- 1: (a) Prove that there exist (at least) 3 distinct values of $x \in \mathbb{R}$ such that $8x^3 = 6x + 1$.
 - (b) Let $f: [0,2] \to \mathbb{R}$ be continuous with f(0) = f(2). Prove that f(x) = f(x+1) for some $x \in [0,1]$.
 - (c) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Suppose that $|f(x) f(y)| \ge |x y|$ for all $x, y \in \mathbb{R}$. Prove that f is bijective (that is, f is injective and surjective).
- 2: (a) Find $\int_0^2 3x^2 x \, dx$ by evaluating the limit of a sequence of Riemann sums for the function $f(x) = 3x^2 x$ using partitions of [0, 2] into equal-sized subintervals.
 - (b) Find $\int_0^x \sqrt{x} \, dx$ by evaluating the limit of a sequence of Riemann sums for the function $f(x) = \sqrt{x}$ using suitable partitions of [0, 4].
- **3:** (a) Define $f: [0,1] \to \mathbb{R}$ by f(x) = x if $x \in \mathbb{Q}$, and f(x) = 2x if $x \notin \mathbb{Q}$. Prove that f is not integrable on [0,1]. (b) Define $g: [0,1] \to \mathbb{R}$ by $g(\frac{1}{n}) = 1$ for each $n \in \mathbb{Z}^+$, and g(x) = 0 when $x \notin \{\frac{1}{n} \mid n \in \mathbb{Z}^+\}$. Determine (with proof) whether g is integrable on [0,1].
- 4: Determine (with proof) which of the following statements are true (for all functions).
 - (a) Let f be bounded on [a, b], let $X_n = \{x_{n,0}, x_{n,1}, \dots, x_{n,n}\}$ be the partition of [a, b] into n equal subintervals, and let $S_n = \sum_{i=1}^n f(x_{n,i})\Delta_{n,i}x$. If $\lim_{n \to \infty} S_n$ exists and is finite, then f is integrable on [a, b].
 - (b) If $f \le g \le h$ on [a, b] and f and h are integrable on [a, b] with $\int_a^b f = \int_a^b h$, then g is integrable on [a, b]. (c) For $f: [0, \infty) \to \mathbb{R}$, we say that f is improperly integrable on $[0, \infty)$ when f is integrable on [0, r] for all r > 0 and $\lim_{r \to \infty} \int_0^r f(x) dx$ exists as a finite real number. If f is improperly integrable on $[0, \infty)$ then so is f^2 .