PMATH 333 Real Analysis, Solutions to Assignment 3

: (a) Prove that there exist (at least) 3 distinct values of x € R such that 823 = 6z + 1.

Solution: Let f(x) = 823 —6x—1. Notice that f(z) is continuous and we have f(r) =0 <= 8z3 = 6x+1. By
the Intermediate Value Theorem, since f(—1) = —3 < 0 and f(f %) =1 > 0, there is a number x; € (f 1, f%)
such that f(z1) = 0. Similarly, since f( — %) =1>0and f(0) = —1 < 0, there is a number x5 € (f %,O)
with f(z2) =0, and since f(0) = —1 < 0 and f(1) =1 > 0, there is a number z3 € (0,1) with f(z3) = 0. (In

fact, the exact values of x1, zo and x3 are 1 = — cos(40°), o = —sin(10°) and x3 = cos(20°)).

(b) Let f :[0,2] — R be continuous with f(0) = f(2). Prove that f(z) = f(x + 1) for some z € [0, 1].
Solution: Define g : [0,1] = R by g(x) = f(z + 1) — f(z). Note that g is continuous and

g9(1) = £(2) = f(1) = f(0) = F(1) = =(f(1) = f(0)) = —g(0).

By the Intermediate Value Theorem, there is a number z € [0, 1] with g(z) = 0 (indeed if g(0) # 0 then one of

the numbers g(0) and g(1) is positive and the other is negative so there is a number z € (0,1) with g(z) = 0).
Then we have 0 = g(x) = f(z + 1) — f(z) and so f(z) = f(z + 1).

(c) Let f : R — R be continuous. Suppose that |f(x)— f(y)| > |z —y| for all z,y € R. Prove that f is bijective
(that is, f is injective and surjective).

Solution: First we note that f is injective since when = # y we have |f(z) — f(y)| > | — y| > 0 so that
f(z) # f(y). Consider the two intervals I = [0,00) and J = (—o0,0]. We claim that the image f(I) entirely
contains one of the two intervals [f(0),00) and (—oo, f(0)]. Since the set ZT is infinite and f is injective,
either there exist infinitely many k € Z* such that f(k) > f(0) or there exist infinitely many k& € Z* such
that f(k) < f(0). Consider the case that there exist infinitely many k& € Z1 such that f(k) > f(0). We claim
that, in this case, we have [f(0),00) C f(I). Choose k1 < ko < k3 < --- such that f(k;) > f(0) for every
index j. For every index j, since f(k;) > f(0) and |f(k;) — f(0)| > |k; — 0 = k;, we have f(k;) > f(0) + k;.
Let y € [f(0),00). Choose j with k; > y + f(0) so that we have f(k;) > f(0) + k; > y. Since f is continuous
and f(0) <y < f(kj), it follows from the Intermediate Value Theorem that we can choose z € [0, k;] such
that f(z) = y. This proves our claim that [f(0),00) C f(I). Similarly, in the case that there exist infinitely
many k € Z* with f(k) < f(0) we have (—oo, f(0)] € f(I). Thus one of the two intervals K = [f(0),00) and
L = (—o0, f(0)] is entirely contained in f(I). A similar argument shows that one of the two intervals K and
L is entirely contained in f(J). Since f is injective, it is not possible that one of K and L can be contained
in both of f(I) and f(J) (for example if we had K C f(I) N f(L), then given f(0) # y € K we could choose
0#x; €l and0# 29 € J with f(z1) =y = f(z2) ). Thus K is contained in one of the sets f(I) and f(J),
and L is contained in the other. Thus we have R=KUL C f(I)U f(J) = f(JUJ) = f(R), or in other words,
f is surjective.
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2: (a) Find / 322 —x dx by evaluating the limit of a sequence of Riemann sums.
0

Solution: For fixed n € Z*, let X,, = {xq, 21, -+, %, } be the partition of [0, 2] into n equal-sized sub-intervals,
so we have xp = Q—f with Apx = %, and for each index k, let t; be the right endpoint, that is t; = xj, and let
S,, be the resulting Riemann sum for the function f(x) = 32% — x. Thus

/ 32—z dx = hm S, = lim Z fte)Arx = hm i (3(%)2_%)(
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(b) Find / vz dx by evaluating the limit of a sequence of Riemann sums.
0

Solution: Let f(z) = y/x on [0,4]. Note that the range of f is [0,2]. For n € Z*, let Y,, = {y0,v1, ", Yn}
be the partition of the range [0, 2] into n equal sub-intervals, so we have y;, = 271—’“, let X,, = {xo, 21, +,xn}

be the corresponding partition of the domain [0,4] given by z3, = y? = 47%2, and let t; = x. Note that

Apx = () — xp—1) = Ak T(Lk_l)2) = 4(%2_1) and we have |X,,| = A,z = % — 0 as n — oo, and so
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3: (a) Define f: [0,1] = R by f(z) =z ifz € Q, and f(z) = 2z if x ¢ Q. Prove that f is not integrable on [0, 1].

Solution: Let g(z) = x and h(z) = 2z. Note that g and h are both integrable on [0, 1] with fol g= fol rdr =3

and fol h= fol 2z dr = 1. Suppose, for a contradiction, that f is integrable on [0,1] and let I = fol f. Taking
€ = &, choose 0 > 0 such that for all partitions X of [0,1] with |X| < §, we have |F —I| < §, |G — 3| < § and
|H — 1| < % for all Riemann sums F, G and H for the functions f, g and h (respectively) on the partition X.
Choose a partition X = {zg,z1,- -, 2y} of [0,1] with |X| < 6. Since Q is dense in R, we can choose sample
points ¢y € [zx_1,x)] with ¢, € Q, and then we have f(t;) =ty = g(tx) for all k. Thus S =Y ;_; t; Apz is,
simultaneously, a Riemann sum for both f and g on X, so we have [S — I| < % and |S — 1| < %, and hence
|If %| < i so that I < %. Since R\ Q is dense in R, we can choose sample points si € [x—1, x| with s ¢ Q,
and then we have f(sy) = 2sx = h(sg) for all k. Thus T'=>"7_, 2s; Az is, simultaneously, a Riemann sum
for both f and h on X, so we have [T — I| < £ and |T — 1| < &, and hence | — 1| < 1 so that ] > 2.

(b) Define g : [0,1] = R by g(%) =1 for each n€Z", and g(x) = 0 when z ¢ {1|n€Z"}. Determine (with

proof) whether g is integrable on [0, 1].
Solution: We claim that g is integrable. Let ¢ > 0. Choose n € Z* such that % < 5. Choose § > 0 small

enough so that £ +6 < —1= —§ and so that 2(n —1)d < §. Let X = {zg, 21, -, 22,} be the partition of [0,1]
given by
20=0, 1 =2, 3o=1+40, a3=25 -0, au=25+0, x5 =5 -0, -+, Top1=1-0, x3, =1

so for 1 < k < 2n, when k is odd we have z = n% — ¢ and when k is even we have x; = n% + 0
- -

(note that we chose ¢ small enough so that % +0< nil — J to ensure that the endpoints xj are in increasing

order). Let M} and my denote the supremum and the infimum of g(t) for ¢ € [xg_1,x]. In the first interval
[0, x1] = [O, ﬂ, we have M7 =1 and m; = 0 and A1z = % so that (M —mq)Ax = % In the second interval
[x1,x2] = [%, % + 5], we have My = 1 and mo = 0 and Asx = 6 so that (M — mg)Agxz = §. When k is odd
with2<k<2nand {=n— %, the k'™ interval is [z5_1,z%] = [% — 0, % + 5} and we have M =1, mp =0
and Agx = 20 so that (My —myg)Agz = 25. When k is even with 2 < k < 2n and £ = n — ’“2;2, the k'™ interval
is [zp_1, 78] = [15-4%1 + 4, % — 4] and we have My = my = 0 so that (M, — my)Agz = 0. Finally, in the 2n'?
interval [Xon—1,T2,] = [1 — %, 1], we have My, = 1, ma, = 0 and Ag,z = § so that (M, — ma,)Ag,x = 0.
Thus for this partition, we have

2n
U(g, X)—L(g,X) = 3 (My —mp) Az =2 +6+(n—2)20+0=2+2n—-1)6 < 5+ §=e
k=1



4: Determine (with proof) which of the following statements are true (for all functions).
(a) Let f be bounded on [a, b], let X,, = {@n,0,Zn1,- ", Tn.n} be the partition of [a, b] into n equal subintervals,
n
and let S, = Z fxn,i)Ap iz, If ILm Sy, exists and is finite, then f is integrable on [a, b].
i=1
Solution: This is FALSE. Consider the function f : [0,1] — [0,1] given by f(z) =1 when 2 € Q and f(x) =0

when x ¢ Q. We have seen that this function is not integrable. But for the partition X,, of [0,1] into n
equal-sized subintervals, the endpoints x, j, = % all lie in Q so that we always have f(x, ) =1 for all n, k. It

follows that for all n € ZT we have S,, = > f(zp)Apz= >, 1- % =1,and so lim S, = 1.
kzl k'zl n— oo

(b) If f <g<hon [ab] and f and h are integrable on [a, b] with / = / h, then g is integrable on [a, b].

Solution: This is TRUE. Suppose f and h are integrable on [a, b] with equal integrals, say I = fab f= f: g. Let
€ > 0. Choose partitions X; and X; of [a, b] so that U(f, X1)—L(f,X1) < § and U(h, X3)— L(h, X5) < §. Let
X = X;UX5. Since X; C X wehave L(f, X;) < L(f,X) <I<U(f,X) < U(f,Xl) sothat 0 < IT—-L(f, X) <

U(f,X1)— L(f, X1) < £. Similarly, since X2 C X we have 0 < U(h X)-1 < £ Say X = (2o, 21, ", Tn).
For each index k with 1 Sk;gn let My (f —sup{f \te Th_1,Tk } and my(f inf{f(t)‘te [a:k_l,xk]},
and define My(g), mi(g), My(h) and my(h) similarly. Since f(t) < g(t) < h(t) for all ¢ € [a, b], it folows that
M (f) < Mi(g) < My(h) and mk(f) < my(g) < mg(h) for all indices k. Since My (g) < My(h) for all k we

have U(g, X) = Z M (9)Arz < Z My (h)Arx = U(h, X), Similarly, since my(f) < my(g) for all k& we have
L(f, X) < L(g, X). Thus
U(g, X) — L(g, X) <Uh, X) = L(f,X) = (U(h,X) = 1)+ (I - L(f. X)) < §+ § =«

(c) For f:[0,00) — R, we say that f is improperly integrable on [0,00) when f is integrable on [0, r] for all

r > 0 and hm f(x) dz exists as a finite real number. If f is improperly integrable on [0, 00) then so is f2.
0

Solution: This is FALSE. For example, define f: [0,00) — R by f(z) = = i)f for x € [n—1,n) with n€Z*.
We claim that f is improperly integrable on [0,00). Note that f is integrable on [0,7] for all » > 0 since it
is integrable on each interval [k — 1, k] with 1<k <r and on the interval [n,r] with n = |r]. Also note that

S (7}/);& converges by the Alternating Series test. Let S, = >_)_; (7}/);1 and let S = nl;rréo Sp (in fact,

S =1In2, but we do not need to prove this) We claim that lim for f=S. Let € > 0. Choose m € Z* so that
= |r|, and note that n > m. Then

when n > m we have |S, — S| < §

i 7=51- Uf+ff S\

Thus for =S5, as claimed, so that f is improperly integrable on [0, c0).

On the other hand, the map f? : [0,00) — R is given by f?(x) = % for z € [n—1,n] with n € Z*, and
the harmonic series > % diverges. Given R > 0 we can choose m € Z* so that n > m — 22:1 % > R, and
then for r > m, and letting n = |r], we have

=]

Thus lim f f = oo so that f? is not improperly integrable on [0, oo)
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