
PMATH 333 Real Analysis, Solutions to Assignment 3

1: (a) Prove that there exist (at least) 3 distinct values of x ∈ R such that 8x3 = 6x+ 1.

Solution: Let f(x) = 8x3−6x−1. Notice that f(x) is continuous and we have f(x) = 0 ⇐⇒ 8x3 = 6x+1. By
the Intermediate Value Theorem, since f(−1) = −3 < 0 and f

(
− 1

2

)
= 1 > 0, there is a number x1 ∈

(
−1,− 1

2

)
such that f(x1) = 0. Similarly, since f

(
− 1

2

)
= 1 > 0 and f(0) = −1 < 0, there is a number x2 ∈

(
− 1

2 , 0
)

with f(x2) = 0, and since f(0) = −1 < 0 and f(1) = 1 > 0, there is a number x3 ∈ (0, 1) with f(x3) = 0.
(
In

fact, the exact values of x1, x2 and x3 are x1 = − cos(40◦), x2 = − sin(10◦) and x3 = cos(20◦)
)
.

(b) Let f : [0, 2]→ R be continuous with f(0) = f(2). Prove that f(x) = f(x+ 1) for some x ∈ [0, 1].

Solution: Define g : [0, 1]→ R by g(x) = f(x+ 1)− f(x). Note that g is continuous and

g(1) = f(2)− f(1) = f(0)− f(1) = −
(
f(1)− f(0)

)
= −g(0).

By the Intermediate Value Theorem, there is a number x ∈ [0, 1] with g(x) = 0
(
indeed if g(0) 6= 0 then one of

the numbers g(0) and g(1) is positive and the other is negative so there is a number x ∈ (0, 1) with g(x) = 0
)
.

Then we have 0 = g(x) = f(x+ 1)− f(x) and so f(x) = f(x+ 1).

(c) Let f : R→ R be continuous. Suppose that |f(x)−f(y)| ≥ |x−y| for all x, y ∈ R. Prove that f is bijective
(that is, f is injective and surjective).

Solution: First we note that f is injective since when x 6= y we have |f(x) − f(y)| ≥ |x − y| > 0 so that
f(x) 6= f(y). Consider the two intervals I = [0,∞) and J = (−∞, 0]. We claim that the image f(I) entirely
contains one of the two intervals [f(0),∞) and (−∞, f(0)]. Since the set Z+ is infinite and f is injective,
either there exist infinitely many k ∈ Z+ such that f(k) > f(0) or there exist infinitely many k ∈ Z+ such
that f(k) < f(0). Consider the case that there exist infinitely many k ∈ Z+ such that f(k) > f(0). We claim
that, in this case, we have [f(0),∞) ⊆ f(I). Choose k1 < k2 < k3 < · · · such that f(kj) > f(0) for every
index j. For every index j, since f(kj) > f(0) and

∣∣f(kj)− f(0)
∣∣ ≥ |kj − 0| = kj , we have f(kj) > f(0) + kj .

Let y ∈ [f(0),∞). Choose j with kj ≥ y + f(0) so that we have f(kj) ≥ f(0) + kj ≥ y. Since f is continuous
and f(0) ≤ y ≤ f(kj), it follows from the Intermediate Value Theorem that we can choose x ∈ [0, kj ] such
that f(x) = y. This proves our claim that [f(0),∞) ⊆ f(I). Similarly, in the case that there exist infinitely
many k ∈ Z+ with f(k) < f(0) we have (−∞, f(0)] ⊆ f(I). Thus one of the two intervals K = [f(0),∞) and
L = (−∞, f(0)] is entirely contained in f(I). A similar argument shows that one of the two intervals K and
L is entirely contained in f(J). Since f is injective, it is not possible that one of K and L can be contained
in both of f(I) and f(J) (for example if we had K ⊆ f(I) ∩ f(L), then given f(0) 6= y ∈ K we could choose
0 6= x1 ∈ I and 0 6= x2 ∈ J with f(x1) = y = f(x2) ). Thus K is contained in one of the sets f(I) and f(J),
and L is contained in the other. Thus we have R = K ∪L ⊆ f(I)∪f(J) = f(I ∪J) = f(R), or in other words,
f is surjective.



2: (a) Find

∫ 2

0

3x2−x dx by evaluating the limit of a sequence of Riemann sums.

Solution: For fixed n ∈ Z+, let Xn = {x0, x1, · · · , xn} be the partition of [0, 2] into n equal-sized sub-intervals,
so we have xk = 2k

n with ∆kx = 2
n , and for each index k, let tk be the right endpoint, that is tk = xk, and let

Sn be the resulting Riemann sum for the function f(x) = 3x2 − x. Thus∫ 2

0

3x2− x dx = lim
n→∞

Sn = lim
n→∞

n∑
k=1

f(tk)∆kx = lim
n→∞

n∑
k=1

(
3
(
2k
n

)2 − 2k
n

)(
2
n

)
= lim
n→∞

n∑
k=1

(
24k2

n3 − 4k
n2

)
= lim
n→∞

(
24
n3

n∑
k=1

k2 − 4
n2

n∑
k=1

k
)

= lim
n→∞

(
24
n3 · n(n+1)(2n+1)

6 − 4
n2 · n(n+1)

2

)
= 8− 2 = 6 .

(b) Find

∫ 4

0

√
x dx by evaluating the limit of a sequence of Riemann sums.

Solution: Let f(x) =
√
x on [0, 4]. Note that the range of f is [0, 2]. For n ∈ Z+, let Yn = {y0, y1, · · · , yn}

be the partition of the range [0, 2] into n equal sub-intervals, so we have yk = 2k
n , let Xn = {x0, x1, · · · , xn}

be the corresponding partition of the domain [0, 4] given by xk = yk
2 = 4k2

n2 , and let tk = xk. Note that

∆kx = (xk − xk−1) = 4(k2−(k−1)2)
n2 = 4(2k−1)

n2 and we have |Xn| = ∆nx = 4(2n−1)
n2 → 0 as n→∞, and so∫ 4

0

√
x dx = lim

n→∞

n∑
k=1

f(tk)∆kx = lim
n→∞

n∑
k=1

√
xk ∆kx = lim

n→∞

n∑
k=1

2k
n ·

4(2k−1)
n2

= lim
n→∞

n∑
k=1

(
16k2

n3 − 8k
n3

)
= lim
n→∞

(
16
n3

n∑
k=1

k2 − 8
n3

n∑
k=1

k
)

= lim
n→∞

(
16
n3 · n(n+1)(2n+1)

6 − 8
n3 · n(n+1)

2

)
= 16

3 .



3: (a) Define f : [0, 1]→ R by f(x) = x if x ∈ Q, and f(x) = 2x if x /∈ Q. Prove that f is not integrable on [0, 1].

Solution: Let g(x) = x and h(x) = 2x. Note that g and h are both integrable on [0, 1] with
∫ 1

0
g =

∫ 1

0
x dx = 1

2

and
∫ 1

0
h =

∫ 1

0
2x dx = 1. Suppose, for a contradiction, that f is integrable on [0, 1] and let I =

∫ 1

0
f . Taking

ε = 1
8 , choose δ > 0 such that for all partitions X of [0, 1] with |X| < δ, we have |F − I| < 1

8 , |G− 1
2

∣∣ < 1
8 and∣∣H − 1

∣∣ < 1
8 for all Riemann sums F , G and H for the functions f , g and h (respectively) on the partition X.

Choose a partition X = {x0, x1, · · · , xn} of [0, 1] with |X| < δ. Since Q is dense in R, we can choose sample
points tk ∈ [xk−1, xk] with tk ∈ Q, and then we have f(tk) = tk = g(tk) for all k. Thus S =

∑n
k=1 tk ∆kx is,

simultaneously, a Riemann sum for both f and g on X, so we have |S − I| < 1
8 and |S − 1

2 | <
1
8 , and hence∣∣I− 1

2

∣∣ < 1
4 so that I < 3

4 . Since R\Q is dense in R, we can choose sample points sk ∈ [xk−1, xk] with sk /∈ Q,
and then we have f(sk) = 2sk = h(sk) for all k. Thus T =

∑n
k=1 2sk ∆kx is, simultaneously, a Riemann sum

for both f and h on X, so we have |T − I| < 1
8 and |T − 1| < 1

8 , and hence |I − 1| < 1
4 so that I > 3

4 .

(b) Define g : [0, 1]→ R by g
(
1
n

)
= 1 for each n∈Z+, and g(x) = 0 when x /∈

{
1
n

∣∣n∈Z+
}

. Determine (with
proof) whether g is integrable on [0, 1].

Solution: We claim that g is integrable. Let ε > 0. Choose n ∈ Z+ such that 1
n < ε

2 . Choose δ > 0 small
enough so that 1

n + δ < 1
n−1 − δ and so that 2(n− 1)δ < ε

2 . Let X = {x0, x1, · · · , x2n} be the partition of [0, 1]
given by

x0 = 0 , x1 = 1
n , x2 = 1

n + δ , x3 = 1
n−1 − δ , x4 = 1

n−1 + δ , x5 = 1
n−2 − δ , · · · , x2n−1 = 1− δ , x2n = 1

so for 1 < k < 2n, when k is odd we have xk = 1
n− k−1

2

− δ and when k is even we have xk = 1
n− k−2

2

+ δ

(note that we chose δ small enough so that 1
n + δ < 1

n−1 − δ to ensure that the endpoints xk are in increasing
order). Let Mk and mk denote the supremum and the infimum of g(t) for t ∈ [xk−1, xk]. In the first interval
[x0, x1] =

[
0, 1

n

]
, we have M1 = 1 and m1 = 0 and ∆1x = 1

n so that (M1−m1)∆1x = 1
n . In the second interval

[x1, x2] =
[
1
n ,

1
n + δ

]
, we have M2 = 1 and m2 = 0 and ∆2x = δ so that (M2 −m2)∆2x = δ. When k is odd

with 2 < k < 2n and ` = n− k−1
2 , the kth interval is [xk−1, xk] =

[
1
` − δ,

1
` + δ

]
and we have Mk = 1, mk = 0

and ∆kx = 2δ so that (Mk−mk)∆kx = 2δ. When k is even with 2 < k < 2n and ` = n− k−2
2 , the kth interval

is [xk−1, xk] =
[

1
`+1 + δ, 1` − δ

]
and we have Mk = mk = 0 so that (Mk −mk)∆kx = 0. Finally, in the 2nth

interval [x2n−1, x2n] =
[
1 − 1

δ , 1
]
, we have M2n = 1, m2n = 0 and ∆2nx = δ so that (M2n −m2n)∆2nx = δ.

Thus for this partition, we have

U(g,X)− L(g,X) =
2n∑
k=1

(Mk −mk)∆kx = 1
n + δ + (n− 2)2δ + δ = 1

n + 2(n− 1)δ < ε
2 + ε

2 = ε.



4: Determine (with proof) which of the following statements are true (for all functions).

(a) Let f be bounded on [a, b], let Xn = {xn,0, xn,1, · · · , xn,n} be the partition of [a, b] into n equal subintervals,

and let Sn =

n∑
i=1

f(xn,i)∆n,ix. If lim
n→∞

Sn exists and is finite, then f is integrable on [a, b].

Solution: This is FALSE. Consider the function f : [0, 1]→ [0, 1] given by f(x) = 1 when x ∈ Q and f(x) = 0
when x /∈ Q. We have seen that this function is not integrable. But for the partition Xn of [0, 1] into n
equal-sized subintervals, the endpoints xn,k = k

n all lie in Q so that we always have f(xn,k) = 1 for all n, k. It

follows that for all n ∈ Z+ we have Sn =
n∑
k=1

f(xn,k)∆kx =
n∑
k=1

1 · 1n = 1, and so lim
n→∞

Sn = 1.

(b) If f ≤ g ≤ h on [a, b] and f and h are integrable on [a, b] with

∫ b

a

f =

∫ b

a

h, then g is integrable on [a, b].

Solution: This is TRUE. Suppose f and h are integrable on [a, b] with equal integrals, say I =
∫ b
a
f =

∫ b
a
g. Let

ε > 0. Choose partitions X1 and X2 of [a, b] so that U(f,X1)−L(f,X1) < ε
2 and U(h,X2)−L(h,X2) < ε

2 . Let
X = X1∪X2. Since X1 ⊆ X we have L(f,X1) ≤ L(f,X) ≤ I ≤ U(f,X) ≤ U(f,X1) so that 0 ≤ I−L(f,X) ≤
U(f,X1) − L(f,X1) < ε

2 . Similarly, since X2 ⊆ X we have 0 < U(h,X) − I < ε
2 . Say X = (x0, x1, · · · , xn).

For each index k with 1 ≤ k ≤ n, let Mk(f) = sup
{
f(t)

∣∣t ∈ [xk−1, xk]
}

and mk(f) = inf
{
f(t)

∣∣t ∈ [xk−1, xk]
}

,
and define Mk(g), mk(g), Mk(h) and mk(h) similarly. Since f(t) ≤ g(t) ≤ h(t) for all t ∈ [a, b], it folows that
Mk(f) ≤ Mk(g) ≤ Mk(h) and mk(f) ≤ mk(g) ≤ mk(h) for all indices k. Since Mk(g) ≤ Mk(h) for all k we

have U(g,X) =
n∑
k=1

Mk(g)∆kx ≤
n∑
k=1

Mk(h)∆kx = U(h,X), Similarly, since mk(f) ≤ mk(g) for all k we have

L(f,X) ≤ L(g,X). Thus

U(g,X)− L(g,X) ≤ U(h,X)− L(f,X) =
(
U(h,X)− I

)
+
(
I − L(f,X)

)
< ε

2 + ε
2 = ε.

(c) For f : [0,∞) → R, we say that f is improperly integrable on [0,∞) when f is integrable on [0, r] for all

r > 0 and lim
r→∞

∫ r

0

f(x) dx exists as a finite real number. If f is improperly integrable on [0,∞) then so is f2.

Solution: This is FALSE. For example, define f : [0,∞)→ R by f(x) = (−1)n+1

√
n

for x ∈ [n− 1, n) with n∈Z+.

We claim that f is improperly integrable on [0,∞). Note that f is integrable on [0, r] for all r > 0 since it
is integrable on each interval [k − 1, k] with 1≤k≤ r and on the interval [n, r] with n = brc. Also note that∑∞
n=1

(−1)n+1

√
n

converges by the Alternating Series test. Let Sn =
∑n
k=1

(−1)k+1

√
k

and let S = lim
n→∞

Sn (in fact,

S = ln 2, but we do not need to prove this). We claim that lim
r→∞

∫ r
0
f = S. Let ε > 0. Choose m ∈ Z+ so that

when n ≥ m we have |Sn − S| < ε
2 and 1√

n+1
< ε

2 . Let r ≥ m, let n = brc, and note that n ≥ m. Then∣∣∣∫ r
0
f − S

∣∣∣ =
∣∣∣∫ n

0
f +

∫ r
n
f − S

∣∣∣ =
∣∣∣Sn + (−1)n(r−n)√

n+1
− S

∣∣∣ ≤ |Sn − S|+ 1√
n+1

< ε .

Thus
∫ r
0

= S, as claimed, so that f is improperly integrable on [0,∞).

On the other hand, the map f2 : [0,∞) → R is given by f2(x) = 1
n for x ∈ [n−1, n] with n ∈ Z+, and

the harmonic series
∑

1
n diverges. Given R ≥ 0 we can choose m ∈ Z+ so that n ≥ m =⇒

∑n
k=1

1
k > R, and

then for r ≥ m, and letting n = brc, we have∫ r
0
f2 =

∫ n
0
f2 +

∫ r
n
f2 ≥

∫ n
0
f2 =

n∑
k=1

1
k > R.

Thus lim
r→∞

∫ r
0
f =∞ so that f2 is not improperly integrable on [0,∞).


