1: (a) Let $A=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 x^{2}+y^{2}<8 x\right\}$. Prove, from the definition of an open set, that A is open.
(b) Let $A=\left\{x \in \mathbb{R}^{2}|0<|x| \leq 1\}\right.$. Prove, from the definition of a compact set, that A is not compact.
(c) For $n \in \mathbb{Z}^{+}$, let $s_{n}=\sum_{k=1}^{n}\left(\frac{1+i}{3}\right)^{k}$. Prove, from the definition of a limit, that $\lim _{n \rightarrow \infty} s_{n}=\frac{1+3 i}{5}$.

2: For sets $\emptyset \neq A, B \subseteq \mathbb{R}^{n}$, the distance between A and B is defined to be

$$
d(A, B)=\inf \{|x-y| \mid x \in A, y \in B\} .
$$

For a point $a \in \mathbb{R}^{n}$ and a set $\emptyset \neq B \subseteq \mathbb{R}^{n}$, the distance between a and B is defined to be

$$
d(a, B)=d(\{a\}, B)=\inf \{|a-y| \mid y \in B\} .
$$

(a) Find nonempty closed sets $A, B \subseteq \mathbb{R}^{2}$ with $A \cap B=\emptyset$ such that $d(A, B)=0$.
(b) Let $\emptyset \neq A, B \subseteq \mathbb{R}^{n}$ with A compact and B closed and $A \cap B=\emptyset$. Prove that $d(A, B)>0$.
(c) Fix a subset $\emptyset \neq B \subseteq \mathbb{R}^{n}$ and define $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $g(x)=d(x, B)$. Prove that $g(x)$ is uniformly continuous on \mathbb{R}^{n} by showing that $|g(x)-g(y)| \leq d(x, y)$ for all $x, y \in \mathbb{R}^{n}$.

3: For each of the following subsets $A \subseteq \mathbb{R}^{n}$, determine whether A is closed, whether A is compact, and whether A is connected.
(a) $A=\left\{\left(t^{2}-1, t^{3}-t\right) \in \mathbb{R}^{2} \mid t \in \mathbb{R}\right\}$.
(b) $A=\left\{\left.(0,0) \neq(x, y) \in \mathbb{R}^{2}| | \operatorname{Re}\left(\frac{1}{x+i y}\right) \right\rvert\, \geq 1\right\}$ (where $\operatorname{Re}(z)$ denotes the real part of $z \in \mathbb{C}$).
(c) $A=\left\{(x, y, z, w) \in \mathbb{R}^{4} \left\lvert\,\left(\begin{array}{ll}x & y \\ z & w\end{array}\right)^{2}=\left(\begin{array}{ll}3 & 2 \\ 4 & 3\end{array}\right)\right.\right\}$.

4: (a) Prove that if the sets $A, B \subseteq \mathbb{R}^{n}$ are connected and $A \cap B \neq \emptyset$, then $A \cup B$ is connected.
(b) Let A be the set of all $(a, b, c, d) \in \mathbb{R}^{4}$ such that the polynomial $f(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ has at least one repeated real root, and all of its (real or complex) roots lie in the closed unit ball $|z| \leq 1$. Prove that A is compact and connected.

