in\left[x_{i-1}, x_{i}\right]$ This number $I$ is unique (as we prove below); it is called the (Riemann) integral of $f$ on $[a, b]$, and we write

$$
I=\int_{a}^{b} f, \text { or } I=\int_{a}^{b} f(x) d x
$$

Proof: Suppose that $I$ and $J$ are two such numbers. Let $\epsilon>0$ be arbitrary. Choose $\delta_{1}$ so that for every partition $X$ with $|X|<\delta_{1}$ we have $|S-I|<\frac{\epsilon}{2}$ for every Riemann sum $S$ on $X$, and choose $\delta_{2}>0$ so that for every partition $X$ with $|X|<\delta_{2}$ we have $|S-J|<\frac{\epsilon}{2}$ for every Riemann sum $S$ on $X$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Let $X$ be any partition of $[a, b]$ with $|X|<\delta$. Choose $t_{i} \in\left[x_{i-1}, x_{i}\right]$ and let $S=\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x$. Then we have $|I-J| \leq|I-S|+|S-J|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. Since $\epsilon$ was arbitrary, we must have $I=J$.
3.4 Example: Let $f(x)=\left\{\begin{array}{lll}1 & \text { if } & x \in \mathbb{Q} \\ 0 & \text { if } & x \notin \mathbb{Q} .\end{array}\right.$. Show that $f$ is not integrable on $[0,1]$.

Solution: Suppose, for a contradiction, that $f$ is integrable on $[0,1]$, and write $I=\int_{0}^{1} f$. Let $\epsilon=\frac{1}{2}$. Choose $\delta$ so that for every partition $X$ with $|X|<\delta$ we have $|S-I|<\frac{1}{2}$ for every Riemann sum $S$ for $f$ on $X$. Choose a partition $X$ with $|X|<\delta$. Let $S_{1}=\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x$ where each $t_{i} \in\left[x_{i-1}, x_{i}\right]$ is chosen with $t_{i} \in \mathbb{Q}$, and let $S_{2}=\sum_{i=1}^{n} f\left(s_{i}\right) \Delta_{i} x$ where each $s_{i} \in\left[x_{i-1}, x_{i}\right]$ is chosen with $s_{i} \notin \mathbb{Q}$. Note that we have $\left|S_{1}-I\right|<\frac{1}{2}$ and $\left|S_{2}-I\right|<\frac{1}{2}$. Since each $t_{i} \in \mathbb{Q}$ we have $f\left(t_{i}\right)=1$ and so $S_{1}=\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x=\sum_{i=1}^{n} \Delta_{i} x=1-0=1$, and since each $s_{i} \notin \mathbb{Q}$ we have $f\left(s_{i}\right)=0$ and so $S_{2}=\sum_{i=1}^{n} f\left(s_{i}\right) \Delta_{i} x=0$. Since $\left|S_{1}-I\right|<\frac{1}{2}$ we have $|1-I|<\frac{1}{2}$ and so $\frac{1}{2}<I<\frac{3}{2}$, and since $\left|S_{2}-I\right|<\frac{1}{2}$ we have $|0-I|<\frac{1}{2}$ and so $-\frac{1}{2}<I<\frac{1}{2}$, giving a contradiction.
3.5 Example: Show that the constant function $f(x)=c$ is integrable on any interval $[a, b]$ and we have $\int_{a}^{b} c d x=c(b-a)$.
Solution: The solution is left as an exercise.
3.6 Example: Show that the identity function $f(x)=x$ is integrable on any interval $[a, b]$, and we have $\int_{a}^{b} x d x=\frac{1}{2}\left(b^{2}-a^{2}\right)$.
Solution: Let $\epsilon>0$. Choose $\delta=\frac{2 \epsilon}{b-a}$. Let $X$ be any partition of $[a, b]$ with $|X|<\delta$. Let $t_{i} \in\left[x_{i-1}, x_{i}\right]$ and set $S=\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x=\sum_{i=1}^{n} t_{i} \Delta_{i} x$. We must show that $\left|S-\frac{1}{2}\left(b^{2}-a^{2}\right)\right|<\epsilon$. Notice that

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}+x_{i-1}\right) \Delta_{i} x & =\sum_{i=1}^{n}\left(x_{i}+x_{i-1}\right)\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} x_{i}{ }^{2}-x_{i-1}^{2} \\
& =\left(x_{1}^{2}-x_{0}^{2}\right)+\left(x_{2}^{2}-x_{1}^{2}\right)+\cdots+\left(x_{n-1}^{2}-x_{n-2}^{2}\right)+\left(x_{n}^{2}-x_{n-1}^{2}\right) \\
& =-x_{0}{ }^{2}+\left(x_{1}{ }^{2}-x_{1}^{2}\right)+\cdots+\left(x_{n-1}^{2}-x_{n-1}^{2}\right)+x_{n}^{2} \\
& =x_{n}{ }^{2}-x_{0}{ }^{2}=b^{2}-a^{2}
\end{aligned}
$$

and that when $t_{i} \in\left[x_{i-1}, x_{i}\right]$ we have $\left|t_{i}-\frac{1}{2}\left(x_{i}+x_{i-1}\right)\right| \leq \frac{1}{2}\left(x_{i}-x_{i-1}\right)=\frac{1}{2} \Delta_{i} x$, and so

$$
\begin{aligned}
\left|S-\frac{1}{2}\left(b^{2}-a^{2}\right)\right| & =\left|\sum_{i=1}^{n} t_{i} \Delta_{i} x-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}+x_{i-1}\right) \Delta_{i} x\right| \\
& =\left|\sum_{i=1}^{n}\left(t_{i}-\frac{1}{2}\left(x_{i}+x_{i+1}\right)\right) \Delta_{i} x\right| \\
& \leq \sum_{i=1}^{n}\left|t_{i}-\frac{1}{2}\left(x_{i}+x_{i+1}\right)\right| \Delta_{i} x \\
& \leq \sum_{i=1}^{n} \frac{1}{2} \Delta_{i} x \Delta_{i} x \leq \sum_{i=1}^{n} \frac{1}{2} \delta \Delta_{i} x \\
& =\frac{1}{2} \delta(b-a)=\epsilon .
\end{aligned}
$$

## Upper and Lower Riemann Sums

3.7 Definition: Let $X$ be a partition for $[a, b]$ and let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. The upper Riemann sum for $f$ on $X$, denoted by $U(f, X)$, is

$$
U(f, X)=\sum_{i=1}^{n} M_{i} \Delta_{i} x \quad \text { where } M_{i}=\sup \left\{f(t) \mid t \in\left[x_{i-1}, x_{i}\right]\right\}
$$

and the lower Riemann sum for $f$ on $X$, denoted by $L(f, X)$ is

$$
L(f, X)=\sum_{i=1}^{n} m_{i} \Delta_{i} x \quad \text { where } m_{i}=\inf \left\{f(t) \mid t \in\left[x_{i-1}, x_{i}\right]\right\}
$$

3.8 Remark: The upper and lower Riemann sums $U(f, X)$ and $L(f, X)$ are not, in general, Riemann sums at all, since we do not always have $M_{i}=f\left(t_{i}\right)$ or $m_{i}=f\left(s_{i}\right)$ for any $t_{i}, s_{i} \in\left[x_{i-1}, x_{i}\right]$. If $f$ is increasing, then $M_{i}=f\left(x_{i}\right)$ and $m_{i}=f\left(x_{i-1}\right)$, and so in this case $U(f, X)$ and $L(f, X)$ are indeed Riemann sums. Similarly, if $f$ is decreasing then $U(f, X)$ and $L(f, X)$ are Riemann sums. Also, if $f$ is continuous then, by the Extreme Value Theorem, we have $M_{i}=f\left(t_{i}\right)$ and $m_{i}=f\left(s_{i}\right)$ for some $t_{i}, s_{i} \in\left[x_{i-1}, x_{i}\right]$, and so in this case $U(f, X)$ and $L(f, X)$ are again Riemann sums.
3.9 Note: Let $X$ be a partition of $[a, b]$, and let $f:[a, b] \rightarrow \mathbb{R}$. be bounded. Then

$$
\begin{aligned}
U(f, X) & =\sup \{S \mid S \text { is a Riemann sum for } f \text { on } X\}, \text { and } \\
L(f, X) & =\inf \{S \mid S \text { is a Riemann sum for } f \text { on } X\} .
\end{aligned}
$$

In particular, for every Riemann sum $S$ for $f$ on $X$ we have

$$
L(f, X) \leq S \leq U(f, X)
$$

Proof: We show that $U(f, X)=\sup \{S \mid S$ is a Riemann sum for $f$ on $X\}$ (the other statement is proved similarly). Let $\mathcal{T}=\{S \mid S$ is a Riemann sum for $f$ on $X\}$. For $S \in \mathcal{T}$, say $S=\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x$ where $t_{i} \in\left[x_{i-1}, x_{i}\right]$, we have

$$
S=\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x \leq \sum_{i=1}^{n} M_{i} \Delta_{i} x=U(f, X)
$$

Thus $U(f, X)$ is an upper bound for $\mathcal{T}$ so we have $U(f, X) \geq \sup \mathcal{T}$. It remains to show that given any $\epsilon>0$ we can find $S \in \mathcal{T}$ with $U(f, X)-S<\epsilon$. Let $\epsilon>0$ be arbitrary. Since $M_{i}=\sup \left\{f(t) \mid t \in\left[x_{i-1}, x_{i}\right]\right\}$, we can choose $t_{i} \in\left[x_{i-1}, x_{i}\right]$ with $M_{i}-f\left(t_{i}\right)<\frac{\epsilon}{b-a}$. Then we have

$$
U(f, X)-S=\sum_{i=1}^{n} M_{i} \Delta_{i} x-\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x=\sum_{i=1}^{n}\left(M_{i}-f\left(t_{i}\right)\right) \Delta_{i} x<\sum_{i=1}^{n} \frac{\epsilon}{b-a} \Delta_{i} x=\epsilon
$$

3.10 Lemma: Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded with upper and lower bounds $M$ and $m$. Let $X$ and $Y$ be partitions of $[a, b]$ such that $Y=X \cup\{c\}$ for some $c \notin X$. Then

$$
\begin{aligned}
& 0 \leq L(f, Y)-L(f, X) \leq(M-m)|X|, \text { and } \\
& 0 \leq U(f, X)-U(f, Y) \leq(M-m)|X|
\end{aligned}
$$

Proof: We shall prove that $0 \leq L(f, Y)-L(f, X) \leq(M-m)|X|$ (the proof that $0 \leq$ $U(f, X)-U(f, Y) \leq(M-m)|X|$ is similar). Say $X=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ and $c \in\left[x_{i-1}, x_{i}\right]$ so $Y=\left\{x_{0}, x_{1}, \cdots, x_{i-1}, c, x_{i}, \cdots, x_{n}\right\}$. Then

$$
L(f, Y)-L(f, X)=k_{i}\left(c-x_{i-1}\right)+l_{i}\left(x_{i}-c\right)-m_{i}\left(x_{i}-x_{i-1}\right)
$$

where

$$
k_{i}=\inf \left\{f(t) \mid t \in\left[x_{i-1}, c\right]\right\}, l_{i}=\inf \left\{f(t) \mid t \in\left[c, x_{i}\right]\right\}, m_{i}=\inf \left\{f(t) \mid t \in\left[x_{i-1}, x_{i}\right]\right\}
$$

Since $m_{i}=\min \left\{k_{i}, l_{i}\right\}$ we have $k_{i} \geq m_{i}$ and $l_{i} \geq m_{i}$, so

$$
L(f, Y)-L(f, X) \geq m_{i}\left(c-x_{i-1}\right)+m_{i}\left(x_{i}-c\right)-m_{i}\left(x_{i}-x_{i-1}\right)=0 .
$$

Since $k_{i} \leq M$ and $l_{i} \leq M$ and $m_{i} \geq m$ we have

$$
\begin{aligned}
L(f, Y)-L(f, X) & \leq M\left(c-x_{i-1}\right)+M\left(x_{i}-c\right)-m\left(x_{i}-x_{i-1}\right) \\
& =(M-m)\left(x_{i}-x_{i-1}\right) \leq(M-m)|X|
\end{aligned}
$$

3.11 Note: Let $X$ and $Y$ be partitions of $[a, b]$ with $X \subset Y$. Then

$$
L(f, X) \leq L(f, Y) \leq U(f, Y) \leq U(f, X)
$$

Proof: If $Y$ is obtained by adding one point to $X$ then this follows from the above lemma. In general, $Y$ can be obtained by adding finitely many points to $X$, one point at a time.
3.12 Note: Let $X$ and $Y$ be any partitions of $[a, b]$. Then $L(f, X) \leq U(f, Y)$.

Proof: Let $Z=X \cup Y$. Then by the above note,

$$
L(f, X) \leq L(f, Z) \leq U(f, Z) \leq U(f, Y)
$$

3.13 Definition: Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. The upper integral of $f$ on $[a, b]$, denoted by $U(f)$, is given by

$$
U(f)=\inf \{U(f, X) \mid X \text { is a partition of }[a, b]\}
$$

and the lower integral of $f$ on $[a, b]$, denoted by $L(f)$, is given by

$$
L(f)=\sup \{L(f, X) \mid X \text { is a partition of }[a, b]\} .
$$

3.14 Note: The upper and lower integrals of $f$ both exist even when $f$ is not integrable.
3.15 Note: We always have $L(f) \leq U(f)$.

Proof: Let $\epsilon>0$ be arbitrary. Choose a partition $X_{1}$ so that $L(f)-L\left(f, X_{1}\right)<\frac{\epsilon}{2}$ and choose a partition $X_{2}$ so that $U\left(f, X_{2}\right)-U(f)<\frac{\epsilon}{2}$. Then

$$
\begin{aligned}
U(f)-L(f) & =\left(U(f)-U\left(f, X_{2}\right)\right)+\left(U\left(f, X_{2}\right)-L\left(f, X_{1}\right)\right)+\left(L\left(f, X_{1}\right)-L(f)\right) \\
& >-\frac{\epsilon}{2}+0-\frac{\epsilon}{2}=-\epsilon
\end{aligned}
$$

Since $\epsilon$ was arbitrary, this implies that $U(f)-L(f) \geq 0$.
3.16 Theorem: (Equivalent Definitions of Integrability) Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Then the following are equivalent.
(1) $f$ is integrable on $[a, b]$.
(2) For all $\epsilon>0$ there exists a partition $X$ such that $U(f, X)-L(f, X)<\epsilon$.
(3) $L(f)=U(f)$.

Proof: $(1) \Longrightarrow(2)$. Suppose that $f$ is integrable on $[a, b]$ with $I=\int_{a}^{b} f$. Let $\epsilon>0$. Choose $\delta>0$ so that for every partition $X$ with $|X|<\delta$ we have $|S-I|<\frac{\epsilon}{4}$ for every Riemann sum $S$ on $X$. Let $X$ be a partition with $|X|<\delta$. Let $S_{1}$ be a Riemann sum for $f$ on $X$ with $\left|U(f, X)-S_{1}\right|<\frac{\epsilon}{4}$, and let $S_{2}$ be a Riemann sum for $f$ on $X$ with $\left|S_{2}-L(f, X)\right|<\frac{\epsilon}{4}$. Then

$$
\begin{aligned}
|U(f, X)-L(f, X)| & \leq\left|U(f, X)-S_{1}\right|+\left|S_{1}-I\right|+\left|I-S_{2}\right|+\left|S_{2}-L(f, X)\right| \\
& <\frac{\epsilon}{4}+\frac{\epsilon}{4}+\frac{\epsilon}{4}+\frac{\epsilon}{4}=\epsilon .
\end{aligned}
$$

$(2) \Longrightarrow(3)$. Suppose that for all $\epsilon>0$ there is a partition $X$ such that $U(f, X)-L(f, X)<\epsilon$. Let $\epsilon>0$. Choose $X$ so that $U(f, X)-L(f, X)<\epsilon$. Then

$$
\begin{aligned}
U(f)-L(f) & =(U(f)-U(f, X))+(U(f, X)-L(f, X))+(L(f, X)-L(f)) \\
& <0+\epsilon+0=\epsilon
\end{aligned}
$$

Since $0 \leq U(f)-L(f)<\epsilon$ for every $\epsilon>0$, we have $U(f)=L(f)$.
$(3) \Longrightarrow(1)$. Suppose that $L(f)=U(f)$ and let $I=L(f)=U(f)$. Let $\epsilon>0$. Choose a partition $X_{0}$ of $[a, b]$ so that $L(f)-L\left(f, X_{0}\right)<\frac{\epsilon}{2}$ and $U\left(f, X_{0}\right)-U(f)<\frac{\epsilon}{2}$. Say $X_{0}=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ and set $\delta=\frac{\epsilon}{2(n-1)(M-m)}$, where $M$ and $m$ are upper and lower bounds for $f$ on $[a, b]$. Let $X$ be any partition of $[a, b]$ with $|X|<\delta$. Let $Y=X_{0} \cup X$. Note that $Y$ is obtained from $X$ by adding at most $n-1$ points, and each time we add a point, the size of the new partition is at most $|X|<\delta$. By lemma 3.10, applied $n-1$ times, we have

$$
\begin{aligned}
& 0 \leq U(f, X)-U(f, Y) \leq(n-1)(M-m)|X|<(n-1)(M-m) \delta=\frac{\epsilon}{2}, \text { and } \\
& 0 \leq L(f, Y)-L(f, X) \leq(n-1)(M-m)|X|<(n-1)(M-m) \delta=\frac{\epsilon}{2}
\end{aligned}
$$

Now let $S$ be any Riemann sum for $f$ on $X$. Note that $L\left(f, X_{0}\right) \leq L(f, Y) \leq L(f)=$ $U(f) \leq U(f, Y) \leq U\left(f, X_{0}\right)$ and $L(f, X) \leq S \leq U(f, X)$, so we have

$$
\begin{aligned}
S-I & \leq U(f, X)-I=U(f, X)-U(f)=(U(f, X)-U(f, Y))+(U(f, Y)-U(f)) \\
& \leq(U(f, X)-U(f, Y))+\left(U\left(f, X_{0}\right)-U(f)\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

and

$$
\begin{aligned}
I-S & =I-L(f, X)=L(f)-L(f, X)=(L(f)-L(f, Y))+(L(f, Y)-L(f, X)) \\
& \leq\left(L(f)-L\left(f, X_{0}\right)\right)+(L(f, Y)-L(f, X))<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

## Evaluating Integrals of Continuous Functions

3.17 Theorem: (Continuous Functions are Integrable) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then $f$ is integrable on $[a, b]$.

Proof: Let $\epsilon>0$. Since $f$ is uniformly continuous on $[a, b]$, we can choose $\delta>0$ such that for all $x, y \in[a, b]$ we have $|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\frac{\epsilon}{b-a}$. Let $X$ be any partition of $[a, b]$ with $|X|<\delta$. By the Extreme Value Theorem we have $M_{i}=f\left(t_{i}\right)$ and $m_{i}=f\left(s_{i}\right)$ for some $t_{i}, s_{i} \in\left[x_{i-1}, x_{i}\right]$. Since $\left|t_{i}-s_{i}\right| \leq\left|x_{i}-x_{i-1}\right| \leq|X|=\delta$, we have $\left|M_{i}-m_{i}\right|=\left|f\left(t_{i}\right)-f\left(s_{i}\right)\right|<\frac{\epsilon}{b-a}$. Thus

$$
U(f, X)-L(f, X)=\sum_{i=1}^{n} M_{i} \Delta_{i} x-\sum_{i=1}^{n} m_{i} \Delta_{i} x=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta_{i} x<\frac{\epsilon}{b-a} \sum_{i=1}^{n} \Delta_{i} x=\epsilon
$$

3.18 Note: Let $f$ be integrable on $[a, b]$. Let $X_{n}$ be any sequence of partitions of $[a, b]$ with $\lim _{n \rightarrow \infty}\left|X_{n}\right|=0$. Let $S_{n}$ be any Riemann sum for $f$ on $X_{n}$. Then $\left\{S_{n}\right\}$ converges with

$$
\lim _{n \rightarrow \infty} S_{n}=\int_{a}^{b} f(x) d x
$$

Proof: Write $I=\int_{a}^{b} f$. Given $\epsilon>0$, choose $\delta>0$ so that for every partition $X$ of $[a, b]$ with $|X|<\delta$ we have $|S-I|<\epsilon$ for every Riemann sum $S$ for $f$ on $X$, and then choose $N$ so that $n>N \Longrightarrow\left|X_{n}\right|<\delta$. Then we have $n>N \Longrightarrow\left|S_{n}-I\right|<\epsilon$.
3.19 Note: Let $f$ be integrable on $[a, b]$. If we let $X_{n}$ be the partition of $[a, b]$ into $n$ equal-sized subintervals, and we let $S_{n}$ be the Riemann sum on $X_{n}$ using right-endpoints, then by the above note we obtain the formula

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{n, i}\right) \Delta_{n, i} x, \text { where } x_{n, i}=a+\frac{b-a}{n} i \text { and } \Delta_{n, i} x=\frac{b-a}{n} .
$$

3.20 Example: Find $\int_{0}^{2} 2^{x} d x$.

Solution: Let $f(x)=2^{x}$. Note that $f$ is continuous and hence integrable, so we have

$$
\begin{aligned}
\int_{0}^{2} 2^{x} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{n, i}\right) \Delta_{n, i} x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{2 i}{n}\right)\left(\frac{2}{n}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2^{2 i / n}\left(\frac{2}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2 \cdot 4^{1 / n}}{n} \cdot \frac{4-1}{4^{1 / n}-1}, \text { by the formula for the sum of a geometric sequence } \\
& =\left(\lim _{n \rightarrow \infty} 6 \cdot 4^{1 / n}\right)\left(\lim _{n \rightarrow \infty} \frac{1}{n\left(4^{1 / n}-1\right)}\right)=6 \lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{4^{1 / n}-1}=6 \lim _{x \rightarrow 0} \frac{x}{4^{x}-1} \\
& =6 \lim _{x \rightarrow 0} \frac{1}{\ln 4 \cdot 4^{x}}, \text { by l'Hôpital's Rule } \\
& =\frac{6}{\ln 4}=\frac{3}{\ln 2} .
\end{aligned}
$$

3.21 Lemma: (Summation Formulas) We have

$$
\sum_{i=1}^{n} 1=n, \sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Proof: These formulas could be proven by induction, but we give a more constructive proof. It is obvious that $\sum_{i=1}^{n} 1=1+1+\cdots 1=n$. To find $\sum_{i=1}^{n} i$, consider $\sum_{n=1}^{n}\left(i^{2}-(i-1)^{2}\right)$. On the one hand, we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left(i^{2}-(i-1)^{2}\right) & =\left(1^{2}-0^{2}\right)+\left(2^{2}-1^{2}\right)+\cdots+\left((n-1)^{2}-(n-2)^{2}\right)+\left(n^{2}-(n-1)^{2}\right) \\
& =-0^{2}+\left(1^{2}-1^{2}\right)+\left(2^{2}-2^{2}\right)+\cdots+\left((n-1)^{2}-(n-1)^{2}\right)+n^{2} \\
& =n^{2}
\end{aligned}
$$

and on the other hand,

$$
\sum_{i=1}^{n}\left(i^{2}-(i-1)^{2}\right)=\sum_{i=1}^{n}\left(i^{2}-\left(i^{2}-2 i+1\right)\right)=\sum_{i=1}^{n}(2 i-1)=2 \sum_{i=1}^{n} i-\sum_{i=1}^{n} 1
$$

Equating these gives $n^{2}=2 \sum_{i=1}^{n} i-\sum_{i=1}^{n} 1$ and so

$$
2 \sum_{i=1}^{n} i=n^{2}+\sum_{i=1}^{n} 1=n^{2}+n=n(n+1)
$$

as required. Next, to find $\sum_{n=1}^{\infty} i^{2}$, consider $\sum_{i=1}\left(i^{3}-(i-1)^{3}\right)$. On the one hand we have

$$
\begin{aligned}
\sum_{i=1}^{n}\left(i^{3}-(i-1)^{3}\right) & =\left(1^{3}-0^{3}\right)+\left(2^{3}-1^{3}\right)+\left(3^{3}-2^{3}\right)+\cdots+\left(n^{3}-(n-1)^{3}\right) \\
& =-0^{3}+\left(1^{3}-1^{3}\right)+\left(2^{3}-2^{3}\right)+\cdots+\left((n-1)^{3}-(n-1)^{3}\right)+n^{3} \\
& =n^{3}
\end{aligned}
$$

and on the other hand,

$$
\begin{aligned}
\sum_{i=1}^{n}\left(i^{3}-(i-1)^{3}\right) & =\sum_{i=1}^{n}\left(i^{3}-\left(i^{3}-3 i^{2}+3 i-1\right)\right) \\
& =\sum_{i=1}^{n}\left(3 i^{2}-3 i+1\right)=3 \sum_{i=1}^{n} i^{2}-3 \sum_{i=1}^{n} i+\sum_{i=1}^{n} 1
\end{aligned}
$$

Equating these gives $n^{3}=3 \sum_{i=1}^{n} i^{2}-3 \sum_{i=1}^{n} i+\sum_{i=1}^{n} 1$ and so

$$
6 \sum_{i=1}^{n} i^{2}=2 n^{3}+6 \sum_{i=1}^{n} i-2 \sum_{i=1}^{n} 1=2 n^{3}+3 n(n+1)-2 n=n(n+1)(2 n+1)
$$

as required. Finally, to find $\sum_{i=1}^{n} i^{3}$, consider $\sum_{i=1}^{n}\left(i^{4}-(i-1)^{4}\right)$. On the one hand we have

$$
\sum_{i=1}^{n}\left(i^{4}-(i-1)^{4}\right)=n^{4}
$$

(as above) and on the other hand we have

$$
\sum_{i=1}^{n}\left(i^{4}-(i-1)^{4}\right)=\sum_{i=1}^{n}\left(4 i^{3}-6 i^{2}+4 i-1\right)=4 \sum_{i=1}^{n} i^{3}-6 \sum_{i=1}^{n} i^{2}+4 \sum_{i=1}^{n} i-\sum_{i=1}^{n} 1 .
$$

Equating these gives $n^{4}=4 \sum_{i=1}^{n} i^{3}-6 \sum_{i=1}^{n} i^{2}+4 \sum_{i=1}^{n} i-\sum_{i=1}^{n} 1$ and so

$$
\begin{aligned}
4 \sum_{i=1}^{n} i^{3} & =n^{4}+6 \sum_{i=1}^{n} i^{2}-4 \sum_{i=1}^{n} i+\sum_{i=1}^{n} 1 \\
& =n^{4}+n(n+1)(2 n+1)-2 n(n+1)+n \\
& =n^{4}+2 n^{3}+n^{2}=n^{2}(n+1)^{2},
\end{aligned}
$$

as required.
3.22 Example: Find $\int_{1}^{3} x+2 x^{3} d x$.

Solution: Let $f(x)=x+2 x^{3}$. Then

$$
\begin{aligned}
\int_{1}^{3} x+2 x^{3} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{n, i}\right) \Delta_{n, i} x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(1+\frac{2}{n} i\right)\left(\frac{2}{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\left(1+\frac{2}{n} i\right)+2\left(1+\frac{2}{n} i\right)^{3}\right)\left(\frac{2}{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{2}{n} i+2\left(1+\frac{6}{n} i+\frac{12}{n^{2}} i^{2}+\frac{8}{n^{3}} i^{3}\right)\right)\left(\frac{2}{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{6}{n}+\frac{28}{n^{2}} i+\frac{48}{n^{3}} i^{2}+\frac{32}{n^{4}} i^{3}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{6}{n} \sum_{i=1}^{n} 1+\frac{28}{n^{2}} \sum_{i=1}^{n} i+\frac{48}{n^{3}} \sum_{i=1}^{n} i^{2}+\frac{32}{n^{4}} \sum_{i=1}^{n} i^{3}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{6}{n} \cdot n+\frac{28}{n^{2}} \cdot \frac{n(n+1)}{2}+\frac{48}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}+\frac{32}{n^{4}} \cdot \frac{n^{2}(n+1)^{2}}{4}\right) \\
& =6+\frac{28}{2}+\frac{48 \cdot 2}{6}+\frac{32}{4}=44 .
\end{aligned}
$$

## Basic Properties of Integrals

3.23 Theorem: (Linearity) Let $f$ and $g$ be integrable on $[a, b]$ and let $c \in \mathbb{R}$. Then $f+g$ and $c f$ are both integrable on $[a, b]$ and

$$
\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g
$$

and

$$
\int_{a}^{b} c f=c \int_{a}^{b} f
$$

Proof: The proof is left as an exercise.
3.24 Theorem: (Comparison) Let $f$ and $g$ be integrable on $[a, b]$. If $f(x) \leq g(x)$ for all $x \in[a, b]$ then

$$
\int_{a}^{b} f \leq \int_{a}^{b} g
$$

Proof: The proof is left as an exercise.
3.25 Theorem: (Additivity) Let $a<b<c$ and let $f:[a, c] \rightarrow \mathbb{R}$ be bounded. Then $f$ is integrable on $[a, c]$ if and only if $f$ is integrable both on $[a, b]$ and on $[b, c]$, and in this case

$$
\int_{a}^{b} f+\int_{b}^{c} f=\int_{a}^{c} f
$$

Proof: Suppose that $f$ is integrable on $[a, c]$. Choose a partition $X$ of $[a, c]$ such that $U(f, X)-L(f, X)<\epsilon$. Say that $b \in\left[x_{i-1}, x_{i}\right]$ and let $Y=\left\{x_{0}, x_{1}, \cdots, x_{i-1}, b\right\}$ and $Z=\left\{b, x_{i}, x_{i+1}, \cdots, x_{n}\right\}$ so that $Y$ and $Z$ are partitions of $[a, b]$ and of $[b, c]$. Then we have $U(f, Y)-L(f, Y) \leq U(f, X \cup\{b\})-L(f, X \cup\{b\}) \leq U(f, X)-L(f, X)<\epsilon$ and also $U(f, Z)-L(f, Z) \leq U(f, X \cup\{b\})-L(f, X \cup\{b\}) \leq U(f, X)-L(f, X)<\epsilon$ and so $f$ is integrable both on $[a, b]$ and on $[b, c]$.

Conversely, suppose that $f$ is integrable both on $[a, b]$ and on $[b . c]$. Choose a partition $Y$ of $[a, b]$ so that $U(f, Y)-L(f, Y)<\frac{\epsilon}{2}$ and choose a partition $Z$ of $[b, c]$ such that $U(f, Z)-L(f, Z)<\frac{\epsilon}{2}$. Let $X=Y \cup Z$. Then $X$ is a partition of $[a, c]$ and we have $U(f, X)-L(f, X)=(U(f, Y)+U(f, Z))-(L(f, Y)+L(f, Z))<\epsilon$.

Now suppose that $f$ is integrable on $[a, c]$ (hence also on $[a, b]$ and on $[b, c]$ ) with $I_{1}=\int_{a}^{b} f, I_{2}=\int_{b}^{c} f$ and $I=\int_{a}^{c} f$. Let $\epsilon>0$. Choose $\delta>0$ so that for all partitions $X_{1}, X_{2}$ and $X$ of $[a, b],[b, c]$ and $[a, c]$ respectively with $\left|X_{1}\right|<\delta,\left|X_{2}\right|<\delta$ and $|X|<\delta$, we have $\left|S_{1}-I_{1}\right|<\frac{\epsilon}{3},\left|S_{2}-I_{2}\right|<\frac{\epsilon}{3}$ and $|S-I|<\frac{\epsilon}{3}$ for all Riemann sums $S_{1}, S_{2}$ and $S$ for $f$ on $X_{1}, X_{2}$ and $X$ respectively. Choose partitions $X_{1}$ and $X_{2}$ of $[a, b]$ and $[b, c]$ with $\left|X_{1}\right|<\delta$ and $\left|X_{2}\right|<\delta$. Choose Riemann sums $S_{1}$ and $S_{2}$ for $f$ on $X_{1}$ and $X_{2}$. Let $X=X_{1} \cup X_{2}$ and note that $|X|<\delta$ and that $S=S_{1}+S_{2}$ is a Riemann sum for $f$ on $X$. Then we have

$$
\left|I-\left(I_{1}+I_{2}\right)\right|=\left|(I-S)+\left(S_{1}-I_{1}\right)+\left(S_{2}-I_{2}\right)\right| \leq|I-S|+\left|S_{1}-I_{1}\right|+\left|S_{2}-I_{2}\right| \leq \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon .
$$

3.26 Definition: We define $\int_{a}^{a} f=0$ and for $a<b$ we define $\int_{b}^{a} f=-\int_{a}^{b} f$.
3.27 Note: Using the above definition, the Additivity Theorem extends to the case that $a, b, c \in \mathbb{R}$ are not in increasing order: for any $a, b, c \in \mathbb{R}$, if $f$ is integrable on $[\min \{a, b, c\}, \max \{a, b, c\}]$ then

$$
\int_{a}^{b} f+\int_{b}^{c} f=\int_{a}^{c} f
$$

3.28 Theorem: (Integration and Absolute Value) Let $f$ be integrable on $[a, b]$. Then $|f|$ is integrable on $[a, b]$ and

$$
\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f| .
$$

Proof: Let $\epsilon>0$. Choose a partition $X$ of $[a, b]$ such that $U(f, X)-L(f, X)<\epsilon$. Write $M_{i}(f)=\sup \left\{f(t) \mid t \in\left[x_{i-1}, x_{i}\right]\right\}$ and $M_{i}(|f|)=\sup \left\{|f(t)| \mid t \in\left[x_{i-1}, x_{i}\right]\right\}$, and similarly for $m_{i}(f)$ and $m_{i}(|f|)$.

When $0 \leq m_{i}(f) \leq M_{i}(f)$ we have $M_{i}(|f|)=M_{i}(f)$ and $m_{i}(|f|)=m_{i}(f)$. When $m_{i}(f) \leq 0 \leq M_{i}(f)$ we have $M_{i}(|f|)=\max \left\{M_{i}(f),-m_{i}(f)\right\}$ and $m_{i}(|f|) \geq 0$, and so $M_{i}(|f|)-m_{i}(|f|) \leq \max \left\{M_{i}(f),-m_{i}(f)\right\} \leq M_{i}(f)-m_{i}(f)$. When $m_{i}(f) \leq M_{i}(f) \leq 0$ we have $M_{i}(|f|)=-m_{i}(f)$ and $m_{i}(|f|)=-M_{i}(f)$, and so $M_{i}(|f|)-m_{i}(|f|)=M_{i}(f)-m_{i}(f)$. In all three cases we have

$$
M_{i}(|f|)-m_{i}(|f|) \leq M_{i}(f)-m_{i}(f)
$$

and so

$$
\begin{aligned}
U(|f|, X)-L(|f|, X) & =\sum_{i=1}^{n}\left(M_{i}(|f|)-m_{i}(|f|)\right) \Delta_{i} x \leq \sum_{i=1}^{n}\left(M_{i}(f)-m_{i}(f)\right) \Delta_{i} x \\
& =U(f, X)-L(f, X)<\epsilon
\end{aligned}
$$

Thus $|f|$ is integrable on $[a, b]$.
Again, let $\epsilon>0$. Choose a partition $X$ on $[a, b]$ and choose values $t_{i} \in\left[x_{i-1}, x_{i}\right]$ so that

$$
\left|\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x-\int_{a}^{b} f\right|<\frac{\epsilon}{2} \text { and }\left|\sum_{i=1}^{n}\right| f\left(t_{i}\right)\left|\Delta_{i} x-\int_{a}^{b}\right| f\left|\left\lvert\,<\frac{\epsilon}{2}\right.\right.
$$

Note that by the triangle inequality we have $\left|\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x\right| \leq \sum_{i=1}^{n}\left|f\left(t_{i}\right)\right| \Delta_{i} x$, and so

$$
\begin{aligned}
&\left|\int_{a}^{b} f\right|-\int_{a}^{b}|f|=\left(\left|\int_{a}^{b} f\right|-\left|\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x\right|\right)+\left(\left|\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x\right|-\sum_{i=1}^{n}\left|f\left(t_{i}\right)\right| \Delta_{i} x\right) \\
&+\left(\sum_{i=1}^{n}\left|f\left(t_{i}\right)\right| \Delta_{i} x-\int_{a}^{b}|f|\right) \\
&<\frac{\epsilon}{2}+0+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

Since $\left|\int_{a}^{b} f\right|-\int_{a}^{b}|f|<\epsilon$ for every $\epsilon>0$, we have $\left|\int_{a}^{b} f\right|-\int_{a}^{b}|f| \leq 0$, as required.

## The Fundamental Theorem of Calculus

3.29 Notation: For a function $F$, defined on an interval containing $[a, b]$, we write

$$
[F(x)]_{a}^{b}=F(b)-F(a)
$$

3.30 Theorem: (The Fundamental Theorem of Calculus)
(1) Let $f$ be integrable on $[a, b]$. Define $F:[a, b] \rightarrow \mathbb{R}$ by

$$
F(x)=\int_{a}^{x} f=\int_{a}^{x} f(t) d t
$$

Then $F$ is continuous on $[a, b]$. Moreover, if $f$ is continuous at a point $x \in[a, b]$ then $F$ is differentiable at $x$ and

$$
F^{\prime}(x)=f(x)
$$

(2) Let $f$ be integrable on $[a, b]$. Let $F$ be differentiable on $[a, b]$ with $F^{\prime}=f$. Then

$$
\int_{a}^{b} f=[F(x)]_{a}^{b}=F(b)-F(a)
$$

Proof: (1) Let $M$ be an upper bound for $|f|$ on $[a, b]$. For $a \leq x, y \leq b$ we have

$$
|F(y)-F(x)|=\left|\int_{a}^{y} f-\int_{a}^{x} f\right|=\left|\int_{x}^{y} f\right| \leq\left|\int_{x}^{y}\right| f| | \leq\left|\int_{x}^{y} M\right|=M|y-x|
$$

so given $\epsilon>0$ we can choose $\delta=\frac{\epsilon}{M}$ to get

$$
|y-x|<\delta \Longrightarrow|F(y)-F(x)| \leq M|y-x|<M \delta=\epsilon
$$

Thus $F$ is continuous (indeed uniformly continuous) on $[a, b]$. Now suppose that $f$ is continuous at the point $x \in[a, b]$. Note that for $a \leq x, y \leq b$ with $x \neq y$ we have

$$
\begin{aligned}
\left|\frac{F(y)-F(x)}{y-x}-f(x)\right| & =\left|\frac{\int_{a}^{y} f-\int_{a}^{x} f}{y-x}-f(x)\right| \\
& =\left|\frac{\int_{x}^{y} f}{y-x}-\frac{\int_{x}^{y} f(x)}{y-x}\right| \\
& =\frac{1}{|y-x|}\left|\int_{x}^{y}(f(t)-f(x)) d t\right| \\
& \leq \frac{1}{|y-x|}\left|\int_{x}^{y}\right| f(t)-f(x)|d t| .
\end{aligned}
$$

Given $\epsilon>0$, since $f$ is continuous at $x$ we can choose $\delta>0$ so that

$$
|y-x|<\delta \Longrightarrow|f(y)-f(x)|<\epsilon
$$

and then for $0<|y-x|<\delta$ we have

$$
\begin{aligned}
\left|\frac{F(y)-F(x)}{y-x}-f(x)\right| & \leq \frac{1}{|y-x|}\left|\int_{x}^{y}\right| f(t)-f(x)|d t| \\
& \leq \frac{1}{|y-x|}\left|\int_{x}^{y} \epsilon d t\right|=\frac{1}{|y-x|} \epsilon|y-x|=\epsilon
\end{aligned}
$$

and thus we have $F^{\prime}(x)=f(x)$ as required.
(2) Let $f$ be integrable on $[a, b]$. Suppose that $F$ is differentiable on $[a, b]$ with $F^{\prime}=f$. Let $\epsilon>0$ be arbitrary. Choose $\delta>0$ so that for every partition $X$ of $[a, b]$ with $|X|<\delta$ we have $\left|\int_{a}^{b} f-\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x\right|<\epsilon$ for every choice of sample points $t_{i} \in\left[x_{i-1}, x_{i}\right]$. Choose sample points $t_{i} \in\left[x_{i-1}, x_{i}\right]$ as in the Mean Value Theorem so that

$$
F^{\prime}\left(t_{i}\right)=\frac{F\left(x_{i}\right)-F\left(x_{i-1}\right)}{x_{i}-x_{i-1}}
$$

that is $f\left(t_{i}\right) \Delta_{i} x=F\left(x_{i}\right)-F\left(x_{i-1}\right)$. Then $\left|\int_{a}^{b} f-\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x\right|<\epsilon$, and

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(t_{i}\right) \Delta_{i} x & =\sum_{i=1}^{n}\left(F\left(x_{i}\right)-F\left(x_{i-1}\right)\right. \\
& =\left(F\left(x_{1}\right)-F(x)\right)+\left(F\left(x_{2}\right)-F\left(x_{1}\right)\right)+\cdots+\left(F(n-1)-F\left(x_{n}\right)\right) \\
& =-F(x)+\left(F\left(x_{1}\right)-F\left(x_{1}\right)\right)+\cdots+\left(F\left(x_{n-1}\right)-F\left(x_{n-1}\right)\right)+F\left(x_{n}\right) \\
& =F\left(x_{n}\right)-F(x)=F(b)-F(a)
\end{aligned}
$$

and so $\left|\int_{a}^{b} f-(F(b)-F(a))\right|<\epsilon$. Since $\epsilon$ was arbitrary, $\left|\int_{a}^{b} f-(F(b)-F(a))\right|=0$.
3.31 Definition: A function $F$ such that $F^{\prime}=f$ on an interval is called an antiderivative of $f$ on the interval.
3.32 Note: If $G^{\prime}=F^{\prime}=f$ on an interval, then $(G-F)^{\prime}=0$, and so $G-F$ is constant on the interval, that is $G=F+c$ for some constant $c$.
3.33 Notation: We write

$$
\int f=F+c, \text { or } \int f(x) d x=F(x)+c
$$

when $F$ is an antiderivative of $f$ on an interval, so that the antiderivatives of $f$ on the interval are the functions of the form $G=F+c$ for some constant $c$.
3.34 Example: Find $\int_{0}^{\sqrt{3}} \frac{d x}{1+x^{2}}$.

Solution: We have $\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+c$, since $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$, and so by Part 2 of the Fundamental Theorem of Calculus, we have

$$
\int_{0}^{\sqrt{3}} \frac{d x}{1+x^{2}}=\left[\tan ^{-1} x\right]_{0}^{\sqrt{3}}=\tan ^{-1} \sqrt{3}-\tan ^{-1} 0=\frac{\pi}{3}
$$

