
Chapter 3. The Riemann Integral

The Riemann Integral

3.1 Definition: A partition of the closed interval [a, b] is a set X = {x0, x1, · · · , xn}
with

a = x0 < x1 < x2 < · · · < xn = b .

The intervals [xi−1, xi] are called the subintervals of [a, b], and we write

∆ix = xi − xi−1
for the size of the ith subinterval. Note that

n∑
i=1

∆ix = b− a .

The size of the partition X, denoted by |X| is

|X| = max
{

∆ix
∣∣1 ≤ i ≤ n} .

3.2 Definition: Let X be a partition of [a, b], and let f : [a, b] → R be bounded. A
Riemann sum for f on X is a sum of the form

S =

n∑
i=1

f(ti)∆ix for some ti ∈ [xi−1, xi] .

The points ti are called sample points.

3.3 Definition: Let f : [a, b]→ R be bounded. We say that f is (Riemann) integrable
on [a, b] when there exists a number I with the property that for every ε > 0 there exists
δ > 0 such that for every partition X of [a, b] with |X| < δ we have |S − I| < ε for every
Riemann sum for f on X, that is∣∣∣∣∣

n∑
i=1

f(ti)∆ix− I

∣∣∣∣∣ < ε .

for every choice of ti ∈ [xi−1, xi] This number I is unique (as we prove below); it is called
the (Riemann) integral of f on [a, b], and we write

I =

∫ b

a

f , or I =

∫ b

a

f(x) dx .

Proof: Suppose that I and J are two such numbers. Let ε > 0 be arbitrary. Choose
δ1 so that for every partition X with |X| < δ1 we have |S − I| < ε

2 for every Riemann
sum S on X, and choose δ2 > 0 so that for every partition X with |X| < δ2 we have
|S − J | < ε

2 for every Riemann sum S on X. Let δ = min{δ1, δ2}. Let X be any partition

of [a, b] with |X| < δ. Choose ti ∈ [xi−1, xi] and let S =
n∑
i=1

f(ti)∆ix. Then we have

|I − J | ≤ |I − S|+ |S − J | < ε
2 + ε

2 = ε. Since ε was arbitrary, we must have I = J .
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3.4 Example: Let f(x) =

{
1 if x ∈ Q
0 if x /∈ Q .

Show that f is not integrable on [0, 1].

Solution: Suppose, for a contradiction, that f is integrable on [0, 1], and write I =
∫ 1

0
f .

Let ε = 1
2 . Choose δ so that for every partition X with |X| < δ we have |S−I| < 1

2 for every

Riemann sum S for f on X. Choose a partition X with |X| < δ. Let S1 =
n∑
i=1

f(ti)∆ix

where each ti ∈ [xi−1, xi] is chosen with ti ∈ Q, and let S2 =
n∑
i=1

f(si)∆ix where each

si ∈ [xi−1, xi] is chosen with si /∈ Q. Note that we have |S1 − I| < 1
2 and |S2 − I| < 1

2 .

Since each ti ∈ Q we have f(ti) = 1 and so S1 =
n∑
i=1

f(ti)∆ix =
n∑
i=1

∆ix = 1− 0 = 1, and

since each si /∈ Q we have f(si) = 0 and so S2 =
n∑
i=1

f(si)∆ix = 0. Since |S1 − I| < 1
2 we

have |1 − I| < 1
2 and so 1

2 < I < 3
2 , and since |S2 − I| < 1

2 we have |0 − I| < 1
2 and so

− 1
2 < I < 1

2 , giving a contradiction.

3.5 Example: Show that the constant function f(x) = c is integrable on any interval

[a, b] and we have

∫ b

a

c dx = c(b− a).

Solution: The solution is left as an exercise.

3.6 Example: Show that the identity function f(x) = x is integrable on any interval

[a, b], and we have

∫ b

a

x dx = 1
2 (b2 − a2).

Solution: Let ε > 0. Choose δ = 2ε
b−a . Let X be any partition of [a, b] with |X| < δ. Let

ti ∈ [xi−1, xi] and set S =
n∑
i=1

f(ti)∆ix =
n∑
i=1

ti∆ix. We must show that |S− 1
2 (b2−a2)| < ε.

Notice that

n∑
i=1

(xi + xi−1)∆ix =
n∑
i=1

(xi + xi−1)(xi − xi−1) =
n∑
i=1

xi
2 − xi−12

= (x1
2 − x02) + (x2

2 − x12) + · · ·+ (xn−1
2 − xn−22) + (xn

2 − xn−12)

= −x02 + (x1
2 − x12) + · · ·+ (xn−1

2 − xn−12) + xn
2

= xn
2 − x02 = b2 − a2

and that when ti ∈ [xi−1, xi] we have
∣∣ti − 1

2 (xi + xi−1)
∣∣ ≤ 1

2 (xi − xi−1) = 1
2∆ix, and so∣∣S − 1

2 (b2 − a2)
∣∣ =

∣∣∣ n∑
i=1

ti∆ix− 1
2

n∑
i=1

(xi + xi−1)∆ix
∣∣∣

=
∣∣∣ n∑
i=1

(
ti − 1

2 (xi + xi+1)
)

∆ix
∣∣∣

≤
n∑
i=1

∣∣ti − 1
2 (xi + xi+1)

∣∣∆ix

≤
n∑
i=1

1
2∆ix∆ix ≤

n∑
i=1

1
2δ∆ix

= 1
2δ(b− a) = ε .
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Upper and Lower Riemann Sums

3.7 Definition: Let X be a partition for [a, b] and let f : [a, b] → R be bounded. The
upper Riemann sum for f on X, denoted by U(f,X), is

U(f,X) =

n∑
i=1

Mi ∆ix where Mi = sup
{
f(t)

∣∣t ∈ [xi−1, xi]
}

and the lower Riemann sum for f on X, denoted by L(f,X) is

L(f,X) =

n∑
i=1

mi ∆ix where mi = inf
{
f(t)

∣∣t ∈ [xi−1, xi]
}
.

3.8 Remark: The upper and lower Riemann sums U(f,X) and L(f,X) are not, in
general, Riemann sums at all, since we do not always have Mi = f(ti) or mi = f(si) for
any ti, si ∈ [xi−1, xi]. If f is increasing, then Mi = f(xi) and mi = f(xi−1), and so in
this case U(f,X) and L(f,X) are indeed Riemann sums. Similarly, if f is decreasing then
U(f,X) and L(f,X) are Riemann sums. Also, if f is continuous then, by the Extreme
Value Theorem, we have Mi = f(ti) and mi = f(si) for some ti, si ∈ [xi−1, xi], and so in
this case U(f,X) and L(f,X) are again Riemann sums.

3.9 Note: Let X be a partition of [a, b], and let f : [a, b]→ R. be bounded. Then

U(f,X) = sup
{
S
∣∣S is a Riemann sum for f on X

}
, and

L(f,X) = inf
{
S
∣∣S is a Riemann sum for f on X

}
.

In particular, for every Riemann sum S for f on X we have

L(f,X) ≤ S ≤ U(f,X)

Proof: We show that U(f,X) = sup
{
S
∣∣S is a Riemann sum for f on X

}
(the other state-

ment is proved similarly). Let T =
{
S
∣∣S is a Riemann sum for f on X

}
. For S ∈ T , say

S =
n∑
i=1

f(ti)∆ix where ti ∈ [xi−1, xi], we have

S =
n∑
i=1

f(ti)∆ix ≤
n∑
i=1

Mi∆ix = U(f,X) .

Thus U(f,X) is an upper bound for T so we have U(f,X) ≥ sup T . It remains to show
that given any ε > 0 we can find S ∈ T with U(f,X) − S < ε. Let ε > 0 be arbitrary.
Since Mi = sup

{
f(t)

∣∣t ∈ [xi−1, xi]
}

, we can choose ti ∈ [xi−1, xi] with Mi − f(ti) <
ε

b−a .
Then we have

U(f,X)− S =

n∑
i=1

Mi∆ix−
n∑
i=1

f(ti)∆ix =

n∑
i=1

(
Mi − f(ti)

)
∆ix <

n∑
i=1

ε
b−a ∆ix = ε
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3.10 Lemma: Let f : [a, b] → R be bounded with upper and lower bounds M and m.
Let X and Y be partitions of [a, b] such that Y = X ∪ {c} for some c /∈ X. Then

0 ≤ L(f, Y )− L(f,X) ≤ (M −m)|X| , and

0 ≤ U(f,X)− U(f, Y ) ≤ (M −m)|X| .

Proof: We shall prove that 0 ≤ L(f, Y ) − L(f,X) ≤ (M − m)|X| (the proof that 0 ≤
U(f,X)− U(f, Y ) ≤ (M −m)|X| is similar). Say X = {x0, x1, · · · , xn} and c ∈ [xi−1, xi]
so Y = {x0, x1, · · · , xi−1, c, xi, · · · , xn}. Then

L(f, Y )− L(f,X) = ki(c− xi−1) + li(xi − c)−mi(xi − xi−1)

where

ki = inf
{
f(t)

∣∣t ∈ [xi−1, c]
}
, li = inf

{
f(t)

∣∣t ∈ [c, xi]
}
, mi = inf

{
f(t)

∣∣t ∈ [xi−1, xi]
}
.

Since mi = min{ki, li} we have ki ≥ mi and li ≥ mi, so

L(f, Y )− L(f,X) ≥ mi(c− xi−1) +mi(xi − c)−mi(xi − xi−1) = 0 .

Since ki ≤M and li ≤M and mi ≥ m we have

L(f, Y )− L(f,X) ≤M(c− xi−1) +M(xi − c)−m(xi − xi−1)

= (M −m)(xi − xi−1) ≤ (M −m)|X| .

3.11 Note: Let X and Y be partitions of [a, b] with X ⊂ Y . Then

L(f,X) ≤ L(f, Y ) ≤ U(f, Y ) ≤ U(f,X) .

Proof: If Y is obtained by adding one point to X then this follows from the above lemma.
In general, Y can be obtained by adding finitely many points to X, one point at a time.

3.12 Note: Let X and Y be any partitions of [a, b]. Then L(f,X) ≤ U(f, Y ).

Proof: Let Z = X ∪ Y . Then by the above note,

L(f,X) ≤ L(f, Z) ≤ U(f, Z) ≤ U(f, Y ) .

3.13 Definition: Let f : [a, b] → R be bounded. The upper integral of f on [a, b],
denoted by U(f), is given by

U(f) = inf
{
U(f,X)

∣∣X is a partition of [a, b]
}

and the lower integral of f on [a, b], denoted by L(f), is given by

L(f) = sup
{
L(f,X)

∣∣X is a partition of [a, b]
}
.

3.14 Note: The upper and lower integrals of f both exist even when f is not integrable.

3.15 Note: We always have L(f) ≤ U(f).

Proof: Let ε > 0 be arbitrary. Choose a partition X1 so that L(f) − L(f,X1) < ε
2 and

choose a partition X2 so that U(f,X2)− U(f) < ε
2 . Then

U(f)− L(f) =
(
U(f)− U(f,X2)

)
+
(
U(f,X2)− L(f,X1)

)
+
(
L(f,X1)− L(f)

)
> − ε

2 + 0− ε
2 = −ε .

Since ε was arbitrary, this implies that U(f)− L(f) ≥ 0.
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3.16 Theorem: (Equivalent Definitions of Integrability) Let f : [a, b] → R be bounded.
Then the following are equivalent.
(1) f is integrable on [a, b].
(2) For all ε > 0 there exists a partition X such that U(f,X)− L(f,X) < ε.
(3) L(f) = U(f).

Proof: (1) =⇒ (2). Suppose that f is integrable on [a, b] with I =
∫ b
a
f . Let ε > 0. Choose

δ > 0 so that for every partition X with |X| < δ we have |S − I| < ε
4 for every Riemann

sum S on X. Let X be a partition with |X| < δ. Let S1 be a Riemann sum for f on X
with |U(f,X)−S1| < ε

4 , and let S2 be a Riemann sum for f on X with |S2−L(f,X)| < ε
4 .

Then

|U(f,X)− L(f,X)| ≤ |U(f,X)− S1|+ |S1 − I|+ |I − S2|+ |S2 − L(f,X)|
< ε

4 + ε
4 + ε

4 + ε
4 = ε .

(2)=⇒(3). Suppose that for all ε > 0 there is a partitionX such that U(f,X)−L(f,X) < ε.
Let ε > 0. Choose X so that U(f,X)− L(f,X) < ε. Then

U(f)− L(f) =
(
U(f)− U(f,X)

)
+
(
U(f,X)− L(f,X)

)
+
(
L(f,X)− L(f)

)
< 0 + ε+ 0 = ε .

Since 0 ≤ U(f)− L(f) < ε for every ε > 0, we have U(f) = L(f).

(3) =⇒ (1). Suppose that L(f) = U(f) and let I = L(f) = U(f). Let ε > 0. Choose
a partition X0 of [a, b] so that L(f) − L(f,X0) < ε

2 and U(f,X0) − U(f) < ε
2 . Say

X0 = {x0, x1, · · · , xn} and set δ = ε
2(n−1)(M−m) , where M and m are upper and lower

bounds for f on [a, b]. Let X be any partition of [a, b] with |X| < δ. Let Y = X0 ∪ X.
Note that Y is obtained from X by adding at most n − 1 points, and each time we add
a point, the size of the new partition is at most |X| < δ. By lemma 3.10, applied n − 1
times, we have

0 ≤ U(f,X)− U(f, Y ) ≤ (n− 1)(M −m)|X| < (n− 1)(M −m)δ = ε
2 , and

0 ≤ L(f, Y )− L(f,X) ≤ (n− 1)(M −m)|X| < (n− 1)(M −m)δ = ε
2 .

Now let S be any Riemann sum for f on X. Note that L(f,X0) ≤ L(f, Y ) ≤ L(f) =
U(f) ≤ U(f, Y ) ≤ U(f,X0) and L(f,X) ≤ S ≤ U(f,X), so we have

S − I ≤ U(f,X)− I = U(f,X)− U(f) =
(
U(f,X)− U(f, Y )

)
+
(
U(f, Y )− U(f)

)
≤
(
U(f,X)− U(f, Y )

)
+
(
U(f,X0)− U(f)

)
< ε

2 + ε
2 = ε

and

I − S = I − L(f,X) = L(f)− L(f,X) =
(
L(f)− L(f, Y )

)
+
(
L(f, Y )− L(f,X)

)
≤
(
L(f)− L(f,X0)

)
+
(
L(f, Y )− L(f,X)

)
< ε

2 + ε
2 = ε .
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Evaluating Integrals of Continuous Functions

3.17 Theorem: (Continuous Functions are Integrable) Let f : [a, b] → R be continuous.
Then f is integrable on [a, b].

Proof: Let ε > 0. Since f is uniformly continuous on [a, b], we can choose δ > 0 such
that for all x, y ∈ [a, b] we have |x − y| < δ =⇒ |f(x) − f(y)| < ε

b−a . Let X be any
partition of [a, b] with |X| < δ. By the Extreme Value Theorem we have Mi = f(ti) and
mi = f(si) for some ti, si ∈ [xi−1, xi]. Since |ti − si| ≤ |xi − xi−1| ≤ |X| = δ, we have
|Mi −mi| = |f(ti)− f(si)| < ε

b−a . Thus

U(f,X)− L(f,X) =
n∑
i=1

Mi∆ix−
n∑
i=1

mi∆ix =
n∑
i=1

(Mi −mi)∆ix <
ε

b−a

n∑
i=1

∆ix = ε .

3.18 Note: Let f be integrable on [a, b]. Let Xn be any sequence of partitions of [a, b]
with lim

n→∞
|Xn| = 0. Let Sn be any Riemann sum for f on Xn. Then {Sn} converges with

lim
n→∞

Sn =

∫ b

a

f(x) dx .

Proof: Write I =
∫ b
a
f . Given ε > 0, choose δ > 0 so that for every partition X of [a, b]

with |X| < δ we have |S − I| < ε for every Riemann sum S for f on X, and then choose
N so that n > N =⇒ |Xn| < δ. Then we have n > N =⇒ |Sn − I| < ε.

3.19 Note: Let f be integrable on [a, b]. If we let Xn be the partition of [a, b] into n
equal-sized subintervals, and we let Sn be the Riemann sum on Xn using right-endpoints,
then by the above note we obtain the formula∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(xn,i)∆n,ix , where xn,i = a+ b−a
n i and ∆n,ix = b−a

n .

3.20 Example: Find

∫ 2

0

2x dx.

Solution: Let f(x) = 2x. Note that f is continuous and hence integrable, so we have∫ 2

0

2x dx = lim
n→∞

n∑
i=1

f(xn,i)∆n,ix = lim
n→∞

n∑
i=1

f
(
2i
n

) (
2
n

)
= lim
n→∞

n∑
i=1

22i/n
(
2
n

)
= lim
n→∞

2 · 41/n

n
· 4− 1

41/n − 1
, by the formula for the sum of a geometric sequence

=
(

lim
n→∞

6 · 41/n
)(

lim
n→∞

1

n
(
41/n − 1

)) = 6 lim
n→∞

1
n

41/n − 1
= 6 lim

x→0

x

4x − 1

= 6 lim
x→0

1

ln 4 · 4x
, by l’Hôpital’s Rule

= 6
ln 4 = 3

ln 2 .
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3.21 Lemma: (Summation Formulas) We have

n∑
i=1

1 = n ,

n∑
i=1

i =
n(n+ 1)

2
,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

n∑
i=1

i3 =
n2(n+ 1)2

4

Proof: These formulas could be proven by induction, but we give a more constructive

proof. It is obvious that
n∑
i=1

1 = 1 + 1 + · · · 1 = n. To find
n∑
i=1

i, consider
n∑
n=1

(
i2− (i−1)2

)
.

On the one hand, we have
n∑
i=1

(
i2 − (i− 1)2

)
= (12 − 02) + (22 − 12) + · · ·+ ((n− 1)2 − (n− 2)2) + (n2 − (n− 1)2)

= −02 + (12 − 12) + (22 − 22) + · · ·+ ((n− 1)2 − (n− 1)2) + n2

= n2

and on the other hand,
n∑
i=1

(
i2 − (i− 1)2

)
=

n∑
i=1

(
i2 − (i2 − 2i+ 1)

)
=

n∑
i=1

(2i− 1) = 2
n∑
i=1

i−
n∑
i=1

1

Equating these gives n2 = 2
n∑
i=1

i−
n∑
i=1

1 and so

2
n∑
i=1

i = n2 +
n∑
i=1

1 = n2 + n = n(n+ 1) ,

as required. Next, to find
∞∑
n=1

i2, consider
∑
i=1

(
i3 − (i− 1)3

)
. On the one hand we have

n∑
i=1

(
i3 − (i− 1)3

)
= (13 − 03) + (23 − 13) + (33 − 23) + · · ·+ (n3 − (n− 1)3)

= −03 + (13 − 13) + (23 − 23) + · · ·+ ((n− 1)3 − (n− 1)3) + n3

= n3

and on the other hand,
n∑
i=1

(
i3 − (i− 1)3

)
=

n∑
i=1

(
i3 − (i3 − 3i2 + 3i− 1)

)
=

n∑
i=1

(3i2 − 3i+ 1) = 3
n∑
i=1

i2 − 3
n∑
i=1

i+
n∑
i=1

1 .

Equating these gives n3 = 3
n∑
i=1

i2 − 3
n∑
i=1

i+
n∑
i=1

1 and so

6
n∑
i=1

i2 = 2n3 + 6
n∑
i=1

i− 2
n∑
i=1

1 = 2n3 + 3n(n+ 1)− 2n = n(n+ 1)(2n+ 1)

as required. Finally, to find
n∑
i=1

i3, consider
n∑
i=1

(
i4 − (i− 1)4

)
. On the one hand we have

n∑
i=1

(
i4 − (i− 1)4

)
= n4 ,

(as above) and on the other hand we have

n∑
i=1

(
i4 − (i− 1)4

)
=

n∑
i=1

(4i3 − 6i2 + 4i− 1) = 4
n∑
i=1

i3 − 6
n∑
i=1

i2 + 4
n∑
i=1

i−
n∑
i=1

1 .
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Equating these gives n4 = 4
n∑
i=1

i3 − 6
n∑
i=1

i2 + 4
n∑
i=1

i−
n∑
i=1

1 and so

4
n∑
i=1

i3 = n4 + 6
n∑
i=1

i2 − 4
n∑
i=1

i+
n∑
i=1

1

= n4 + n(n+ 1)(2n+ 1)− 2n(n+ 1) + n

= n4 + 2n3 + n2 = n2(n+ 1)2 ,

as required.

3.22 Example: Find

∫ 3

1

x+ 2x3 dx.

Solution: Let f(x) = x+ 2x3. Then∫ 3

1

x+ 2x3 dx = lim
n→∞

n∑
i=1

f(xn,i)∆n,ix

= lim
n→∞

n∑
i=1

f
(
1 + 2

n i
) (

2
n

)
= lim
n→∞

n∑
i=1

((
1 + 2

n i
)

+ 2
(
1 + 2

n i
)3) ( 2

n

)
= lim
n→∞

n∑
i=1

(
1 + 2

n i+ 2
(
1 + 6

n i+ 12
n2 i

2 + 8
n3 i

3
)) (

2
n

)
= lim
n→∞

n∑
i=1

(
6
n + 28

n2 i+ 48
n3 i

2 + 32
n4 i

3
)

= lim
n→∞

(
6
n

n∑
i=1

1 + 28
n2

n∑
i=1

i+ 48
n3

n∑
i=1

i2 + 32
n4

n∑
i=1

i3
)

= lim
n→∞

(
6
n · n+ 28

n2 · n(n+1)
2 + 48

n3 · n(n+1)(2n+1)
6 + 32

n4 · n
2(n+1)2

4

)
= 6 + 28

2 + 48·2
6 + 32

4 = 44 .
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Basic Properties of Integrals

3.23 Theorem: (Linearity) Let f and g be integrable on [a, b] and let c ∈ R. Then f + g
and cf are both integrable on [a, b] and∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g

and ∫ b

a

cf = c

∫ b

a

f .

Proof: The proof is left as an exercise.

3.24 Theorem: (Comparison) Let f and g be integrable on [a, b]. If f(x) ≤ g(x) for all
x ∈ [a, b] then ∫ b

a

f ≤
∫ b

a

g .

Proof: The proof is left as an exercise.

3.25 Theorem: (Additivity) Let a < b < c and let f : [a, c]→ R be bounded. Then f is
integrable on [a, c] if and only if f is integrable both on [a, b] and on [b, c], and in this case∫ b

a

f +

∫ c

b

f =

∫ c

a

f .

Proof: Suppose that f is integrable on [a, c]. Choose a partition X of [a, c] such that
U(f,X) − L(f,X) < ε. Say that b ∈ [xi−1, xi] and let Y = {x0, x1, · · · , xi−1, b} and
Z = {b, xi, xi+1, · · · , xn} so that Y and Z are partitions of [a, b] and of [b, c]. Then we
have U(f, Y )−L(f, Y ) ≤ U(f,X ∪ {b})−L(f,X ∪ {b}) ≤ U(f,X)−L(f,X) < ε and also
U(f, Z) − L(f, Z) ≤ U(f,X ∪ {b}) − L(f,X ∪ {b}) ≤ U(f,X) − L(f,X) < ε and so f is
integrable both on [a, b] and on [b, c].

Conversely, suppose that f is integrable both on [a, b] and on [b.c]. Choose a partition
Y of [a, b] so that U(f, Y ) − L(f, Y ) < ε

2 and choose a partition Z of [b, c] such that
U(f, Z) − L(f, Z) < ε

2 . Let X = Y ∪ Z. Then X is a partition of [a, c] and we have
U(f,X)− L(f,X) =

(
U(f, Y ) + U(f, Z)

)
−
(
L(f, Y ) + L(f, Z)

)
< ε.

Now suppose that f is integrable on [a, c] (hence also on [a, b] and on [b, c]) with

I1 =

∫ b

a

f , I2 =

∫ c

b

f and I =

∫ c

a

f . Let ε > 0. Choose δ > 0 so that for all partitions

X1, X2 and X of [a, b], [b, c] and [a, c] respectively with |X1| < δ, |X2| < δ and |X| < δ,
we have |S1 − I1| < ε

3 , |S2 − I2| < ε
3 and |S − I| < ε

3 for all Riemann sums S1, S2 and
S for f on X1, X2 and X respectively. Choose partitions X1 and X2 of [a, b] and [b, c]
with |X1| < δ and |X2| < δ. Choose Riemann sums S1 and S2 for f on X1 and X2. Let
X = X1 ∪X2 and note that |X| < δ and that S = S1 + S2 is a Riemann sum for f on X.
Then we have∣∣I−(I1+I2)

∣∣ =
∣∣(I−S)+(S1−I1)+(S2−I2)

∣∣ ≤ ∣∣I−S|+|S1−I1|+|S2−I2| ≤ ε
3 + ε

3 + ε
3 = ε.

9



3.26 Definition: We define

∫ a

a

f = 0 and for a < b we define

∫ a

b

f = −
∫ b

a

f .

3.27 Note: Using the above definition, the Additivity Theorem extends to the case
that a, b, c ∈ R are not in increasing order: for any a, b, c ∈ R, if f is integrable on[

min{a, b, c},max{a, b, c}
]

then ∫ b

a

f +

∫ c

b

f =

∫ c

a

f .

3.28 Theorem: (Integration and Absolute Value) Let f be integrable on [a, b]. Then |f |
is integrable on [a, b] and ∣∣∣∣∣

∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f | .

Proof: Let ε > 0. Choose a partition X of [a, b] such that U(f,X) − L(f,X) < ε. Write
Mi(f) = sup

{
f(t)

∣∣t ∈ [xi−1, xi]
}

and Mi(|f |) = sup
{
|f(t)|

∣∣t ∈ [xi−1, xi]
}

, and similarly
for mi(f) and mi(|f |).

When 0 ≤ mi(f) ≤ Mi(f) we have Mi(|f |) = Mi(f) and mi(|f |) = mi(f). When
mi(f) ≤ 0 ≤ Mi(f) we have Mi(|f |) = max{Mi(f),−mi(f)} and mi(|f |) ≥ 0, and so
Mi(|f |)−mi(|f |) ≤ max

{
Mi(f),−mi(f)

}
≤Mi(f)−mi(f). When mi(f) ≤Mi(f) ≤ 0 we

have Mi(|f |) = −mi(f) and mi(|f |) = −Mi(f), and so Mi(|f |)−mi(|f |) = Mi(f)−mi(f).
In all three cases we have

Mi(|f |)−mi(|f |) ≤Mi(f)−mi(f)

and so

U(|f |, X)− L(|f |, X) =
n∑
i=1

(
Mi(|f |)−mi(|f |)

)
∆ix ≤

n∑
i=1

(
Mi(f)−mi(f)

)
∆ix

= U(f,X)− L(f,X) < ε .

Thus |f | is integrable on [a, b].
Again, let ε > 0. Choose a partition X on [a, b] and choose values ti ∈ [xi−1, xi] so

that ∣∣∣∣∣
n∑
i=1

f(ti)∆ix−
∫ b

a

f

∣∣∣∣∣ < ε
2 and

∣∣∣∣∣
n∑
i=1

|f(ti)|∆ix−
∫ b

a

|f |

∣∣∣∣∣ < ε
2 .

Note that by the triangle inequality we have
∣∣∣ n∑
i=1

f(ti)∆ix
∣∣∣ ≤ n∑

i=1

|f(ti)|∆ix, and so∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣−
∫ b

a

|f | =

(∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣−
∣∣∣∣∣
n∑
i=1

f(ti)∆ix

∣∣∣∣∣
)

+

(∣∣∣∣∣
n∑
i=1

f(ti)∆ix

∣∣∣∣∣−
n∑
i=1

∣∣f(ti)
∣∣∆ix

)

+

(
n∑
i=1

∣∣f(ti)
∣∣∆ix−

∫ b

a

|f |

)
< ε

2 + 0 + ε
2 = ε

Since

∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣−
∫ b

a

|f | < ε for every ε > 0, we have

∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣−
∫ b

a

|f | ≤ 0, as required.
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The Fundamental Theorem of Calculus

3.29 Notation: For a function F , defined on an interval containing [a, b], we write[
F (x)

]b
a

= F (b)− F (a) .

3.30 Theorem: (The Fundamental Theorem of Calculus)
(1) Let f be integrable on [a, b]. Define F : [a, b]→ R by

F (x) =

∫ x

a

f =

∫ x

a

f(t) dt .

Then F is continuous on [a, b]. Moreover, if f is continuous at a point x ∈ [a, b] then F is
differentiable at x and

F ′(x) = f(x) .

(2) Let f be integrable on [a, b]. Let F be differentiable on [a, b] with F ′ = f . Then∫ b

a

f =
[
F (x)

]b
a

= F (b)− F (a) .

Proof: (1) Let M be an upper bound for |f | on [a, b]. For a ≤ x, y ≤ b we have∣∣F (y)− F (x)
∣∣ =

∣∣∣∣∫ y

a

f −
∫ x

a

f

∣∣∣∣ =

∣∣∣∣∫ y

x

f

∣∣∣∣ ≤ ∣∣∣∣∫ y

x

|f |
∣∣∣∣ ≤ ∣∣∣∣∫ y

x

M

∣∣∣∣ = M |y − x|

so given ε > 0 we can choose δ = ε
M to get

|y − x| < δ =⇒
∣∣F (y)− F (x)

∣∣ ≤M |y − x| < Mδ = ε .

Thus F is continuous (indeed uniformly continuous) on [a, b]. Now suppose that f is
continuous at the point x ∈ [a, b]. Note that for a ≤ x, y ≤ b with x 6= y we have∣∣∣∣F (y)− F (x)

y − x
− f(x)

∣∣∣∣ =

∣∣∣∣∣
∫ y
a
f −

∫ x
a
f

y − x
− f(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫ y
x
f

y − x
−
∫ y
x
f(x)

y − x

∣∣∣∣∣
=

1

|y − x|

∣∣∣∣∫ y

x

(
f(t)− f(x)

)
dt

∣∣∣∣
≤ 1

|y − x|

∣∣∣∣∫ y

x

∣∣f(t)− f(x)
∣∣ dt∣∣∣∣ .

Given ε > 0, since f is continuous at x we can choose δ > 0 so that

|y − x| < δ =⇒
∣∣f(y)− f(x)

∣∣ < ε

and then for 0 < |y − x| < δ we have∣∣∣∣F (y)− F (x)

y − x
− f(x)

∣∣∣∣ ≤ 1

|y − x|

∣∣∣∣∫ y

x

∣∣f(t)− f(x)
∣∣ dt∣∣∣∣

≤ 1

|y − x|

∣∣∣∣∫ y

x

ε dt

∣∣∣∣ =
1

|y − x|
ε|y − x| = ε .

and thus we have F ′(x) = f(x) as required.
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(2) Let f be integrable on [a, b]. Suppose that F is differentiable on [a, b] with F ′ = f . Let
ε > 0 be arbitrary. Choose δ > 0 so that for every partition X of [a, b] with |X| < δ we

have

∣∣∣∣∣
∫ b

a

f −
n∑
i=1

f(ti)∆ix

∣∣∣∣∣ < ε for every choice of sample points ti ∈ [xi−1, xi]. Choose

sample points ti ∈ [xi−1, xi] as in the Mean Value Theorem so that

F ′(ti) =
F (xi)− F (xi−1)

xi − xi−1
,

that is f(ti)∆ix = F (xi)− F (xi−1). Then

∣∣∣∣∣
∫ b

a

f −
n∑
i=1

f(ti)∆ix

∣∣∣∣∣ < ε, and

n∑
i=1

f(ti)∆ix =

n∑
i=1

(
F (xi)− F (xi−1

)
=
(
F (x1)− F (x)

)
+
(
F (x2)− F (x1)

)
+ · · ·+

(
F (n− 1)− F (xn)

)
= −F (x) +

(
F (x1)− F (x1)

)
+ · · ·+

(
F (xn−1)− F (xn−1)

)
+ F (xn)

= F (xn)− F (x) = F (b)− F (a) .

and so

∣∣∣∣∣
∫ b

a

f −
(
F (b)− F (a)

)∣∣∣∣∣ < ε. Since ε was arbitrary,

∣∣∣∣∣
∫ b

a

f −
(
F (b)− F (a)

)∣∣∣∣∣ = 0.

3.31 Definition: A function F such that F ′ = f on an interval is called an antiderivative
of f on the interval.

3.32 Note: If G′ = F ′ = f on an interval, then (G − F )′ = 0, and so G − F is constant
on the interval, that is G = F + c for some constant c.

3.33 Notation: We write∫
f = F + c , or

∫
f(x) dx = F (x) + c

when F is an antiderivative of f on an interval, so that the antiderivatives of f on the
interval are the functions of the form G = F + c for some constant c.

3.34 Example: Find

∫ √3

0

dx

1 + x2
.

Solution: We have

∫
dx

1 + x2
= tan−1 x+ c, since

d

dx
(tan−1 x) =

1

1 + x2
, and so by Part 2

of the Fundamental Theorem of Calculus, we have∫ √3

0

dx

1 + x2
=
[

tan−1 x
]√3

0
= tan−1

√
3− tan−1 0 = π

3 .
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