1: (a) Prove that there exist (at least) 3 distinct values of $x \in \mathbb{R}$ such that $8 x^{3}=6 x+1$.
(b) Let $f:[0,2] \rightarrow \mathbb{R}$ be continuous with $f(0)=f(2)$. Prove that $f(x)=f(x+1)$ for some $x \in[0,1]$.
(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Suppose that $|f(x)-f(y)| \geq|x-y|$ for all $x, y \in \mathbb{R}$. Prove that f is bijective (that is, f is injective and surjective).

2: (a) Find $\int_{0}^{2} 3 x^{2}-x d x$ by evaluating the limit of a sequence of Riemann sums for the function $f(x)=3 x^{2}-x$ using partitions of $[0,2]$ into equal-sized subintervals.
(b) Find $\int_{0}^{4} \sqrt{x} d x$ by evaluating the limit of a sequence of Riemann sums for the function $f(x)=\sqrt{x}$ using suitable partitions of $[0,4]$.

3: (a) Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x)=x$ if $x \in \mathbb{Q}$, and $f(x)=2 x$ if $x \notin \mathbb{Q}$. Prove that f is not integrable on $[0,1]$.
(b) Define $g:[0,1] \rightarrow \mathbb{R}$ by $g\left(\frac{1}{n}\right)=1$ for each $n \in \mathbb{Z}^{+}$, and $g(x)=0$ when $x \notin\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}^{+}\right\}$. Determine (with proof) whether g is integrable on $[0,1]$.

4: Determine (with proof) which of the following statements are true (for all functions).
(a) Let f be bounded on $[a, b]$, let $X_{n}=\left\{x_{n, 0}, x_{n, 1}, \cdots, x_{n, n}\right\}$ be the partition of $[a, b]$ into n equal subintervals, and let $S_{n}=\sum_{i=1}^{n} f\left(x_{n, i}\right) \Delta_{n, i} x$. If $\lim _{n \rightarrow \infty} S_{n}$ exists and is finite, then f is integrable on $[a, b]$.
(b) If $f \leq g \leq h$ on $[a, b]$ and f and h are integrable on $[a, b]$ with $\int_{a}^{b} f=\int_{a}^{b} h$, then g is integrable on $[a, b]$.
(c) For $f:[0, \infty) \rightarrow \mathbb{R}$, we say that f is improperly integrable on $[0, \infty)$ when f is integrable on $[0, r]$ for all $r>0$ and $\lim _{r \rightarrow \infty} \int_{0}^{r} f(x) d x$ exists as a finite real number. If f is improperly integrable on $[0, \infty)$ then so is f^{2}.

