PMATH 333 Real Analysis, Solutions to Assignment 4

1: (a) Let $A=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 x^{2}+y^{2}<8 x\right\}$. Prove, from the definition of an open set, that A is open.
Solution: First we remark that for all $(x, y) \in \mathbb{R}^{2}$ we have

$$
(x, y) \in A \Longleftrightarrow 4 x^{2}+y^{2}<8 x \Longleftrightarrow 4(x-1)^{2}+y^{2}<4 \Longleftrightarrow(x-1)^{2}+\left(\frac{y}{2}\right)^{2} 3<1 \Longleftrightarrow\left(x, \frac{y}{2}\right) \in B((1,0), 1)
$$

Let $(a, b) \in A$. By the initial remark, we have $\left(a, \frac{b}{2}\right) \in B((1,0), 1)$. Let $r=1-\left|\left(a, \frac{b}{2}\right)-(1,0)\right|$ and note that $r>0$. Then

$$
\begin{aligned}
(x, y) \in & B((a, b), r) \Longrightarrow(x-a)^{2}+(y-b)^{2}<r^{2} \Longrightarrow(x-a)^{2}+\frac{1}{4}(y-b)^{2}<r^{2} \Longrightarrow\left(x, \frac{y}{2}\right) \in B\left(\left(a, \frac{b}{2}\right), r\right) \\
& \Longrightarrow\left|\left(x, \frac{y}{2}\right)-(1,0)\right| \leq\left|\left(x, \frac{y}{2}\right)-\left(a, \frac{b}{2}\right)\right|+\left|\left(a, \frac{b}{2}\right)-(1,0)\right|<r+\left|\left(a, \frac{b}{2}\right)-(1,0)\right|=1 \\
& \Longrightarrow\left(x, \frac{y}{2}\right) \in B((1,0), 1) \Longrightarrow(x, y) \in A
\end{aligned}
$$

with the final implication following from the initial remark. Thus $B((a, b), r) \subseteq A$, so A is open.
(b) Let $A=\left\{x \in \mathbb{R}^{2}|0<|x| \leq 1\}\right.$. Prove, from the definition of a compact set, that A is not compact.

Solution: For each $k \in \mathbb{Z}^{+}$let U_{k} be the open set $U_{k}=\bar{B}\left(0, \frac{1}{k}\right)^{c}=\left\{x \in \mathbb{R}^{n}| | x \left\lvert\,>\frac{1}{k}\right.\right\}$ and let $S=\left\{U_{k} \mid k \in \mathbb{Z}^{+}\right\}$. Note that $\bigcup S=\mathbb{R}^{n} \backslash\{0\}$ so S is an open cover of A. Let T be any finite subset of S. If $T=\emptyset$ then $\bigcup T=\emptyset$ so $A \nsubseteq \bigcup T$. Suppose that $T \neq \emptyset$, say $T=\left\{U_{k_{1}}, U_{k_{2}}, \cdots, U_{k_{m}}\right\}$ with $k_{1}<k_{2}<\cdots<k_{m}$. Since $U_{k_{1}} \subseteq U_{k_{2}} \subseteq \cdots \subseteq U_{k_{m}}$ we have $\bigcup T=\bigcup_{i=1}^{m} U_{k_{i}}=U_{k_{m}}=\bar{B}\left(0, \frac{1}{k_{m}}\right)^{c}$ and so $A \nsubseteq \bigcup T$. This shows that the open cover S has no finite subcover T, and so A is not compact.
(c) For $n \geq 1$, let $s_{n}=\sum_{k=1}^{n}\left(\frac{1+i}{3}\right)^{k}$. Prove, from the definition of a limit, that $\lim _{n \rightarrow \infty} s_{n}=\frac{1+3 i}{5}$.

Solution: First note that $\mathbb{C}=\mathbb{R}^{2}$ (when $x, y \in \mathbb{R}$, the ordered pair $(x, y) \in \mathbb{R}$ is equal to the complex number $z=x+i y \in \mathbb{C}$), and the usual norm in \mathbb{C} is equal to the usual norm in \mathbb{R}^{2} : for $z=x+i y=(x, y)$ we have $|z|=\sqrt{x^{2}+y y^{2}}=|(x, y)|$. From the formula for the sum of a geometric series, or by noting that

$$
s_{n}\left(1-\frac{1+i}{3}\right)=\sum_{k=1}^{n}\left(\frac{1+i}{3}\right)^{k}-\sum_{k=2}^{n+1}\left(\frac{1+i}{3}\right)^{k}=\left(\frac{1+i}{3}\right)-\left(\frac{1+i}{3}\right)^{n+1}
$$

we have

$$
s_{n}=\frac{\left(\frac{1+i}{3}\right)-\left(\frac{1+i}{3}\right)^{n+1}}{1-\frac{1+i}{3}}=\frac{\left(\frac{1+i}{3}\right)\left(1-\left(\frac{1+i}{3}\right)^{n}\right)}{\frac{2-i}{3}}=\frac{(1+i)(2+i)\left(1-\left(\frac{1+i}{3}\right)^{n}\right)}{(2-i)(2+i)}=\frac{1+3 i}{5}\left(1-\left(\frac{1+i}{3}\right)^{n}\right)=\frac{1+3 i}{5}-\frac{1+3 i}{5}\left(\frac{1+i}{3}\right)^{n}
$$

and hence

$$
\left|s_{n}-\frac{1+3 i}{5}\right|=\left|\frac{1+3 i}{5}\left(\frac{1+i}{3}\right)^{n}\right|=\left|\frac{1+3 i}{5}\right|\left|\frac{1+i}{3}\right|^{n}=\frac{\sqrt{10}}{5}\left(\frac{\sqrt{2}}{3}\right)^{n}
$$

It follows that $\lim _{n \rightarrow \infty} s_{n}=\frac{1+3 i}{5}$: indeed given $\epsilon>0$, since $\frac{\sqrt{2}}{3}<1$ we can choose $m \in \mathbb{Z}^{+}$so that $\left(\frac{\sqrt{2}}{3}\right)^{m}<\frac{\epsilon}{\sqrt{10} / 5}$, and then when $n \geq m$ we have

$$
\left|s_{n}-\frac{1+3 i}{5}\right|=\frac{\sqrt{10}}{5}\left(\frac{\sqrt{2}}{3}\right)^{n} \leq \frac{\sqrt{10}}{5}\left(\frac{\sqrt{3}}{2}\right)^{m}<\epsilon
$$

2: For sets $\emptyset \neq A, B \subseteq \mathbb{R}^{n}$, the distance between A and B is defined to be

$$
d(A, B)=\inf \{|x-y| \mid x \in A, y \in B\}
$$

For a point $a \in \mathbb{R}^{n}$ and a set $\emptyset \neq B \subseteq \mathbb{R}^{n}$, the distance between a and B is defined to be

$$
d(a, B)=d(\{a\}, B)=\inf \{|a-y| \mid y \in B\}
$$

(a) Find nonempty closed sets $A, B \subseteq \mathbb{R}^{2}$ with $A \cap B=\emptyset$ such that $d(A, B)=0$.

Solution: First we remark that for any non-empt sets A and B, since $|x-y| \geq 0$ for all $x \in A$ and $y \in B$, it follows that $d(A, B)=\inf \{|x-y| \mid x \in A, y \in B\} \geq 0$. Let A be the x-axis in \mathbb{R}^{2}, that is $A=\left\{(x, y) \in \mathbb{R}^{2} \mid y=0\right\}$ and let B be the graph of $y=\frac{1}{1+x^{2}}$ in \mathbb{R}^{2}, that is $B=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, y=\frac{1}{1+x^{2}}\right.\right\}$. Note that A is closed in \mathbb{R}^{2} since $A=f^{-1}(\{0\})$ where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the continuous map given by $f(x, y)=y$, and B is closed in \mathbb{R}^{2} since $B=g^{-1}(\{0\})$ where $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is the continuous map given by $g(x, y)=\frac{1}{1+x^{2}}$. We claim that $d(A, B)=0$. Let $\epsilon>0$. Choose $x>0$ such that $\frac{1}{1+x^{2}}<\epsilon$. Since $(x, 0) \in A$ and $\left(x, \frac{1}{1+x^{2}}\right) \in B$, we have $d(A, B) \leq\left|(x, 0)-\left(x, \frac{1}{1+x^{2}}\right)\right|=\frac{1}{1+x^{2}}<\epsilon$. Since $0 \leq d(A, B)<\epsilon$ for every $\epsilon>0$, we have $d(A, B)=0$.
(b) Let $\emptyset \neq A, B \subseteq \mathbb{R}^{n}$ with A compact and B closed and $A \cap B=\emptyset$. Prove that $d(A, B)>0$.

Solution: For each $a \in A$, since $B^{c}=\mathbb{R}^{n} \backslash B$ is open, we can choose $r_{a}>0$ such that $B\left(a, r_{a}\right) \subseteq B^{c}$. Let $S=\left\{B\left(a, r_{a}\right) \mid a \in A\right\}$ and note that S is an open cover of A. Since A is compact, we can choose a finite sub-cover $T \subseteq S$, say $T=\left\{B\left(a_{1}, r_{a_{1}}, \cdots, B\left(a_{\ell}, r_{a_{\ell}}\right)\right\}\right.$. Let $r=\min \left\{r_{a_{1}}, \cdots, r_{a_{\ell}}\right\}$, and note that $r>0$. We claim that $d(A, B) \geq r$. Let $x \in A$ and $y \in B$. Since $x \in A \subseteq \bigcup T=\bigcup_{k=1}^{\ell} B\left(a_{k}, r_{a_{k}}\right)$, we can choose an index k such that $x \in B\left(a_{k}, r_{a_{k}}\right)$, so $\left|x-a_{k}\right|<r_{a_{k}}$. Since $y \in B$ and $B\left(a_{k}, 2 r_{a_{k}}\right) \subseteq B^{c}$, we have $y \notin B\left(a_{k}, 2 r_{a_{k}}\right)$, so $\left|y-a_{k}\right| \geq 2 r_{a_{k}}$. Thus we have $2 r_{a_{k}} \leq\left|y-a_{k}\right| \leq|y-x|+\left|x-a_{k}\right|<|y-x|+r_{k}$ and hence $|x-y|>r_{a_{k}} \geq r$. Since $|x-y|>r$ for all $x \in A$ and $y \in B$, it follows that $d(A, B)=\inf \{|x-y| \mid x \in A, y \in B\} \geq r$, as claimed.
(c) Fix a subset $\emptyset \neq B \subseteq \mathbb{R}^{n}$ and define $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $g(x)=d(x, B)$. Prove that $g(x)$ is uniformly continuous on \mathbb{R}^{n} by showing that $|g(x)-g(y)| \leq d(x, y)$ for all $x, y \in \mathbb{R}^{n}$.
Solution: Suppose, for a contradiction, that we can choose $x, y \in \mathbb{R}^{n}$ with $|g(x)-g(y)|>d(x, y)=|x-y|$. Interchanging x and y if necessary, we suppose that $g(x) \geq g(y)$. Then we have $g(x)-g(y)>|x-y|$ so that $g(x)>g(y)+|x-y|$. Let $\epsilon=g(x)-(g(y)+|x-y|)$ so that we have $g(x)=g(y)+|x-y|+\epsilon$ with $\epsilon>0$. Since $g(y)=\inf \{|y-b| \mid b \in B\}$, we can choose $b \in B$ so that $g(y) \leq|y-b|<g(y)+\epsilon$. Then we have $|x-b| \leq|x-y|+|y-b|<|x-y|+g(y)+\epsilon=g(x)$. But since $g(x)=\inf \{|x-b| \mid b \in B\}$ we must have $g(x) \leq|x-b|$, so we have obtained the desired contradiction.

3: For each of the following subsets $A \subseteq \mathbb{R}^{n}$, determine whether A is closed, whether A is compact, and whether A is connected.
(a) $A=\left\{\left(t^{2}-1, t^{3}-t\right) \in \mathbb{R}^{2} \mid t \in \mathbb{R}\right\}$.

Solution: Note that $A=f\left(\mathbb{R}\right.$ where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $(x, y)=f(t)=\left(t^{2}-1, t^{3}-t\right)$. Since \mathbb{R} is connected and f is continuous, it follows that $A=f(\mathbb{R})$ is connected.

We claim that $A=g^{-1}(0)$ where $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $g(x, y)=x^{3}+x^{2}-y^{2}$. Let $(x, y) \in A$, say $(x, y)=\left(t^{2}-1, t^{3}-t\right)$. Then $x^{3}+x^{2}=\left(t^{6}-3 t^{4}+3 t^{2}-1\right)+\left(t^{4}-2 t^{2}+1\right)=t^{6}-2 t^{4}+t^{2}=\left(t^{3}-t\right)^{2}=y^{2}$ so that $g(x, y)=0$. This shows that $A \subseteq g^{-1}(0)$. Now let $(x, y) \in g^{-1}(0)$, so we have $y^{2}=x^{3}+x^{2}$. If $x=0$ then $y^{2}=x^{3}+x^{2}=0$ so that $y=0$, and in this case we can choose $t=1$ to get $t^{2}-1=0=x$ and $t^{3}-t=0=y$ so that $(x, y) \in A$. If $x \neq 0$ then we can choose $t=\frac{y}{x}$ to get $t^{2}-1=\frac{y^{2}}{x^{2}}-1=\frac{y^{2}-x^{2}}{x^{2}}=\frac{x^{3}}{x^{2}}=x$ and $t^{3}-t=t\left(t^{2}-1\right)=\frac{y}{x} \cdot x=y$ so that again $(x, y) \in A$. This shows that $g^{-1}(0) \subseteq A$, and hence $A=g^{-1}(0)$, as claimed. Since $\{0\}$ is closed and g is continuous, it follows that $A=g^{-1}(\{0\})$ is closed.

Finally, we note that A is not compact because A is not bounded: indeed given any $M \geq 0$ we can choose $t \geq 1$ such that $t^{2}>M+1$, and then $(x, y)=\left(t^{2}-1, t^{3}-t\right) \in A$ with $|(x, y)|=\left|\left(t^{2}-1, t^{3}-t\right)\right| \geq t^{2}-1>M$.
(b) $A=\left\{\left.(0,0) \neq(x, y) \in \mathbb{R}^{2}| | \operatorname{Re}\left(\frac{1}{x+i y}\right) \right\rvert\, \geq 1\right\}$ (where $\operatorname{Re}(z)$ denotes the real part of $z \in \mathbb{C}$).

Solution: For $a, b \in \mathbb{R}$ with $(a, b) \neq(0,0)$ we have $\frac{1}{a+i b}=\frac{a-i b}{a^{2}+b^{2}}$ so

$$
\begin{aligned}
\left|\operatorname{Re}\left(\frac{1}{a+i b}\right)\right| \geq 1 & \Longleftrightarrow|a| \geq a^{2}+b^{2}\left(a^{2}+b^{2} \leq a \text { or } a^{2}+b^{2} \leq-a\right) \\
& \Longleftrightarrow\left(a-\frac{1}{2}\right)^{2}+b^{2} \leq \frac{1}{4} \text { or }\left(a+\frac{1}{2}\right)^{2}+b^{2} \leq \frac{1}{4} .
\end{aligned}
$$

Thus $A=(B \cup C) \backslash\{(0,0)\}$ where B and C are the closed balls of radius $\frac{1}{2}$ centered at $\left(\frac{1}{2}, 0\right)$ and $\left(-\frac{1}{2}, 0\right)$. This set A is not closed since $(0,0) \notin A$ but $(0,0)$ is a limit point of A (indeed for $x_{n}=\left(\frac{1}{n}, 0\right)$ we have $x_{n} \in A$ and $\left.x_{n} \rightarrow(0,0)\right)$. Since A is not closed, it not compact. Also, A is not connected since it can be separated by the disjoint open sets $U=\{(x, y) \mid x>0\}$ and $V=\{(x, y) \mid x<0\}$.
(c) $A=\left\{(x, y, z, w) \in \mathbb{R}^{4} \left\lvert\,\left(\begin{array}{ll}x & y \\ z & w\end{array}\right)^{2}=\left(\begin{array}{ll}3 & 2 \\ 4 & 3\end{array}\right)\right.\right\}$.

Solution: Note that $\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)^{2}=\left(\begin{array}{cc}x^{2}+y y z & x y+z w \\ x z+y w & y z+w^{2}\end{array}\right)$ and hence

$$
(x, y, z, w) \in A \Longleftrightarrow\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)^{2}=\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right) \Longleftrightarrow\left(x^{2}+y z=3, x y+y w=2, x z+z w=4 \text { and } y z+w^{2}=3\right) .
$$

Let $(x, y, z, w) \in A$. Since $x^{2}+y z=3=y z+w^{2}$ we have $w^{2}=x^{2}$ so that $w= \pm x$. We cannot have $w=-x$ because $w=-x \Longrightarrow x y+y w=x y-y x=0 \neq 2$, so we must have $w=x$. Since $w=x, x y+y w=2$ gives $2 x y=2$ so that $\left(x \neq 0\right.$ and $\left.y=\frac{1}{x}\right)$, and $x z+z w=4$ gives $2 x z=4$ so that $\left(x \neq 0\right.$ and $z=\frac{2}{x}$. Since $w=x \neq 0$ and $y=\frac{1}{x}$ and $z=\frac{2}{x}, x^{2}+y z=3$ gives $x^{2}+\frac{2}{x^{2}}=3$ so that $x^{4}-3 x^{2}+2=0$, that is $\left(x^{2}-1\right)\left(x^{2}-2\right)=0$, and hence $x= \pm 1$ or $\pm \sqrt{2}$ so that $(x, y, z, w)= \pm(1,1,2,1)$ or $\pm \sqrt{2}\left(1, \frac{1}{2}, 1,1\right)$. This shows that $A \subseteq\left\{ \pm(1,1,2,1), \pm \sqrt{2}\left(1, \frac{1}{2}, 1,1\right)\right\}$. Conversely, if $(x, y, z, w)= \pm(1,1,2,1)$ or $\pm \sqrt{2}\left(1, \frac{1}{2}, 1,1\right)$, then we have $x^{2}+y z=3, x y+y w=2, x z+x w=4$ and $y z+w^{2}=3$ so that $(x, y, z, w) \in A$. Thus

$$
A=\left\{ \pm(1,1,2,1), \pm \sqrt{2}\left(1, \frac{1}{2}, 1,1\right)\right\}
$$

Every finite set in \mathbb{R}^{n} is closed (indeed the set $\left\{a_{1}, a_{2}, \cdots, a_{\ell}\right\}$ is the union of the ℓ closed sets $\left\{a_{k}\right\}$) and every finite set in \mathbb{R}^{n} is bounded (indeed for every $x \in\left\{a_{1}, a_{2}, \cdots, a_{\ell}\right\}$ we have $|x| \leq M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \cdots,\left|a_{\ell}\right|\right\}$), and so A is closed and bounded, hence compact in \mathbb{R}^{4}. On the other hand, A is not connected because, for example, the open sets $U=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x<0\right\}$ and $V=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x>0\right\}$ separate A in \mathbb{R}^{4}.

4: (a) Prove that if the sets $A, B \subseteq \mathbb{R}^{n}$ are connected and $A \cap B \neq \emptyset$, then $A \cup B$ is connected.
Solution: Suppose that A and B are connected in \mathbb{R}^{n} and that $A \cap B \neq \emptyset$. Choose $c \in A \cap B$. Suppose, for a contradiction, that $A \cup B$ is disconnected. Choose open sets U and V in \mathbb{R}^{n} which separate $A \cup B$ (that is, $U \cap(A \cup B) \neq \emptyset, V \cap(A \cup B) \neq \emptyset, U \cup V=\emptyset$, and $A \cup B \subseteq U \cup V)$. Since $c \in A \cap B \subseteq A \cup B \subseteq U \cup V$, either $c \in U$ or $c \in V$. By interchanging U and V if necessary, we can suppose that $c \in U$. Note that since $c \in A$ and $c \in U$ and A is connected, it follows that $A \subseteq U$ because if we had $A \nsubseteq U$ then (since $A \subseteq U \cup V$) we would have $A \cap V \neq \emptyset$, and then U and V would separate A (since $c \in U \cap A$ so $U \cap A \neq \emptyset$, and $U \cap V=\emptyset$, and $A \subseteq A \cup B \subseteq U \cup V)$. Similarly, since $c \in B$ and $c \in U$ and B is connected, it follows that $B \subseteq U$. Since $A \subseteq U$ and $B \subseteq U$, we have $A \cup B \subseteq U$. Since $A \cup B \subseteq U$ and $U \cap V=\emptyset$, we must have $V \cap(A \cup B)=\emptyset$, which contradicts the fact that U and V separate $A \cup B$.
(b) Let A be the set of all $(a, b, c, d) \in \mathbb{R}^{4}$ such that the polynomial $f(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ has at least one repeated real root, and all of its (real or complex) roots lie in the closed unit ball $|z| \leq 1$. Prove that A is compact and connected.
Solution: A monic quartic polynomial with only real roots, at least one of which is repeated, is of the form

$$
\begin{aligned}
f(x) & =(x-r)(x-s)(x-t)^{2}=\left(x^{2}-(r+s) x+r s\right)\left(x^{2}-2 t x+t^{2}\right) \\
& =x^{4}-(2 t+(r+s)) x^{3}+\left(t^{2}+2(r+s) t+r s\right) x^{2}-\left((r+s) t^{2}+2 r s t\right) x+r s t^{2}
\end{aligned}
$$

and a monic quartic polynomial with one repeated real root and a pair of conjugate complex roots is of the form

$$
\begin{aligned}
f(x) & =(x-(r+i s))(x-(r-i s))(x-t)^{2}=\left(x^{2}-2 r x+\left(r^{2}+s^{2}\right)\right)\left(x^{2}-2 t x+t^{2}\right) \\
& \left.=x^{4}-(2 t+2 r) x^{3}+\left(t^{2}+4 r t+\left(r^{2}+s^{2}\right)\right) x^{2}-\left(2 r t^{2}+\left(r^{2}+s^{2}\right) t\right) x+\left(r^{2}+s^{2}\right) t^{2}\right) .
\end{aligned}
$$

Thus we have $A=F(C) \cup G(D)$ where $F: C \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ and $G: D \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ given by

$$
\begin{aligned}
& (a, b, c, d)=F(r, s, t)=\left(2 t+(r+s), t^{2}+2(r+s) t+r s,(r+s) t^{2}+2 r s t, r s t^{2}\right) \\
& (a, b, c, d)=G(r, s, t)=\left(-(2 t+2 r),\left(t^{2}+4 r t+\left(r^{2}+s^{2}\right)\right),-\left(2 r t^{2}+\left(r^{2}+s^{2}\right) t\right),\left(r^{2}+s^{2}\right) t^{2}\right)
\end{aligned}
$$

where $C=\left\{(r, s, t) \in \mathbb{R}^{3} \mid r, s, t \in[-1,1]\right\}$ and $D=\left\{(r, s, t) \in \mathbb{R}^{3} \mid r^{2}+s^{2} \leq 1, t \in[-1,1]\right\}$. The set C is closed because $C=f_{1}^{-1}([-1,1]) \cap f_{2}^{-1}([-1,1]) \cap f_{3}^{-1}([-1,1])$ where $f_{1}(r, s, t)=r, f_{2}(r, s, t)=s$ and $f_{3}(r, s, t)=t$, and C is bounded because $(r, s, t) \in C \Longrightarrow r, s, t \in[-1,1] \Longrightarrow|(r, s, t)|=\sqrt{r^{2}+s^{2}+t^{2}} \leq \sqrt{1+1+1}=\sqrt{3}$. The set D is closed because $D=g_{1}^{-1}([0,1]) \cap g_{2}^{-1}([-1,1])$ where $g_{1}(r, s, t)=r^{2}+s^{2}$ and $g_{2}(r, s, t)=t$, and D is bounded because $(r, s, t) \in D \Longrightarrow\left(r^{2}+s^{2} \leq 1\right.$ and $\left.t \in[-1,1]\right) \Longrightarrow|(r, s, t)|=\sqrt{r^{2}+s^{2}+t^{2}} \leq \sqrt{1+1}=\sqrt{2}$. Since C and D are closed and bounded, hence compact, and since F and G are continuous, it follows that $F(C)$ and $G(D)$ are compact, hence closed and bounded. Since $F(C)$ and $G(D)$ are closed, $A=F(C) \cup G(D)$ is closed. Since $F(C)$ and $F(D)$ are bounded, it follows that $A=F(C) \cup F(D)$ is bounded: indeed, if $F(C) \subseteq B(0, R)$ and $G(D) \subseteq B(0, S)$ then $F(C) \cup G(D) \subseteq B(0, T)$ where $T=\max (R, S)$. Since A is closed and bounded, it is compact.

We would also like to show that $f(C)$ and $f(D)$ are connected. To do this, let us first claim that if $E \subseteq \mathbb{R}^{n}$ and $F \subseteq \mathbb{R}^{m}$ are convex then $E \times F \subseteq \mathbb{R}^{n+m}$ is convex. Suppose E and F are convex. Let $a, c \in E$ and $b, d \in F$ so that $(a, b),(c, d) \in E \times F$. Let (x, y) be on the line segment from (a, b) to (c, d), say $(x, y)=(a, b)+t((c, d)-(a, b))$ where $0 \leq t \leq 1$. Then we have $x=a+t(c-a) \in[a, c] \subseteq E$ and $y=b+(d-b) \in[b, b] \subseteq F$ so that $(x, y) \in E \times F$. Thus $E \times F$ is convex, as claimed.

Since the sets $[-1,1]$ and $\bar{B}((0,0), 1)$ are convex, it follows from the claim that $[-1,1] \times[-1,1]$ is convex, hence that $C=[-1,1] \times[-1,1] \times[-1,1]$ is convex, and also that $D=\bar{B}((0,0), 1) \times[-1,1]$ is convex. Since C and D are convex, hence connected, and since F and G are continuous, the sets $F(C)$ and $G(D)$ are connected. Since $F(C)$ and $F(D)$ are connected and since $0=(0,0,0,0)=F(0,0,0)=G(0,0,0)$ so that $0 \in F(C) \cap G(D)$, it follows from Part (a) that $A=F(C) \cup G(D)$ is connected.

