
PMATH 333 Real Analysis, Solutions to Assignment 4

1: (a) Let A =
{

(x, y)∈R2
∣∣ 4x2+y2<8x

}
. Prove, from the definition of an open set, that A is open.

Solution: First we remark that for all (x, y) ∈ R2 we have

(x, y) ∈ A ⇐⇒ 4x2 + y2 < 8x ⇐⇒ 4(x− 1)2 + y2 < 4 ⇐⇒ (x− 1)2 +
(
y
2

)2
3 < 1 ⇐⇒

(
x, y2

)
∈ B

(
(1, 0), 1

)
.

Let (a, b) ∈ A. By the initial remark, we have
(
a, b2

)
∈ B

(
(1, 0), 1

)
. Let r = 1−

∣∣(a, b2)− (1, 0)
∣∣ and note that

r > 0. Then

(x, y) ∈B
(
(a, b), r

)
=⇒ (x− a)2 + (y − b)2 < r2 =⇒ (x− a)2 + 1

4 (y − b)2 < r2 =⇒
(
x, y2

)
∈ B

((
a, b2

)
, r
)

=⇒
∣∣(x, y2)− (1, 0)

∣∣ ≤ ∣∣(x, y2)− (a, b2)∣∣+
∣∣(a, b2)− (1, 0)

∣∣ < r +
∣∣(a, b2 )− (1, 0)

∣∣ = 1

=⇒ (x, y2 ) ∈ B
(
(1, 0), 1

)
=⇒ (x, y) ∈ A,

with the final implication following from the initial remark. Thus B
(
(a, b), r

)
⊆ A, so A is open.

(b) Let A =
{
x ∈ R2

∣∣0 < |x| ≤ 1
}

. Prove, from the definition of a compact set, that A is not compact.

Solution: For each k ∈ Z+ let Uk be the open set Uk = B
(
0, 1k

)c
=
{
x ∈ Rn

∣∣|x| > 1
k

}
and let S =

{
Uk

∣∣k ∈ Z+
}

.
Note that

⋃
S = Rn \ {0} so S is an open cover of A. Let T be any finite subset of S. If T = ∅ then⋃

T = ∅ so A 6⊆
⋃
T . Suppose that T 6= ∅, say T =

{
Uk1

, Uk2
, · · · , Ukm

}
with k1 < k2 < · · · < km. Since

Uk1 ⊆ Uk2 ⊆ · · · ⊆ Ukm we have
⋃
T =

⋃m
i=1 Uki = Ukm = B

(
0, 1

km

)c
and so A 6⊆

⋃
T . This shows that the

open cover S has no finite subcover T , and so A is not compact.

(c) For n ≥1, let sn =
n∑

k=1

(
1+i
3

)k
. Prove, from the definition of a limit, that lim

n→∞
sn = 1+3 i

5 .

Solution: First note that C = R2 (when x, y ∈ R, the ordered pair (x, y) ∈ R is equal to the complex number
z = x + iy ∈ C), and the usual norm in C is equal to the usual norm in R2: for z = x + iy = (x, y) we have

|z| =
√
x2 + yy2 =

∣∣(x, y)
∣∣. From the formula for the sum of a geometric series, or by noting that

sn
(
1− 1+i

3

)
=

n∑
k=1

(
1+i
3

)k − n+1∑
k=2

(
1+i
3

)k
=
(
1+i
3

)
−
(
1+i
3

)n+1
,

we have

sn =
( 1+i

3 )−( 1+i
3 )

n+1

1− 1+i
3

=
( 1+i

3 )(1−( 1+i
3 )

n
)

2−i
3

=
(1+i)(2+i)(1−( 1+i

3 )
n
)

(2−i)(2+i)
= 1+3i

5

(
1−

(
1+i
3

)n)
= 1+3i

5 − 1+3i
5

(
1+i
3

)n
and hence ∣∣sn − 1+3i

5

∣∣ =
∣∣ 1+3i

5

(
1+i
3

)n∣∣ =
∣∣ 1+3i

5

∣∣ ∣∣ 1+i
3

∣∣n =
√
10
5

(√
2
3

)n
.

It follows that lim
n→∞

sn = 1+3i
5 : indeed given ε > 0, since

√
2
3 < 1 we can choose m ∈ Z+ so that

(√
2
3

)m
< ε√

10/5
,

and then when n ≥ m we have ∣∣sn − 1+3i
5

∣∣ =
√
10
5

(√
2
3

)n ≤ √10
5

(√
3
2

)m
< ε.



2: For sets ∅ 6= A,B ⊆ Rn, the distance between A and B is defined to be

d(A,B) = inf
{
|x− y|

∣∣x∈A, y∈B}.
For a point a ∈ Rn and a set ∅ 6= B ⊆ Rn, the distance between a and B is defined to be

d(a,B) = d
(
{a}, B

)
= inf

{
|a− y|

∣∣ y∈B}.
(a) Find nonempty closed sets A,B ⊆ R2 with A ∩B = ∅ such that d(A,B) = 0.

Solution: First we remark that for any non-empt sets A and B, since |x− y| ≥ 0 for all x ∈ A and y ∈ B, it
follows that d(A,B) = inf

{
|x−y|

∣∣x∈A , y∈B} ≥ 0. Let A be the x-axis in R2, that is A =
{

(x, y)∈R2
∣∣y=0

}
and let B be the graph of y = 1

1+x2 in R2, that is B =
{

(x, y)∈R2
∣∣ y= 1

1+x2

}
. Note that A is closed in R2

since A = f−1
(
{0}
)

where f : R2 → R is the continuous map given by f(x, y) = y, and B is closed in R2

since B = g−1
(
{0}
)

where g : R2 → R is the continuous map given by g(x, y) = 1
1+x2 . We claim that

d(A,B) = 0. Let ε > 0. Choose x > 0 such that 1
1+x2 < ε. Since (x, 0) ∈ A and

(
x, 1

1+x2

)
∈ B, we have

d(A,B) ≤
∣∣(x, 0)− (x, 1

1+x2 )
∣∣ = 1

1+x2 < ε. Since 0 ≤ d(A,B) < ε for every ε > 0, we have d(A,B) = 0.

(b) Let ∅ 6= A,B ⊆ Rn with A compact and B closed and A ∩B = ∅. Prove that d(A,B) > 0.

Solution: For each a ∈ A, since Bc = Rn \B is open, we can choose ra > 0 such that B(a, ra) ⊆ Bc. Let
S =

{
B(a, ra)

∣∣ a ∈ A} and note that S is an open cover of A. Since A is compact, we can choose a finite

sub-cover T ⊆ S, say T =
{
B(a1, ra1 , · · · , B(a`, ra`

)
}

. Let r = min{ra1 , · · · , ra`

}
, and note that r > 0. We

claim that d(A,B) ≥ r. Let x ∈ A and y ∈ B. Since x ∈ A ⊆
⋃
T =

⋃`
k=1B(ak, rak

), we can choose an index
k such that x ∈ B(ak, rak

), so |x− ak| < rak
. Since y ∈ B and B(ak, 2rak

) ⊆ Bc, we have y /∈ B(ak, 2rak
), so

|y − ak| ≥ 2rak
. Thus we have 2rak

≤ |y − ak| ≤ |y − x|+ |x− ak| < |y − x|+ rk and hence |x− y| > rak
≥ r.

Since |x− y| > r for all x ∈ A and y ∈ B, it follows that d(A,B) = inf
{
|x− y|

∣∣x∈A , y∈B} ≥ r, as claimed.

(c) Fix a subset ∅ 6= B ⊆ Rn and define g : Rn → R by g(x) = d(x,B). Prove that g(x) is uniformly continuous
on Rn by showing that

∣∣g(x)− g(y)
∣∣ ≤ d(x, y) for all x, y ∈ Rn.

Solution: Suppose, for a contradiction, that we can choose x, y ∈ Rn with
∣∣g(x) − g(y)

∣∣ > d(x, y) = |x − y|.
Interchanging x and y if necessary, we suppose that g(x) ≥ g(y). Then we have g(x) − g(y) > |x − y| so
that g(x) > g(y) + |x − y|. Let ε = g(x) −

(
g(y) + |x − y|

)
so that we have g(x) = g(y) + |x − y| + ε with

ε > 0. Since g(y) = inf
{
|y − b|

∣∣b ∈ B}, we can choose b ∈ B so that g(y) ≤ |y − b| < g(y) + ε. Then we have

|x − b| ≤ |x − y| + |y − b| < |x − y| + g(y) + ε = g(x). But since g(x) = inf
{
|x − b|

∣∣ b ∈B} we must have
g(x) ≤ |x− b|, so we have obtained the desired contradiction.



3: For each of the following subsets A ⊆ Rn, determine whether A is closed, whether A is compact, and whether
A is connected.

(a) A =
{

(t2−1 , t3−t)∈R2
∣∣ t∈R}.

Solution: Note that A = f(R where f : R2 → R is given by (x, y) = f(t) =
(
t2−1 , t3−t

)
. Since R is connected

and f is continuous, it follows that A = f(R) is connected.
We claim that A = g−1(0) where g : R2 → R is given by g(x, y) = x3 + x2 − y2. Let (x, y) ∈ A, say

(x, y) = (t2−1 , t3−t). Then x3 + x2 = (t6 − 3t4 + 3t2 − 1) + (t4 − 2t2 + 1) = t6 − 2t4 + t2 = (t3 − t)2 = y2

so that g(x, y) = 0. This shows that A ⊆ g−1(0). Now let (x, y) ∈ g−1(0), so we have y2 = x3 + x2. If
x = 0 then y2 = x3 + x2 = 0 so that y = 0, and in this case we can choose t = 1 to get t2 − 1 = 0 = x and

t3 − t = 0 = y so that (x, y) ∈ A. If x 6= 0 then we can choose t = y
x to get t2 − 1 = y2

x2 − 1 = y2−x2

x2 = x3

x2 = x
and t3− t = t(t2−1) = y

x ·x = y so that again (x, y) ∈ A. This shows that g−1(0) ⊆ A, and hence A = g−1(0),
as claimed. Since {0} is closed and g is continuous, it follows that A = g−1({0}) is closed.

Finally, we note that A is not compact because A is not bounded: indeed given any M ≥ 0 we can choose
t ≥ 1 such that t2 > M+1, and then (x, y) = (t2−1 , t3−t) ∈ A with

∣∣(x, y)
∣∣ =

∣∣(t2−1 , t3−t)
∣∣ ≥ t2−1 > M .

(b) A =
{

(0, 0) 6=(x, y) ∈ R2
∣∣∣ ∣∣Re

(
1

x+iy

)∣∣ ≥ 1
}

(where Re(z) denotes the real part of z ∈ C).

Solution: For a, b ∈ R with (a, b) 6= (0, 0) we have 1
a+ib = a−ib

a2+b2 so∣∣Re
(

1
a+ib

)∣∣ ≥ 1 ⇐⇒ |a| ≥ a2 + b2
(
a2 + b2 ≤ a or a2 + b2 ≤ −a

)
⇐⇒

(
a− 1

2

)2
+ b2 ≤ 1

4 or
(
a+ 1

2

)2
+ b2 ≤ 1

4 .

Thus A = (B ∪ C) \ {(0, 0)} where B and C are the closed balls of radius 1
2 centered at

(
1
2 , 0
)

and
(
− 1

2 , 0
)
.

This set A is not closed since (0, 0) /∈ A but (0, 0) is a limit point of A (indeed for xn =
(
1
n , 0
)

we have xn ∈ A
and xn → (0, 0)). Since A is not closed, it not compact. Also, A is not connected since it can be separated by
the disjoint open sets U =

{
(x, y)

∣∣x > 0
}

and V =
{

(x, y)|x < 0
}

.

(c) A =
{

(x, y, z, w) ∈ R4
∣∣∣ ( x y

z w

)2
=
(
3 2
4 3

)}
.

Solution: Note that
(
x y
z w

)2
=
(
x2+yyz xy+zw
xz+yw yz+w2

)
and hence

(x, y, z, w) ∈ A ⇐⇒
(
x y
z w

)2
=
(
3 2
4 3

)
⇐⇒

(
x2 + yz = 3 , xy + yw = 2 , xz + zw = 4 and yz + w2 = 3

)
.

Let (x, y, z, w) ∈ A. Since x2 + yz = 3 = yz + w2 we have w2 = x2 so that w = ±x. We cannot have w = −x
because w = −x =⇒ xy + yw = xy − yx = 0 6= 2, so we must have w = x. Since w = x, xy + yw = 2
gives 2xy = 2 so that

(
x 6= 0 and y = 1

x

)
, and xz + zw = 4 gives 2xz = 4 so that

(
x 6= 0 and z = 2

x .
Since w = x 6= 0 and y = 1

x and z = 2
x , x2 + yz = 3 gives x2 + 2

x2 = 3 so that x4 − 3x2 + 2 = 0, that is

(x2 − 1)(x2 − 2) = 0, and hence x = ±1 or ±
√

2 so that (x, y, z, w) = ±(1, 1, 2, 1) or ±
√

2(1, 12 , 1, 1). This

shows that A ⊆
{
± (1, 1, 2, 1),±

√
2
(
1, 12 , 1, 1

)}
. Conversely, if (x, y, z, w) = ±(1, 1, 2, 1) or ±

√
2
(
1, 12 , 1, 1

)
,

then we have x2 + yz = 3, xy + yw = 2, xz + xw = 4 and yz + w2 = 3 so that (x, y, z, w) ∈ A. Thus

A =
{
± (1, 1, 2, 1),±

√
2
(
1, 12 , 1, 1

)}
.

Every finite set in Rn is closed (indeed the set {a1, a2, · · · , a`} is the union of the ` closed sets {ak}) and every
finite set in Rn is bounded (indeed for every x ∈ {a1, a2, · · · , a`} we have |x| ≤M = max{|a1|, |a2|, · · · , |a`|}),
and so A is closed and bounded, hence compact in R4. On the other hand, A is not connected because, for
example, the open sets U =

{
(x, y, z, w)∈R4

∣∣x<0
}

and V =
{

(x, y, z, w)∈R4
∣∣x>0

}
separate A in R4.



4: (a) Prove that if the sets A,B ⊆ Rn are connected and A ∩B 6= ∅, then A ∪B is connected.

Solution: Suppose that A and B are connected in Rn and that A ∩ B 6= ∅. Choose c ∈ A ∩ B. Suppose, for
a contradiction, that A ∪B is disconnected. Choose open sets U and V in Rn which separate A ∪B (that is,
U ∩ (A∪B) 6= ∅, V ∩ (A∪B) 6= ∅, U ∪ V = ∅, and A∪B ⊆ U ∪ V ). Since c ∈ A∩B ⊆ A∪B ⊆ U ∪ V , either
c ∈ U or c ∈ V . By interchanging U and V if necessary, we can suppose that c ∈ U . Note that since c ∈ A
and c ∈ U and A is connected, it follows that A ⊆ U because if we had A 6⊆ U then (since A ⊆ U ∪ V ) we
would have A ∩ V 6= ∅, and then U and V would separate A (since c ∈ U ∩ A so U ∩ A 6= ∅, and U ∩ V = ∅,
and A ⊆ A ∪B ⊆ U ∪ V ). Similarly, since c ∈ B and c ∈ U and B is connected, it follows that B ⊆ U . Since
A ⊆ U and B ⊆ U , we have A ∪ B ⊆ U . Since A ∪ B ⊆ U and U ∩ V = ∅, we must have V ∩ (A ∪ B) = ∅,
which contradicts the fact that U and V separate A ∪B.

(b) Let A be the set of all (a, b, c, d) ∈ R4 such that the polynomial f(x) = x4 +ax3 + bx2 + cx+d has at least
one repeated real root, and all of its (real or complex) roots lie in the closed unit ball |z| ≤ 1. Prove that A
is compact and connected.

Solution: A monic quartic polynomial with only real roots, at least one of which is repeated, is of the form

f(x) = (x− r)(x− s)(x− t)2 = (x2 − (r + s)x+ rs)(x2 − 2tx+ t2)

= x4 − (2t+ (r + s))x3 + (t2 + 2(r + s)t+ rs)x2 − ((r + s)t2 + 2rst)x+ rst2

and a monic quartic polynomial with one repeated real root and a pair of conjugate complex roots is of the
form

f(x) = (x− (r + is))(x− (r − is))(x− t)2 = (x2 − 2rx+ (r2 + s2))(x2 − 2tx+ t2)

= x4 − (2t+ 2r)x3 + (t2 + 4rt+ (r2 + s2))x2 − (2rt2 + (r2 + s2)t)x+ (r2 + s2)t2).

Thus we have A = F (C) ∪G(D) where F : C ⊆ R3 → R4 and G : D ⊆ R3 → R4 given by

(a, b, c, d) = F (r, s, t) =
(
2t+ (r + s) , t2 + 2(r + s)t+ rs , (r + s)t2 + 2rst , rst2

)
,

(a, b, c, d) = G(r, s, t) =
(
− (2t+ 2r) , (t2 + 4rt+ (r2 + s2)) , −(2rt2 + (r2 + s2)t) , (r2 + s2)t2

)
,

where C =
{

(r, s, t)∈R3
∣∣ r, s, t∈ [−1, 1]

}
and D =

{
(r, s, t)∈R3

∣∣ r2+s2≤1 , t∈ [−1, 1]
}

. The set C is closed

because C = f−11

(
[−1, 1]

)
∩ f−12

(
[−1, 1]

)
∩ f−13

(
[−1, 1]

)
where f1(r, s, t) = r, f2(r, s, t) = s and f3(r, s, t) = t,

and C is bounded because (r, s, t) ∈ C =⇒ r, s, t ∈ [−1, 1] =⇒
∣∣(r, s, t)∣∣ =

√
r2 + s2 + t2 ≤

√
1 + 1 + 1 =

√
3.

The set D is closed because D = g−11

(
[0, 1]

)
∩g−12

(
[−1, 1]

)
where g1(r, s, t) = r2+s2 and g2(r, s, t) = t, and D is

bounded because (r, s, t) ∈ D =⇒
(
r2 + s2 ≤ 1 and t ∈ [−1, 1]

)
=⇒

∣∣(r, s, t)∣∣ =
√
r2 + s2 + t2 ≤

√
1 + 1 =

√
2.

Since C and D are closed and bounded, hence compact, and since F and G are continuous, it follows that
F (C) and G(D) are compact, hence closed and bounded. Since F (C) and G(D) are closed, A = F (C)∪G(D)
is closed. Since F (C) and F (D) are bounded, it follows that A = F (C) ∪ F (D) is bounded: indeed, if
F (C) ⊆ B(0, R) and G(D) ⊆ B(0, S) then F (C) ∪ G(D) ⊆ B(0, T ) where T = max(R,S). Since A is closed
and bounded, it is compact.

We would also like to show that f(C) and f(D) are connected. To do this, let us first claim that if
E ⊆ Rn and F ⊆ Rm are convex then E × F ⊆ Rn+m is convex. Suppose E and F are convex. Let
a, c ∈ E and b, d ∈ F so that (a, b), (c, d) ∈ E × F . Let (x, y) be on the line segment from (a, b) to (c, d),
say (x, y) = (a, b) + t((c, d) − (a, b)) where 0 ≤ t ≤ 1. Then we have x = a + t(c − a) ∈ [a, c] ⊆ E and
y = b+ (d− b) ∈ [b, b] ⊆ F so that (x, y) ∈ E × F . Thus E × F is convex, as claimed.

Since the sets [−1, 1] and B((0, 0), 1) are convex, it follows from the claim that [−1, 1]× [−1, 1] is convex,
hence that C = [−1, 1]× [−1, 1]× [−1, 1] is convex, and also that D = B((0, 0), 1)× [−1, 1] is convex. Since C
and D are convex, hence connected, and since F and G are continuous, the sets F (C) and G(D) are connected.
Since F (C) and F (D) are connected and since 0 = (0, 0, 0, 0) = F (0, 0, 0) = G(0, 0, 0) so that 0 ∈ F (C)∩G(D),
it follows from Part (a) that A = F (C) ∪G(D) is connected.


