1: (a) Prove that there exist (at least) 3 distinct values of $x \in \mathbb{R}$ such that $8x^3 = 6x + 1$.

Solution: Let $f(x) = 8x^3 - 6x - 1$. Notice that f(x) is continuous and we have $f(x) = 0 \iff 8x^3 = 6x + 1$. By the Intermediate Value Theorem, since f(-1) = -3 < 0 and $f\left(-\frac{1}{2}\right) = 1 > 0$, there is a number $x_1 \in \left(-1, -\frac{1}{2}\right)$ such that $f(x_1) = 0$. Similarly, since $f\left(-\frac{1}{2}\right) = 1 > 0$ and f(0) = -1 < 0, there is a number $x_2 \in \left(-\frac{1}{2}, 0\right)$ with $f(x_2) = 0$, and since f(0) = -1 < 0 and f(1) = 1 > 0, there is a number $x_3 \in (0, 1)$ with $f(x_3) = 0$. (In fact, the exact values of x_1, x_2 and x_3 are $x_1 = -\cos(40^\circ), x_2 = -\sin(10^\circ)$ and $x_3 = \cos(20^\circ)$).

(b) Let $f: [0,2] \to \mathbb{R}$ be continuous with f(0) = f(2). Prove that f(x) = f(x+1) for some $x \in [0,1]$.

Solution: Define $g: [0,1] \to \mathbb{R}$ by g(x) = f(x+1) - f(x). Note that g is continuous and

$$g(1) = f(2) - f(1) = f(0) - f(1) = -(f(1) - f(0)) = -g(0).$$

By the Intermediate Value Theorem, there is a number $x \in [0, 1]$ with g(x) = 0 (indeed if $g(0) \neq 0$ then one of the numbers g(0) and g(1) is positive and the other is negative so there is a number $x \in (0, 1)$ with g(x) = 0). Then we have 0 = g(x) = f(x+1) - f(x) and so f(x) = f(x+1).

(c) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Suppose that $|f(x) - f(y)| \ge |x - y|$ for all $x, y \in \mathbb{R}$. Prove that f is bijective (that is, f is injective and surjective).

Solution: First we note that f is injective since when $x \neq y$ we have $|f(x) - f(y)| \geq |x - y| > 0$ so that $f(x) \neq f(y)$. Consider the two intervals $I = [0, \infty)$ and $J = (-\infty, 0]$. We claim that the image f(I) entirely contains one of the two intervals $[f(0),\infty)$ and $(-\infty, f(0)]$. Since the set \mathbb{Z}^+ is infinite and f is injective, either there exist infinitely many $k \in \mathbb{Z}^+$ such that f(k) > f(0) or there exist infinitely many $k \in \mathbb{Z}^+$ such that f(k) < f(0). Consider the case that there exist infinitely many $k \in \mathbb{Z}^+$ such that f(k) > f(0). We claim that, in this case, we have $[f(0), \infty) \subseteq f(I)$. Choose $k_1 < k_2 < k_3 < \cdots$ such that $f(k_j) > f(0)$ for every index j. For every index j, since $f(k_j) > f(0)$ and $|f(k_j) - f(0)| \ge |k_j - 0| = k_j$, we have $f(k_j) > f(0) + k_j$. Let $y \in [f(0), \infty)$. Choose j with $k_i \ge y + f(0)$ so that we have $f(k_i) \ge f(0) + k_i \ge y$. Since f is continuous and $f(0) \leq y \leq f(k_i)$, it follows from the Intermediate Value Theorem that we can choose $x \in [0, k_i]$ such that f(x) = y. This proves our claim that $[f(0), \infty) \subseteq f(I)$. Similarly, in the case that there exist infinitely many $k \in \mathbb{Z}^+$ with f(k) < f(0) we have $(-\infty, f(0)] \subseteq f(I)$. Thus one of the two intervals $K = [f(0), \infty)$ and $L = (-\infty, f(0)]$ is entirely contained in f(I). A similar argument shows that one of the two intervals K and L is entirely contained in f(J). Since f is injective, it is not possible that one of K and L can be contained in both of f(I) and f(J) (for example if we had $K \subseteq f(I) \cap f(L)$, then given $f(0) \neq y \in K$ we could choose $0 \neq x_1 \in I$ and $0 \neq x_2 \in J$ with $f(x_1) = y = f(x_2)$). Thus K is contained in one of the sets f(I) and f(J), and L is contained in the other. Thus we have $\mathbb{R} = K \cup L \subseteq f(I) \cup f(J) = f(I \cup J) = f(\mathbb{R})$, or in other words, f is surjective.

2: (a) Find $\int_0^2 3x^2 - x \, dx$ by evaluating the limit of a sequence of Riemann sums.

Solution: For fixed $n \in \mathbb{Z}^+$, let $X_n = \{x_0, x_1, \dots, x_n\}$ be the partition of [0, 2] into n equal-sized sub-intervals, so we have $x_k = \frac{2k}{n}$ with $\Delta_k x = \frac{2}{n}$, and for each index k, let t_k be the right endpoint, that is $t_k = x_k$, and let S_n be the resulting Riemann sum for the function $f(x) = 3x^2 - x$. Thus

$$\int_{0}^{2} 3x^{2} - x \, dx = \lim_{n \to \infty} S_{n} = \lim_{n \to \infty} \sum_{k=1}^{n} f(t_{k}) \Delta_{k} x = \lim_{n \to \infty} \sum_{k=1}^{n} \left(3\left(\frac{2k}{n}\right)^{2} - \frac{2k}{n} \right) \left(\frac{2}{n}\right)$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{24k^{2}}{n^{3}} - \frac{4k}{n^{2}} \right) = \lim_{n \to \infty} \left(\frac{24}{n^{3}} \sum_{k=1}^{n} k^{2} - \frac{4}{n^{2}} \sum_{k=1}^{n} k \right)$$
$$= \lim_{n \to \infty} \left(\frac{24}{n^{3}} \cdot \frac{n(n+1)(2n+1)}{6} - \frac{4}{n^{2}} \cdot \frac{n(n+1)}{2} \right) = 8 - 2 = 6.$$

(b) Find $\int_0^4 \sqrt{x} \, dx$ by evaluating the limit of a sequence of Riemann sums.

Solution: Let $f(x) = \sqrt{x}$ on [0, 4]. Note that the range of f is [0, 2]. For $n \in \mathbb{Z}^+$, let $Y_n = \{y_0, y_1, \dots, y_n\}$ be the partition of the range [0, 2] into n equal sub-intervals, so we have $y_k = \frac{2k}{n}$, let $X_n = \{x_0, x_1, \dots, x_n\}$ be the corresponding partition of the domain [0, 4] given by $x_k = y_k^2 = \frac{4k^2}{n^2}$, and let $t_k = x_k$. Note that $\Delta_k x = (x_k - x_{k-1}) = \frac{4(k^2 - (k-1)^2)}{n^2} = \frac{4(2k-1)}{n^2}$ and we have $|X_n| = \Delta_n x = \frac{4(2n-1)}{n^2} \to 0$ as $n \to \infty$, and so

$$\int_{0}^{4} \sqrt{x} \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(t_{k}) \Delta_{k} x = \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{x_{k}} \Delta_{k} x = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{2k}{n} \cdot \frac{4(2k-1)}{n^{2}}$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{16k^{2}}{n^{3}} - \frac{8k}{n^{3}} \right) = \lim_{n \to \infty} \left(\frac{16}{n^{3}} \sum_{k=1}^{n} k^{2} - \frac{8}{n^{3}} \sum_{k=1}^{n} k \right)$$
$$= \lim_{n \to \infty} \left(\frac{16}{n^{3}} \cdot \frac{n(n+1)(2n+1)}{6} - \frac{8}{n^{3}} \cdot \frac{n(n+1)}{2} \right) = \frac{16}{3}.$$

3: (a) Define $f: [0,1] \to \mathbb{R}$ by f(x) = x if $x \in \mathbb{Q}$, and f(x) = 2x if $x \notin \mathbb{Q}$. Prove that f is not integrable on [0,1]. Solution: Let g(x) = x and h(x) = 2x. Note that g and h are both integrable on [0,1] with $\int_0^1 g = \int_0^1 x \, dx = \frac{1}{2}$ and $\int_0^1 h = \int_0^1 2x \, dx = 1$. Suppose, for a contradiction, that f is integrable on [0,1] and let $I = \int_0^1 f$. Taking $\epsilon = \frac{1}{8}$, choose $\delta > 0$ such that for all partitions X of [0,1] with $|X| < \delta$, we have $|F - I| < \frac{1}{8}$, $|G - \frac{1}{2}| < \frac{1}{8}$ and $|H - 1| < \frac{1}{8}$ for all Riemann sums F, G and H for the functions f, g and h (respectively) on the partition X. Choose a partition $X = \{x_0, x_1, \dots, x_n\}$ of [0,1] with $|X| < \delta$. Since \mathbb{Q} is dense in \mathbb{R} , we can choose sample points $t_k \in [x_{k-1}, x_k]$ with $t_k \in \mathbb{Q}$, and then we have $f(t_k) = t_k = g(t_k)$ for all k. Thus $S = \sum_{k=1}^n t_k \Delta_k x$ is, simultaneously, a Riemann sum for both f and g on X, so we have $|S - I| < \frac{1}{8}$ and $|S - \frac{1}{2}| < \frac{1}{8}$, and hence $|I - \frac{1}{2}| < \frac{1}{4}$ so that $I < \frac{3}{4}$. Since $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} , we can choose sample points $s_k \in [x_{k-1}, x_k]$ with $s_k \notin \mathbb{Q}$, and then we have $f(s_k) = 2s_k = h(s_k)$ for all k. Thus $T = \sum_{k=1}^n 2s_k \Delta_k x$ is, simultaneously, a Riemann sum for both f and g on X, so we have $|I - 1| < \frac{1}{4}$ so that $I > \frac{3}{4}$.

(b) Define $g: [0,1] \to \mathbb{R}$ by $g(\frac{1}{n}) = 1$ for each $n \in \mathbb{Z}^+$, and g(x) = 0 when $x \notin \{\frac{1}{n} \mid n \in \mathbb{Z}^+\}$. Determine (with proof) whether g is integrable on [0,1].

Solution: We claim that g is integrable. Let $\epsilon > 0$. Choose $n \in \mathbb{Z}^+$ such that $\frac{1}{n} < \frac{\epsilon}{2}$. Choose $\delta > 0$ small enough so that $\frac{1}{n} + \delta < \frac{1}{n-1} - \delta$ and so that $2(n-1)\delta < \frac{\epsilon}{2}$. Let $X = \{x_0, x_1, \dots, x_{2n}\}$ be the partition of [0, 1] given by

 $\begin{aligned} x_0 &= 0, \ x_1 = \frac{1}{n}, \ x_2 = \frac{1}{n} + \delta, \ x_3 = \frac{1}{n-1} - \delta, \ x_4 = \frac{1}{n-1} + \delta, \ x_5 = \frac{1}{n-2} - \delta, \ \cdots, \ x_{2n-1} = 1 - \delta, \ x_{2n} = 1 \\ \text{so for } 1 < k < 2n, \text{ when } k \text{ is odd we have } x_k = \frac{1}{n-\frac{k-1}{2}} - \delta \text{ and when } k \text{ is even we have } x_k = \frac{1}{n-\frac{k-2}{2}} + \delta \\ \text{(note that we chose } \delta \text{ small enough so that } \frac{1}{n} + \delta < \frac{1}{n-1} - \delta \text{ to ensure that the endpoints } x_k \text{ are in increasing order}. \text{ Let } M_k \text{ and } m_k \text{ denote the supremum and the infimum of } g(t) \text{ for } t \in [x_{k-1}, x_k]. \text{ In the first interval } [x_0, x_1] = [0, \frac{1}{n}], \text{ we have } M_1 = 1 \text{ and } m_1 = 0 \text{ and } \Delta_1 x = \frac{1}{n} \text{ so that } (M_1 - m_1)\Delta_1 x = \frac{1}{n}. \text{ In the second interval } [x_1, x_2] = [\frac{1}{n}, \frac{1}{n} + \delta], \text{ we have } M_2 = 1 \text{ and } m_2 = 0 \text{ and } \Delta_2 x = \delta \text{ so that } (M_2 - m_2)\Delta_2 x = \delta. \text{ When } k \text{ is odd with } 2 < k < 2n \text{ and } \ell = n - \frac{k-1}{2}, \text{ the } k^{\text{th}} \text{ interval is } [x_{k-1}, x_k] = [\frac{1}{\ell} - \delta, \frac{1}{\ell} + \delta] \text{ and we have } M_k = 1, m_k = 0 \text{ and } \Delta_k x = 2\delta \text{ so that } (M_k - m_k)\Delta_k x = 2\delta. \text{ When } k \text{ is even with } 2 < k < 2n \text{ and } \ell = n - \frac{k-2}{2}, \text{ the } k^{\text{th}} \text{ interval } \text{ is } [x_{k-1}, x_k] = [\frac{1}{\ell} - \delta, \frac{1}{\ell} + \delta] \text{ and we have } M_k = 1, m_k = 0 \text{ and } \Delta_k x = 2\delta \text{ so that } (M_k - m_k)\Delta_k x = 2\delta. \text{ When } k \text{ is even with } 2 < k < 2n \text{ and } \ell = n - \frac{k-2}{2}, \text{ the } k^{\text{th}} \text{ interval } \text{ is } [x_{k-1}, x_k] = [\frac{1}{\ell+1} + \delta, \frac{1}{\ell} - \delta] \text{ and we have } M_k = m_k = 0 \text{ so that } (M_k - m_k)\Delta_k x = 0. \text{ Finally, in the } 2n^{\text{th}} \text{ interval } [x_{2n-1}, x_{2n}] = [1 - \frac{1}{\delta}, 1], \text{ we have } M_{2n} = 1, m_{2n} = 0 \text{ and } \Delta_{2n} x = \delta \text{ so that } (M_{2n} - m_{2n})\Delta_{2n} x = \delta. \text{ Thus for this partition, we have} \end{cases}$

$$U(g,X) - L(g,X) = \sum_{k=1}^{2n} (M_k - m_k) \Delta_k x = \frac{1}{n} + \delta + (n-2)2\delta + \delta = \frac{1}{n} + 2(n-1)\delta < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

4: Determine (with proof) which of the following statements are true (for all functions).

(a) Let f be bounded on [a, b], let $X_n = \{x_{n,0}, x_{n,1}, \dots, x_{n,n}\}$ be the partition of [a, b] into n equal subintervals, and let $S_n = \sum_{i=1}^n f(x_{n,i})\Delta_{n,i}x$. If $\lim_{n \to \infty} S_n$ exists and is finite, then f is integrable on [a, b].

Solution: This is FALSE. Consider the function $f:[0,1] \to [0,1]$ given by f(x) = 1 when $x \in \mathbb{Q}$ and f(x) = 0when $x \notin \mathbb{Q}$. We have seen that this function is not integrable. But for the partition X_n of [0,1] into nequal-sized subintervals, the endpoints $x_{n,k} = \frac{k}{n}$ all lie in \mathbb{Q} so that we always have $f(x_{n,k}) = 1$ for all n, k. It follows that for all $n \in \mathbb{Z}^+$ we have $S_n = \sum_{k=1}^n f(x_{n,k})\Delta_k x = \sum_{k=1}^n 1 \cdot \frac{1}{n} = 1$, and so $\lim_{n \to \infty} S_n = 1$.

(b) If $f \leq g \leq h$ on [a, b] and f and h are integrable on [a, b] with $\int_a^b f = \int_a^b h$, then g is integrable on [a, b].

Solution: This is TRUE. Suppose f and h are integrable on [a, b] with equal integrals, say $I = \int_a^b f = \int_a^b g$. Let $\epsilon > 0$. Choose partitions X_1 and X_2 of [a, b] so that $U(f, X_1) - L(f, X_1) < \frac{\epsilon}{2}$ and $U(h, X_2) - L(h, X_2) < \frac{\epsilon}{2}$. Let $X = X_1 \cup X_2$. Since $X_1 \subseteq X$ we have $L(f, X_1) \leq L(f, X) \leq I \leq U(f, X) \leq U(f, X_1)$ so that $0 \leq I - L(f, X) \leq U(f, X_1) - L(f, X_1) < \frac{\epsilon}{2}$. Similarly, since $X_2 \subseteq X$ we have $0 < U(h, X) - I < \frac{\epsilon}{2}$. Say $X = (x_0, x_1, \cdots, x_n)$. For each index k with $1 \leq k \leq n$, let $M_k(f) = \sup\{f(t) | t \in [x_{k-1}, x_k]\}$ and $m_k(f) = \inf\{f(t) | t \in [x_{k-1}, x_k]\}$, and define $M_k(g)$, $m_k(g)$, $M_k(h)$ and $m_k(h)$ similarly. Since $f(t) \leq g(t) \leq h(t)$ for all $t \in [a, b]$, it follows that $M_k(f) \leq M_k(g) \leq M_k(h)$ and $m_k(f) \leq m_k(g) \leq m_k(h)$ for all indices k. Since $M_k(g) \leq M_k(h)$ for all k we have $U(g, X) = \sum_{k=1}^n M_k(g)\Delta_k x \leq \sum_{k=1}^n M_k(h)\Delta_k x = U(h, X)$, Similarly, since $m_k(f) \leq m_k(g)$ for all k we have $L(f, X) \leq L(g, X)$. Thus

$$U(g,X) - L(g,X) \le U(h,X) - L(f,X) = (U(h,X) - I) + (I - L(f,X)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

(c) For $f:[0,\infty) \to \mathbb{R}$, we say that f is improperly integrable on $[0,\infty)$ when f is integrable on [0,r] for all r > 0 and $\lim_{r \to \infty} \int_0^r f(x) dx$ exists as a finite real number. If f is improperly integrable on $[0,\infty)$ then so is f^2 .

Solution: This is FALSE. For example, define $f: [0, \infty) \to \mathbb{R}$ by $f(x) = \frac{(-1)^{n+1}}{\sqrt{n}}$ for $x \in [n-1, n)$ with $n \in \mathbb{Z}^+$. We claim that f is improperly integrable on $[0, \infty)$. Note that f is integrable on [0, r] for all r > 0 since it is integrable on each interval [k-1, k] with $1 \le k \le r$ and on the interval [n, r] with $n = \lfloor r \rfloor$. Also note that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges by the Alternating Series test. Let $S_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{\sqrt{k}}$ and let $S = \lim_{n \to \infty} S_n$ (in fact, $S = \ln 2$, but we do not need to prove this). We claim that $\lim_{r \to \infty} \int_0^r f = S$. Let $\epsilon > 0$. Choose $m \in \mathbb{Z}^+$ so that when $n \ge m$ we have $|S_n - S| < \frac{\epsilon}{2}$ and $\frac{1}{\sqrt{n+1}} < \frac{\epsilon}{2}$. Let $r \ge m$, let $n = \lfloor r \rfloor$, and note that $n \ge m$. Then

$$\left|\int_{0}^{r} f - S\right| = \left|\int_{0}^{n} f + \int_{n}^{r} f - S\right| = \left|S_{n} + \frac{(-1)^{n}(r-n)}{\sqrt{n+1}} - S\right| \le |S_{n} - S| + \frac{1}{\sqrt{n+1}} < \epsilon.$$

Thus $\int_0^r = S$, as claimed, so that f is improperly integrable on $[0, \infty)$.

On the other hand, the map $f^2: [0,\infty) \to \mathbb{R}$ is given by $f^2(x) = \frac{1}{n}$ for $x \in [n-1,n]$ with $n \in \mathbb{Z}^+$, and the harmonic series $\sum \frac{1}{n}$ diverges. Given $R \ge 0$ we can choose $m \in \mathbb{Z}^+$ so that $n \ge m \Longrightarrow \sum_{k=1}^n \frac{1}{k} > R$, and then for $r \ge m$, and letting $n = \lfloor r \rfloor$, we have

$$\int_0^r f^2 = \int_0^n f^2 + \int_n^r f^2 \ge \int_0^n f^2 = \sum_{k=1}^n \frac{1}{k} > R.$$

Thus $\lim_{r\to\infty} \int_0^r f = \infty$ so that f^2 is not improperly integrable on $[0,\infty)$.