PMATH 333 Real Analysis, Solutions to Assignment 4

: (a) Let A= {(z,y)€R? ’ 4z%+y* <8z}. Prove, from the definition of an open set, that A is open.

Solution: First we remark that for all (x,y) € R? we have
2
(z,y) €A <= 42 +1y? <81 <= 4(z -1+’ <4 <= (z—-1)’+(¥)3 <1 <= (z,%) € B((1,0),1).

Let (a,b) € A. By the initial remark, we have ( 72) € B((l,O),l). Let r =1— ’(a, %) — (1,0)| and note that
r > 0. Then

(z,9) €B((a,b),r) = (z —a)?*+ (y—b)? <r? = (z—a)?’ + Ly -0 <r?* = (2,%) € B((a,%),7)
= (@) = (L0 < (2. 8) = (&, 3)[ + (@ 3) = (1,O)] <7+ [(a,3) = (1,0)] = 1
= (2,4) € B((1,0),1) = (z,y) € 4,

with the final implication following from the initial remark. Thus B((a, b), r) C A, so A is open.

(b) Let A= {z € ]R@\o < |z| < 1}. Prove, from the definition of a compact set, that A is not compact.

Solution: For each k € Z™ let Uy, be the open set Uy, = E(O, %)c = {:U S R”‘|x| > %} and let S = {Uk}k S Z+}.
Note that |JS = R™\ {0} so S is an open cover of A. Let T be any finite subset of S. If T' = () then
UT =0 so A Z UT. Suppose that T # 0, say T = {Ukl,Ukz,-- Uk,, } with k1 < ky < -+ < kp,. Since
Uk, €U, C -+ C Uy, we have UT =2, Uy, = Uy,, = B(0, 7 T ) and so A € [JT. This shows that the
open cover S has no finite subcover T', and so A is not compact.

n

(¢) For n >1, let s, = > (%)k Prove, from the definition of a limit, that nl;rr;o Sp= 3L,

k=1
Solution: First note that C = R? (when z,y € R, the ordered pair (z,y) € R is equal to the complex number
z = x + iy € C), and the usual norm in C is equal to the usual norm in R?: for z = x + iy = (v,y) we have
2| = /22 + yy* = | (2, y)|. From the formula for the sum of a geometric series, or by noting that

i - ik Rk i iyntl
(-5 =2 (F) -2 () =) -(H)",
k=1 k=2
we have
Lbi)_ (Lgi)ntt Lii)(q_ (1™ (1) (2+4) (1= (LE2)" ) n i i \n
oo = G = BREET) — Connfnlinl) — v (0)7) = 0 - 14 0)
and hence

5

o = B2 = 55 (459 = |5 = SR

It follows that nlLIr;O Sp = % indeed given € > 0, since ? < 1 we can choose m € Z™ so that (?)m < ﬁéo/s’

and then when n > m we have

L42i] _ 0 (2)" < VIO(T)"

3 3 < €.
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2: For sets ) # A, B C R", the distance between A and B is defined to be
d(A,B) =inf {|z —y||z€ A,y B}.
For a point a € R™ and a set ) # B C R", the distance between a and B is defined to be
d(a, B) = d({a}, B) = inf {|a — y| | y€ B}.

a) Find nonempty closed sets A, B C wit N B = ) such that , = 0.
Find losed A, BCR?with ANB =1 h that d(A, B 0

Solution: First we remark that for any non-empt sets A and B, since |[x —y| > 0 for all z € A and y € B, it
follows that d(A, B) = inf {|z—y||z€ A, ye B} > 0. Let A be the z-axis in R?, that is A = {(z,y) eR?*|y=0}
and let B be the graph of y = ﬁ in R?, that is B = {(z,y) eR*|y= ﬁ} Note that A is closed in R?
since A = f~1({0}) where f : R? — R is the continuous map given by f(z,y) = y, and B is closed in R?
since B = g~'({0}) where g : R* — R is the continuous map given by g(z,y) = 175z. We claim that
d(A,B) = 0. Let € > 0. Choose z > 0 such that H% < €. Since (z,0) € A and (m,ﬁlwz) € B, we have
d(A,B) < |(#,0) — (=, ﬁ)’ = Tlmz < e. Since 0 < d(A, B) < € for every € > 0, we have d(A, B) = 0.

(b) Let 0 # A, B C R™ with A compact and B closed and AN B = (. Prove that d(A, B) > 0.

Solution: For each a € A, since B¢ = R™\ B is open, we can choose r, > 0 such that B(a,r,) C B¢. Let
S = {B(a,ra) | ae A} and note that S is an open cover of A. Since A is compact, we can choose a finite
sub-cover T' C S, say T = {B(al,ral, - ',B(CL@,TM)}. Let r = min{r,,, - 77"(1@}7 and note that r > 0. We
claim that d(A,B) > r. Let x € Aand y € B. Sincez € ACUT = Uf;:l B(ag,ra,), we can choose an index
k such that z € B(ag,rq,), so |x — ag| < rq,. Since y € B and B(ag, 214, ) C B¢, we have y ¢ B(ag, 2r,, ), S0
ly — ag| > 2rg, . Thus we have 2r,, < |y —ag| < |y — x|+ |z — ax| < |y — | + rx and hence |x —y| > r,, > 7.
Since |z —y| > r for all z € A and y € B, it follows that d(A, B) = inf {|z —y||2€ A, ye B} > r, as claimed.

(c) Fix a subset ) # B C R™ and define g : R” — R by g(x) = d(z, B). Prove that g(x) is uniformly continuous
on R" by showing that |g(x) - g(y)| < d(z,y) for all z,y € R™.

Solution: Suppose, for a contradiction, that we can choose z,y € R™ with |g(;v) — g(y)‘ > d(z,y) = |z —yl.
Interchanging x and y if necessary, we suppose that g(x) > g(y). Then we have g(x) — g(y) > |x — y| so
that g(z) > g(y) + |# — y|. Let e = g(z) — (g(y) + |z — y|) so that we have g(z) = g(y) + |z — y| + € with
€ > 0. Since g(y) = inf {|y — b|‘b € B}, we can choose b € B so that g(y) < |y — b| < g(y) + e. Then we have
|z — b < |z —yl+|y—b] < |z —y|+g(y) + € = g(x). But since g(z) = inf {|z — b| }bEB} we must have
g(x) < |z —b|, so we have obtained the desired contradiction.



3: For each of the following subsets A C R™, determine whether A is closed, whether A is compact, and whether
A is connected.

(a) A= {(t*—1, *—t)eR?|teR}.

Solution: Note that A = f(R where f : R? — R is given by (z,y) = f(t) = (t*-1, t*~t). Since R is connected
and f is continuous, it follows that A = f(R) is connected.

We claim that A = g=1(0) where g : R? — R is given by g(x,y) = 2® + 22 — y%. Let (x,9) € A, say
(r,y) = (2—1,t3—t). Then 23 + 2% = (t0 =3t + 32 — 1) + (¢* =22+ 1) =5 -2 + 12 = (#3 — 1)2 = 42
so that g(x,y) = 0. This shows that A C g~1(0). Now let (z,y) € g 1(0), so we have y? = 3 + 2. If
x = 0 then y? = 23 + 22 = 0 so that y = 0, and in this case we can choose t = 1 to get t2—1 —O:x and
t3 —t =0 =y so that (z,y) € A. If # # 0 then we can choose ¢ = ¥ togett2—1—z——1— v _x :g—g—x
and t* —t = t(t* —1) = L.z = y so that again (z,y) € A. This shows that g 1(0) C A, and hence A=g10),
as claimed. Since {0} is closed and g is continuous, it follows that A = g=1({0}) is closed.

Finally, we note that A is not compact because A is not bounded: indeed given any M > 0 we can choose
t > 1 such that t* > M+1, and then (z,y) = (t*—1, t*—t) € A with |(z,y)| = |(* =1, £ —¢t)| > *~1 > M.

(b) A= {(0,0)7&(:10, y) € R? ‘ |Re( )| > 1} (where Re(z) denotes the real part of z € C).

m+zy
Solution: For a,b € R with (a,b) # (0,0) we have +1b = a2+b2 SO
|Re(aiib)’ >1 < |a| > a® +b*(a®> + b <aora®+b* < —a)

= (a-D2+<lor(a+i)’+2 <

Thus A = (BUC) \ {(0,0)} where B and C are the closed balls of radius 3 centered at (3,0) and ( — 3,0).

This set A is not closed since (0,0) ¢ A but (0,0) is a limit point of A (indeed for z,, = (1,0) we have z,, € A
and z,, — (0,0)). Since A is not closed, it not compact. Also, A is not connected since it can be separated by
the disjoint open sets U = {(z,y)|z > 0} and V = {(z,y)|z < 0}.

(© A= {@yzw) e R (22)" = (12)}.

. 2 2
Solution: Note that (ffj}) = (Z;i}yj 53:;12”) and hence

(z,y,z,w) € A < (Iy)zz(ig) — (:172+yz:3,xy+yw:2,zz+zw:4andyz+w2:3).

zw

Let (z,y,2,w) € A. Since 2% + yz = 3 = yz + w? we have w? = 22 so that w = £2. We cannot have w = —x

because w = —xr = 2y + yw = zy — yxr = 0 # 2, so we must have w = x. Since w = z, zy + yw = 2
gives 2zy = 2 so that (x # 0and y = %), and zz + zw = 4 gives 2xz = 4 so that (w # 0and z = %
Since w =z # 0 and y = 2 and z = 2, 22 + yz = 3 gives 22 + 5 = 3 so that 2% — 32% + 2 = 0, that is
(22 = 1)(2* — 2) = 0, and hence z = +1 or +v/2 so that (z,y,2 w) = £(1,1,2,1) or £v2(1,3,1,1). This
shows that A C { £ (1,1,2,1),£v2(1,3,1,1)}. Conversely, if (z,y,z,w) = £(1,1,2,1) or £v2(1,3,1,1),
then we have 22 +yz = 3, xy + yw = 2, vz + 2w = 4 and yz + w? = 3 so that (z,y,2z,w) € A. Thus

A={£(1,1,2,1),+v2(1,3,1,1)}.

ORI
Every finite set in R™ is closed (indeed the set {a1, ag, - -, a¢} is the union of the ¢ closed sets {ax}) and every
finite set in R™ is bounded (indeed for every x € {a1,as,---,as} we have || < M = max{|a1|, |az|,---,|ae|}),
and so A is closed and bounded, hence compact in R*. On the other hand, A4 is not connected because, for
example, the open sets U = {(z,y,z,w) €R* | <0} and V = {(z,y, z,w) ER* | 2>0} separate A in R*.



4: (a) Prove that if the sets A, B C R™ are connected and AN B # (), then A U B is connected.

Solution: Suppose that A and B are connected in R™ and that AN B # (. Choose ¢ € AN B. Suppose, for
a contradiction, that A U B is disconnected. Choose open sets U and V' in R™ which separate AU B (that is,
UN(AUB)#0,VN(AUB)#0,UUV =0,and AUBCUUV). Sincec€ ANBC AUB CUUYV, either
c € U or c € V. By interchanging U and V if necessary, we can suppose that ¢ € U. Note that since ¢ € A
and ¢ € U and A is connected, it follows that A C U because if we had A € U then (since A C U UV) we
would have ANV # (), and then U and V would separate A (sincecec UNAsoUNA#Q, and UNV =0,
and AC AUB CUUYV). Similarly, since ¢ € B and ¢ € U and B is connected, it follows that B C U. Since
ACUand BCU, we have AUB CU. Since AUB CU and UNV =0, we must have VN (AU B) =0,
which contradicts the fact that U and V separate A U B.

(b) Let A be the set of all (a,b, ¢, d) € R* such that the polynomial f(z) = z* + ax® + bz? + cx + d has at least
one repeated real root, and all of its (real or complex) roots lie in the closed unit ball |z| < 1. Prove that A
is compact and connected.

Solution: A monic quartic polynomial with only real roots, at least one of which is repeated, is of the form
fx)=(z—7)(x —s)(x—1)? = (2% = (r+ s)z +rs)(z? — 2tz +t?)
=2t — (2t + (r+s))a® + (2 +2(r + s)t + rs)x® — ((r + s)t> + 2rst)x + rst?
and a monic quartic polynomial with one repeated real root and a pair of conjugate complex roots is of the
form fx)=(z— (r+is))(z— (r—is))(x—1)* = (2 = 2rw + (r* + s%))(2? — 2tz + %)
=zt — (2t +2r)2® + (P +art + (r2 + 52)a® — (2rt2 + (12 + D))z + (12 + 52)t2).

Thus we have A = F(C)UG(D) where F : C CR3 - R* and G : D C R? — R* given by

(a,b,e,d) = F(r,s,t) = (2t + (r+s), 2 +2(r + s)t +rs, (r+ s)t> + 2rst, rst?),

(a,b,e,d) = G(r,s,t) = (— (2t +2r), (F +4rt + (r* + 5%)), —(2rt*> + (r* + $*)t), (r* + s°)t%),

where C = {(r,s,t) €R®|r,s,t€[-1,1]} and D = {(r,s,t) eR? | r?4+5* <1, t€[-1,1]}. The set C is closed
because C' = fl_l([fl, 1]) N f;l([fl,l]) N fi;l([fl, 1]) where fi(r,s,t) =7, fa(r,s,t) = s and f3(r,s,t) = ¢,
and C is bounded because (r,s,t) € C = r,s,t € [-1,1] = ’(7‘7571&)’ =V +2+2<I+1+1=+3.
The set D is closed because D = g7 ([0,1]) Ng5 " ([—1,1]) where g1 (r, s,t) = r*+s? and g2(r, s,t) = ¢, and D is
bounded because (r,s,t) € D = (7"2 +s?<landte[-1, 1]) = |(r,s,t)| =Vr24+s24+2</1+1=2.
Since C' and D are closed and bounded, hence compact, and since F' and G are continuous, it follows that
F(C) and G(D) are compact, hence closed and bounded. Since F(C) and G(D) are closed, A = F(C)UG(D)
is closed. Since F'(C) and F(D) are bounded, it follows that A = F(C) U F(D) is bounded: indeed, if
F(C) € B(0,R) and G(D) C B(0,S5) then F(C)UG(D) C B(0,T) where T = max(R, S). Since A is closed
and bounded, it is compact.

We would also like to show that f(C) and f(D) are connected. To do this, let us first claim that if
E C R™ and FF C R™ are convex then £ x FF C R"™ is convex. Suppose E and F are convex. Let
a,c € E and b,d € F so that (a,b),(c,d) € E x F. Let (x,y) be on the line segment from (a,b) to (c,d),
say (z,y) = (a,b) + t((¢,d) — (a,b)) where 0 < ¢t < 1. Then we have © = a + t(c — a) € [a,¢] C E and
y=b+(d—10) € [b,b C F so that (z,y) € E x F. Thus E x F is convex, as claimed.

Since the sets [—1,1] and B((0,0), 1) are convex, it follows from the claim that [—1,1] x [~1, 1] is convex,
hence that C' = [~1,1] x [-1,1] x [~1, 1] is convex, and also that D = B((0,0),1) x [~1,1] is convex. Since C
and D are convex, hence connected, and since F' and G are continuous, the sets F'(C) and G(D) are connected.
Since F'(C') and F(D) are connected and since 0 = (0,0,0,0) = F(0,0,0) = G(0,0,0) so that 0 € F(C)NG(D),
it follows from Part (a) that A = F(C') U G(D) is connected.




