PMATH 333 Real Analysis, Solutions to Assignment 3

1: (a) Prove that there exist (at least) 3 distinct values of $x \in \mathbb{R}$ such that $8 x^{3}=6 x+1$.
Solution: Let $f(x)=8 x^{3}-6 x-1$. Notice that $f(x)$ is continuous and we have $f(x)=0 \Longleftrightarrow 8 x^{3}=6 x+1$. By the Intermediate Value Theorem, since $f(-1)=-3<0$ and $f\left(-\frac{1}{2}\right)=1>0$, there is a number $x_{1} \in\left(-1,-\frac{1}{2}\right)$ such that $f\left(x_{1}\right)=0$. Similarly, since $f\left(-\frac{1}{2}\right)=1>0$ and $f(0)=-1<0$, there is a number $x_{2} \in\left(-\frac{1}{2}, 0\right)$ with $f\left(x_{2}\right)=0$, and since $f(0)=-1<0$ and $f(1)=1>0$, there is a number $x_{3} \in(0,1)$ with $f\left(x_{3}\right)=0$. (In fact, the exact values of x_{1}, x_{2} and x_{3} are $x_{1}=-\cos \left(40^{\circ}\right), x_{2}=-\sin \left(10^{\circ}\right)$ and $\left.x_{3}=\cos \left(20^{\circ}\right)\right)$.
(b) Let $f:[0,2] \rightarrow \mathbb{R}$ be continuous with $f(0)=f(2)$. Prove that $f(x)=f(x+1)$ for some $x \in[0,1]$.

Solution: Define $g:[0,1] \rightarrow \mathbb{R}$ by $g(x)=f(x+1)-f(x)$. Note that g is continuous and

$$
g(1)=f(2)-f(1)=f(0)-f(1)=-(f(1)-f(0))=-g(0)
$$

By the Intermediate Value Theorem, there is a number $x \in[0,1]$ with $g(x)=0$ (indeed if $g(0) \neq 0$ then one of the numbers $g(0)$ and $g(1)$ is positive and the other is negative so there is a number $x \in(0,1)$ with $g(x)=0)$. Then we have $0=g(x)=f(x+1)-f(x)$ and so $f(x)=f(x+1)$.
(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Suppose that $|f(x)-f(y)| \geq|x-y|$ for all $x, y \in \mathbb{R}$. Prove that f is bijective (that is, f is injective and surjective).
Solution: First we note that f is injective since when $x \neq y$ we have $|f(x)-f(y)| \geq|x-y|>0$ so that $f(x) \neq f(y)$. Consider the two intervals $I=[0, \infty)$ and $J=(-\infty, 0]$. We claim that the image $f(I)$ entirely contains one of the two intervals $[f(0), \infty)$ and $(-\infty, f(0)]$. Since the set \mathbb{Z}^{+}is infinite and f is injective, either there exist infinitely many $k \in \mathbb{Z}^{+}$such that $f(k)>f(0)$ or there exist infinitely many $k \in \mathbb{Z}^{+}$such that $f(k)<f(0)$. Consider the case that there exist infinitely many $k \in \mathbb{Z}^{+}$such that $f(k)>f(0)$. We claim that, in this case, we have $[f(0), \infty) \subseteq f(I)$. Choose $k_{1}<k_{2}<k_{3}<\cdots$ such that $f\left(k_{j}\right)>f(0)$ for every index j. For every index j, since $f\left(k_{j}\right)>f(0)$ and $\left|f\left(k_{j}\right)-f(0)\right| \geq\left|k_{j}-0\right|=k_{j}$, we have $f\left(k_{j}\right)>f(0)+k_{j}$. Let $y \in[f(0), \infty)$. Choose j with $k_{j} \geq y+f(0)$ so that we have $f\left(k_{j}\right) \geq f(0)+k_{j} \geq y$. Since f is continuous and $f(0) \leq y \leq f\left(k_{j}\right)$, it follows from the Intermediate Value Theorem that we can choose $x \in\left[0, k_{j}\right]$ such that $f(x)=y$. This proves our claim that $[f(0), \infty) \subseteq f(I)$. Similarly, in the case that there exist infinitely many $k \in \mathbb{Z}^{+}$with $f(k)<f(0)$ we have $(-\infty, f(0)] \subseteq f(I)$. Thus one of the two intervals $K=[f(0), \infty)$ and $L=(-\infty, f(0)]$ is entirely contained in $f(I)$. A similar argument shows that one of the two intervals K and L is entirely contained in $f(J)$. Since f is injective, it is not possible that one of K and L can be contained in both of $f(I)$ and $f(J)$ (for example if we had $K \subseteq f(I) \cap f(L)$, then given $f(0) \neq y \in K$ we could choose $0 \neq x_{1} \in I$ and $0 \neq x_{2} \in J$ with $f\left(x_{1}\right)=y=f\left(x_{2}\right)$. Thus K is contained in one of the sets $f(I)$ and $f(J)$, and L is contained in the other. Thus we have $\mathbb{R}=K \cup L \subseteq f(I) \cup f(J)=f(I \cup J)=f(\mathbb{R})$, or in other words, f is surjective.

2: (a) Find $\int_{0}^{2} 3 x^{2}-x d x$ by evaluating the limit of a sequence of Riemann sums.
Solution: For fixed $n \in \mathbb{Z}^{+}$, let $X_{n}=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be the partition of $[0,2]$ into n equal-sized sub-intervals, so we have $x_{k}=\frac{2 k}{n}$ with $\Delta_{k} x=\frac{2}{n}$, and for each index k, let t_{k} be the right endpoint, that is $t_{k}=x_{k}$, and let S_{n} be the resulting Riemann sum for the function $f(x)=3 x^{2}-x$. Thus

$$
\begin{aligned}
\int_{0}^{2} 3 x^{2}-x d x & =\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(t_{k}\right) \Delta_{k} x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(3\left(\frac{2 k}{n}\right)^{2}-\frac{2 k}{n}\right)\left(\frac{2}{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{24 k^{2}}{n^{3}}-\frac{4 k}{n^{2}}\right)=\lim _{n \rightarrow \infty}\left(\frac{24}{n^{3}} \sum_{k=1}^{n} k^{2}-\frac{4}{n^{2}} \sum_{k=1}^{n} k\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{24}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}-\frac{4}{n^{2}} \cdot \frac{n(n+1)}{2}\right)=8-2=6 .
\end{aligned}
$$

(b) Find $\int_{0}^{4} \sqrt{x} d x$ by evaluating the limit of a sequence of Riemann sums.

Solution: Let $f(x)=\sqrt{x}$ on $[0,4]$. Note that the range of f is $[0,2]$. For $n \in \mathbb{Z}^{+}$, let $Y_{n}=\left\{y_{0}, y_{1}, \cdots, y_{n}\right\}$ be the partition of the range $[0,2]$ into n equal sub-intervals, so we have $y_{k}=\frac{2 k}{n}$, let $X_{n}=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be the corresponding partition of the domain $[0,4]$ given by $x_{k}=y_{k}{ }^{2}=\frac{4 k^{2}}{n^{2}}$, and let $t_{k}=x_{k}$. Note that $\Delta_{k} x=\left(x_{k}-x_{k-1}\right)=\frac{4\left(k^{2}-(k-1)^{2}\right)}{n^{2}}=\frac{4(2 k-1)}{n^{2}}$ and we have $\left|X_{n}\right|=\Delta_{n} x=\frac{4(2 n-1)}{n^{2}} \rightarrow 0$ as $n \rightarrow \infty$, and so

$$
\begin{aligned}
\int_{0}^{4} \sqrt{x} d x & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(t_{k}\right) \Delta_{k} x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \sqrt{x_{k}} \Delta_{k} x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2 k}{n} \cdot \frac{4(2 k-1)}{n^{2}} \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{16 k^{2}}{n^{3}}-\frac{8 k}{n^{3}}\right)=\lim _{n \rightarrow \infty}\left(\frac{16}{n^{3}} \sum_{k=1}^{n} k^{2}-\frac{8}{n^{3}} \sum_{k=1}^{n} k\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{16}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}-\frac{8}{n^{3}} \cdot \frac{n(n+1)}{2}\right)=\frac{16}{3} .
\end{aligned}
$$

3: (a) Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x)=x$ if $x \in \mathbb{Q}$, and $f(x)=2 x$ if $x \notin \mathbb{Q}$. Prove that f is not integrable on $[0,1]$. Solution: Let $g(x)=x$ and $h(x)=2 x$. Note that g and h are both integrable on $[0,1]$ with $\int_{0}^{1} g=\int_{0}^{1} x d x=\frac{1}{2}$ and $\int_{0}^{1} h=\int_{0}^{1} 2 x d x=1$. Suppose, for a contradiction, that f is integrable on $[0,1]$ and let $I=\int_{0}^{1} f$. Taking $\epsilon=\frac{1}{8}$, choose $\delta>0$ such that for all partitions X of $[0,1]$ with $|X|<\delta$, we have $|F-I|<\frac{1}{8},\left|G-\frac{1}{2}\right|<\frac{1}{8}$ and $|H-1|<\frac{1}{8}$ for all Riemann sums F, G and H for the functions f, g and h (respectively) on the partition X. Choose a partition $X=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ of $[0,1]$ with $|X|<\delta$. Since \mathbb{Q} is dense in \mathbb{R}, we can choose sample points $t_{k} \in\left[x_{k-1}, x_{k}\right]$ with $t_{k} \in \mathbb{Q}$, and then we have $f\left(t_{k}\right)=t_{k}=g\left(t_{k}\right)$ for all k. Thus $S=\sum_{k=1}^{n} t_{k} \Delta_{k} x$ is, simultaneously, a Riemann sum for both f and g on X, so we have $|S-I|<\frac{1}{8}$ and $\left|S-\frac{1}{2}\right|<\frac{1}{8}$, and hence $\left|I-\frac{1}{2}\right|<\frac{1}{4}$ so that $I<\frac{3}{4}$. Since $\mathbb{R} \backslash \mathbb{Q}$ is dense in \mathbb{R}, we can choose sample points $s_{k} \in\left[x_{k-1}, x_{k}\right]$ with $s_{k} \notin \mathbb{Q}$, and then we have $f\left(s_{k}\right)=2 s_{k}=h\left(s_{k}\right)$ for all k. Thus $T=\sum_{k=1}^{n} 2 s_{k} \Delta_{k} x$ is, simultaneously, a Riemann sum for both f and h on X, so we have $|T-I|<\frac{1}{8}$ and $|T-1|<\frac{1}{8}$, and hence $|I-1|<\frac{1}{4}$ so that $I>\frac{3}{4}$.
(b) Define $g:[0,1] \rightarrow \mathbb{R}$ by $g\left(\frac{1}{n}\right)=1$ for each $n \in \mathbb{Z}^{+}$, and $g(x)=0$ when $x \notin\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}^{+}\right\}$. Determine (with proof) whether g is integrable on $[0,1]$.
Solution: We claim that g is integrable. Let $\epsilon>0$. Choose $n \in \mathbb{Z}^{+}$such that $\frac{1}{n}<\frac{\epsilon}{2}$. Choose $\delta>0$ small enough so that $\frac{1}{n}+\delta<\frac{1}{n-1}-\delta$ and so that $2(n-1) \delta<\frac{\epsilon}{2}$. Let $X=\left\{x_{0}, x_{1}, \cdots, x_{2 n}\right\}$ be the partition of $[0,1]$ given by

$$
x_{0}=0, x_{1}=\frac{1}{n}, x_{2}=\frac{1}{n}+\delta, x_{3}=\frac{1}{n-1}-\delta, x_{4}=\frac{1}{n-1}+\delta, x_{5}=\frac{1}{n-2}-\delta, \cdots, x_{2 n-1}=1-\delta, x_{2 n}=1
$$

so for $1<k<2 n$, when k is odd we have $x_{k}=\frac{1}{n-\frac{k-1}{2}}-\delta$ and when k is even we have $x_{k}=\frac{1}{n-\frac{k-2}{2}}+\delta$ (note that we chose δ small enough so that $\frac{1}{n}+\delta<\frac{1}{n-1}-\delta$ to ensure that the endpoints x_{k} are in increasing order). Let M_{k} and m_{k} denote the supremum and the infimum of $g(t)$ for $t \in\left[x_{k-1}, x_{k}\right]$. In the first interval $\left[x_{0}, x_{1}\right]=\left[0, \frac{1}{n}\right]$, we have $M_{1}=1$ and $m_{1}=0$ and $\Delta_{1} x=\frac{1}{n}$ so that $\left(M_{1}-m_{1}\right) \Delta_{1} x=\frac{1}{n}$. In the second interval $\left[x_{1}, x_{2}\right]=\left[\frac{1}{n}, \frac{1}{n}+\delta\right]$, we have $M_{2}=1$ and $m_{2}=0$ and $\Delta_{2} x=\delta$ so that $\left(M_{2}-m_{2}\right) \Delta_{2} x=\delta$. When k is odd with $2<k<2 n$ and $\ell=n-\frac{k-1}{2}$, the $k^{\text {th }}$ interval is $\left[x_{k-1}, x_{k}\right]=\left[\frac{1}{\ell}-\delta, \frac{1}{\ell}+\delta\right]$ and we have $M_{k}=1, m_{k}=0$ and $\Delta_{k} x=2 \delta$ so that $\left(M_{k}-m_{k}\right) \Delta_{k} x=2 \delta$. When k is even with $2<k<2 n$ and $\ell=n-\frac{k-2}{2}$, the $k^{\text {th }}$ interval is $\left[x_{k-1}, x_{k}\right]=\left[\frac{1}{\ell+1}+\delta, \frac{1}{\ell}-\delta\right]$ and we have $M_{k}=m_{k}=0$ so that $\left(M_{k}-m_{k}\right) \Delta_{k} x=0$. Finally, in the $2 n^{\text {th }}$ interval $\left[x_{2 n-1}, x_{2 n}\right]=\left[1-\frac{1}{\delta}, 1\right]$, we have $M_{2 n}=1, m_{2 n}=0$ and $\Delta_{2 n} x=\delta$ so that $\left(M_{2 n}-m_{2 n}\right) \Delta_{2 n} x=\delta$. Thus for this partition, we have

$$
U(g, X)-L(g, X)=\sum_{k=1}^{2 n}\left(M_{k}-m_{k}\right) \Delta_{k} x=\frac{1}{n}+\delta+(n-2) 2 \delta+\delta=\frac{1}{n}+2(n-1) \delta<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

4: Determine (with proof) which of the following statements are true (for all functions).
(a) Let f be bounded on $[a, b]$, let $X_{n}=\left\{x_{n, 0}, x_{n, 1}, \cdots, x_{n, n}\right\}$ be the partition of $[a, b]$ into n equal subintervals, and let $S_{n}=\sum_{i=1}^{n} f\left(x_{n, i}\right) \Delta_{n, i} x$. If $\lim _{n \rightarrow \infty} S_{n}$ exists and is finite, then f is integrable on $[a, b]$.
Solution: This is FALSE. Consider the function $f:[0,1] \rightarrow[0,1]$ given by $f(x)=1$ when $x \in \mathbb{Q}$ and $f(x)=0$ when $x \notin \mathbb{Q}$. We have seen that this function is not integrable. But for the partition X_{n} of $[0,1]$ into n equal-sized subintervals, the endpoints $x_{n, k}=\frac{k}{n}$ all lie in \mathbb{Q} so that we always have $f\left(x_{n, k}\right)=1$ for all n, k. It follows that for all $n \in \mathbb{Z}^{+}$we have $S_{n}=\sum_{k=1}^{n} f\left(x_{n, k}\right) \Delta_{k} x=\sum_{k=1}^{n} 1 \cdot \frac{1}{n}=1$, and so $\lim _{n \rightarrow \infty} S_{n}=1$.
(b) If $f \leq g \leq h$ on $[a, b]$ and f and h are integrable on $[a, b]$ with $\int_{a}^{b} f=\int_{a}^{b} h$, then g is integrable on $[a, b]$. Solution: This is TRUE. Suppose f and h are integrable on $[a, b]$ with equal integrals, say $I=\int_{a}^{b} f=\int_{a}^{b} g$. Let $\epsilon>0$. Choose partitions X_{1} and X_{2} of $[a, b]$ so that $U\left(f, X_{1}\right)-L\left(f, X_{1}\right)<\frac{\epsilon}{2}$ and $U\left(h, X_{2}\right)-L\left(h, X_{2}\right)<\frac{\epsilon}{2}$. Let $X=X_{1} \cup X_{2}$. Since $X_{1} \subseteq X$ we have $L\left(f, X_{1}\right) \leq L(f, X) \leq I \leq U(f, X) \leq U\left(f, X_{1}\right)$ so that $0 \leq I-L(f, X) \leq$ $U\left(f, X_{1}\right)-L\left(f, X_{1}\right)<\frac{\bar{\epsilon}}{2}$. Similarly, since $X_{2} \subseteq X$ we have $0<U(h, X)-I<\frac{\epsilon}{2}$. Say $X=\left(x_{0}, x_{1}, \cdots, x_{n}\right)$. For each index k with $1 \leq k \leq n$, let $M_{k}(f)=\sup \left\{f(t) \mid t \in\left[x_{k-1}, x_{k}\right]\right\}$ and $m_{k}(f)=\inf \left\{f(t) \mid t \in\left[x_{k-1}, x_{k}\right]\right\}$, and define $M_{k}(g), m_{k}(g), M_{k}(h)$ and $m_{k}(h)$ similarly. Since $f(t) \leq g(t) \leq h(t)$ for all $t \in[a, b]$, it folows that $M_{k}(f) \leq M_{k}(g) \leq M_{k}(h)$ and $m_{k}(f) \leq m_{k}(g) \leq m_{k}(h)$ for all indices k. Since $M_{k}(g) \leq M_{k}(h)$ for all k we have $U(g, X)=\sum_{k=1}^{n} M_{k}(g) \Delta_{k} x \leq \sum_{k=1}^{n} M_{k}(h) \Delta_{k} x=U(h, X)$, Similarly, since $m_{k}(f) \leq m_{k}(g)$ for all k we have $L(f, X) \leq L(g, X)$. Thus

$$
U(g, X)-L(g, X) \leq U(h, X)-L(f, X)=(U(h, X)-I)+(I-L(f, X))<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

(c) For $f:[0, \infty) \rightarrow \mathbb{R}$, we say that f is improperly integrable on $[0, \infty)$ when f is integrable on $[0, r]$ for all $r>0$ and $\lim _{r \rightarrow \infty} \int_{0}^{r} f(x) d x$ exists as a finite real number. If f is improperly integrable on $[0, \infty)$ then so is f^{2}.
Solution: This is FALSE. For example, define $f:[0, \infty) \rightarrow \mathbb{R}$ by $f(x)=\frac{(-1)^{n+1}}{\sqrt{n}}$ for $x \in[n-1, n)$ with $n \in \mathbb{Z}^{+}$. We claim that f is improperly integrable on $[0, \infty)$. Note that f is integrable on $[0, r]$ for all $r>0$ since it is integrable on each interval $[k-1, k]$ with $1 \leq k \leq r$ and on the interval $[n, r]$ with $n=\lfloor r\rfloor$. Also note that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges by the Alternating Series test. Let $S_{n}=\sum_{k=1}^{n} \frac{(-1)^{k+1}}{\sqrt{k}}$ and let $S=\lim _{n \rightarrow \infty} S_{n}$ (in fact, $S=\ln 2$, but we do not need to prove this). We claim that $\lim _{r \rightarrow \infty} \int_{0}^{r} f=S$. Let $\epsilon>0$. Choose $m \in \mathbb{Z}^{+}$so that when $n \geq m$ we have $\left|S_{n}-S\right|<\frac{\epsilon}{2}$ and $\frac{1}{\sqrt{n+1}}<\frac{\epsilon}{2}$. Let $r \geq m$, let $n=\lfloor r\rfloor$, and note that $n \geq m$. Then

$$
\left|\int_{0}^{r} f-S\right|=\left|\int_{0}^{n} f+\int_{n}^{r} f-S\right|=\left|S_{n}+\frac{(-1)^{n}(r-n)}{\sqrt{n+1}}-S\right| \leq\left|S_{n}-S\right|+\frac{1}{\sqrt{n+1}}<\epsilon
$$

Thus $\int_{0}^{r}=S$, as claimed, so that f is improperly integrable on $[0, \infty)$.
On the other hand, the map $f^{2}:[0, \infty) \rightarrow \mathbb{R}$ is given by $f^{2}(x)=\frac{1}{n}$ for $x \in[n-1, n]$ with $n \in \mathbb{Z}^{+}$, and the harmonic series $\sum \frac{1}{n}$ diverges. Given $R \geq 0$ we can choose $m \in \mathbb{Z}^{+}$so that $n \geq m \Longrightarrow \sum_{k=1}^{n} \frac{1}{k}>R$, and then for $r \geq m$, and letting $n=\lfloor r\rfloor$, we have

$$
\int_{0}^{r} f^{2}=\int_{0}^{n} f^{2}+\int_{n}^{r} f^{2} \geq \int_{0}^{n} f^{2}=\sum_{k=1}^{n} \frac{1}{k}>R
$$

Thus $\lim _{r \rightarrow \infty} \int_{0}^{r} f=\infty$ so that f^{2} is not improperly integrable on $[0, \infty)$.

