- 1: (a) Let $A = \{(x, y) \in \mathbb{R}^2 \mid 4x^2 + y^2 < 8x\}$. Prove, from the definition of an open set, that A is open.
- (b) Let $A = \{x \in \mathbb{R}^2 \mid 0 < |x| \le 1\}$. Prove, from the definition of a compact set, that A is not compact.
 - (c) For $n \in \mathbb{Z}^+$, let $s_n = \sum_{k=1}^n \left(\frac{1+i}{3}\right)^k$. Prove, from the definition of a limit, that $\lim_{n \to \infty} s_n = \frac{1+3i}{5}$.

2: For sets $\emptyset \neq A, B \subseteq \mathbb{R}^n$, the distance between A and B is defined to be

$$d(A, B) = \inf \{ |x - y| \mid x \in A, y \in B \}.$$

For a point $a \in \mathbb{R}^n$ and a set $\emptyset \neq B \subseteq \mathbb{R}^n$, the distance between a and B is defined to be

$$d(a, B) = d(\{a\}, B) = \inf\{|a - y| \mid y \in B\}.$$

(a) Find nonempty closed sets $A, B \subseteq \mathbb{R}^2$ with $A \cap B = \emptyset$ such that d(A, B) = 0.

(b) Let $\emptyset \neq A, B \subseteq \mathbb{R}^n$ with A compact and B closed and $A \cap B = \emptyset$. Prove that d(A, B) > 0.

(c) Fix a subset $\emptyset \neq B \subseteq \mathbb{R}^n$ and define $g : \mathbb{R}^n \to \mathbb{R}$ by g(x) = d(x, B). Prove that g(x) is uniformly continuous on \mathbb{R}^n by showing that $|g(x) - g(y)| \leq d(x, y)$ for all $x, y \in \mathbb{R}^n$.

3: For each of the following subsets $A \subseteq \mathbb{R}^n$, determine whether A is closed, whether A is compact, and whether A is connected.

(a)
$$A = \left\{ (t^2 - 1, t^3 - t) \in \mathbb{R}^2 \mid t \in \mathbb{R} \right\}.$$

(b) $A = \left\{ (0, 0) \neq (x, y) \in \mathbb{R}^2 \mid \left| \operatorname{Re}\left(\frac{1}{x + iy}\right) \right| \ge 1 \right\}$ (where $\operatorname{Re}(z)$ denotes the real part of $z \in \mathbb{C}$).
(c) $A = \left\{ (x, y, z, w) \in \mathbb{R}^4 \mid \begin{pmatrix} x & y \\ z & w \end{pmatrix}^2 = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \right\}.$

4: (a) Prove that if the sets $A, B \subseteq \mathbb{R}^n$ are connected and $A \cap B \neq \emptyset$, then $A \cup B$ is connected.

(b) Let A be the set of all $(a, b, c, d) \in \mathbb{R}^4$ such that the polynomial $f(x) = x^4 + ax^3 + bx^2 + cx + d$ has at least one repeated real root, and all of its (real or complex) roots lie in the closed unit ball $|z| \leq 1$. Prove that A is compact and connected.