
PMATH 333 Real Analysis, Solutions to Assignment 3.5

1: For each of the following sequences of functions (fn)n≥1, find the set A of points x ∈ R for which the sequence
of real numbers

(
fn(x)

)
n≥1 converges, find the pointwise limit g(x) = lim

n→∞
fn(x) for all x ∈ A, and determine

whether fn → g uniformly in A.

(a) fn(x) = (sinx)n

Solution: If x = π
2 + 2πk for some k ∈ Z then sinx = 1 and so fn(x) = 1 for all n, and so limn→∞ fn(x) = 1.

If x = −π2 + 2πk for some k ∈ Z then sinx = −1 so fn(x) = (−1)n and so lim
n→∞

fn(x) does not exist. If

x 6= π
2 + πk for any k ∈ Z then | sinx| < 1 so lim

n→∞
fn(x) = lim

n→∞
(sinx)n = 0. Thus the set of points for which

(fn(x)) converges is A =
{
x ∈ R

∣∣x 6= −π2 + 2πk for any k ∈ Z
}

, and the limit function g : A→ R is given by

g(x) =

{
0 , if x 6= π

2 + πk for any k ∈ Z
1 , if x = π

2 + 2πk for some k ∈ Z.

Since each function fn(x) is continuous everywhere but g(x) is not continuous at the points x = π
2 + 2πk with

k ∈ Z, the convergence cannot be uniform.

(b) fn(x) = x e−nx
2

Solution: When x = 0 we have fn(x) = 0 for all n, and when x 6= 0 we have limn→∞ nx2 = ∞ so that

limn→∞ fn(x) = limn→∞ x e−nx
2

= 0. Thus the set of points at which (fn)n≥1 converges is A = R, and
the limit function is the zero function g(x) = lim

n→∞
fn(x) = 0. We claim that fn → 0 uniformly on R.

Since e−nx
2

> 0 for all x, we have fn(x) ≤ 0 when x ≤ 0 and fn(x) ≥ 0 when x ≥ 0. Also, we have

fn
′(x) = (1 − 2nx2)e−nx

2

so that f ′n(x) ≤ 0 when x ≤ − 1√
2n

, f ′n(x) ≥ 0 when − 1√
2n
≤ x ≤ 1√

2n
, and

f ′n(x) ≤ 0 when x ≥ 1√
2n

. Thus the absolute minimum value of fn is f
(
− 1√

2n

)
= − 1√

2ne
and the absolute

maximum value of fn is fn
(

1√
2n

)
= 1√

2ne
, and hence |fn(x)− 0| < 1√

2ne
for all x ∈ R. It follows that fn → 0

uniformly on R as claimed. To be explicit, given ε > 0 we can choose m ∈ Z+ with m > 1
2e ε2 and then when

n ≥ m we have n > 1
2e ε2 so that 1√

2ne
< ε, and hence |fn(x)− 0| < 1√

2nε
< ε for all x ∈ R.

(c) fn(x) = xn − x2n

Solution: Note that fn(x) = xn − x2n = xn(1 − x2). When x < −1, for even values of n we have xn → +∞
and (1 − xn) → −∞ so that fn(x) = xn(1 − xn) → −∞, and for odd values of n we have xn → −∞ and
(1 − x2) → +∞ so that fn(x) → −∞, and so lim

n→∞
fn(x) = −∞. When x = −1, for even values of n we

have fn(x) = xn − x2n = 1 − 1 = 0 and for odd values of n we have fn = xn − x2n = −1 − 1 = −2 and so
lim
n→∞

fn(x) does not exist. When −1 < x < 1 we have xn → 0 and x2n → 0 and so lim
n→∞

fn(x) = 0. When

x = 1 we have fn(x) = 0 for all n so lim
n→∞

fn(x) = 0 When x > 1 we have xn → ∞ and (1 − xn) → −∞
and so fn(x) = xn(1− xn)→ −∞. Thus the set of points x ∈ R for which the sequence

(
fn(x)

)
converges is

A = (−1, 1] and the limit function g : (−1, 1]→ R is given by g(x) = 0 for all x ∈ (−1, 1]. The convergence is
not uniform because given any n ∈ Z+, since fn is continuous everywhere with fn(−1) = −2 and fn(0) = 0
we can, by the Intermediate Value Theorem, choose x ∈ (−1, 0) such that fn(x) = −1 and then we have
|fn(x)− g(x)| = 1.



2: Let (an)n≥1 be a sequence in R, let (fn)n≥1 be a sequence of functions fn : A ⊆ R → R, let g : A ⊆ R → R
and let h : R→ R.

(a) Suppose that
∑
n≥1 an converges and

∣∣fn+1(x) − fn(x)
∣∣ ≤ an for all n ≥ 1 and all x ∈ A. Show that

(fn)n≥0 converges uniformly on A.

Solution: Let ε > 0. Since each an ≥ 0 and
∑
an converges, by the Cauchy Criterion for Series we can choose

m ∈ Z+ such that for all ` > k ≥ m we have
∑̀

n=k+1

an < ε. Then for all ` > k ≥ m and all x ∈ A we have∣∣f`(x)− fk(x)
∣∣ =

∣∣(f`(x)− f`−1(x)) + (f`−1(x)− f`−2(x)) + · · ·+ (fk+1(x)− fk(x))
∣∣

≤
∣∣f`(x)− f`−1(x)

∣∣+
∣∣f`−1(x)− f`−2(x)

∣∣+ · · ·+
∣∣fk+1(x)− fk(x)

∣∣
≤ a` + a`−1 + · · ·+ ak+1 =

∑̀
n=k+1

an < ε.

Thus fn → f uniformly in A by the Cauchy Criterion for Uniform Convergence of Sequences of Functions.

(b) Suppose that fn → g uniformly on A and fn(x) ≥ 0 for all n ≥ 1 and all x ∈ A. Show that
√
fn →

√
g

uniformly on A.

Solution: Let ε > 0. Since fn → g uniformly on A we can choose m ∈ Z+ such that for all n ∈ Z+, if n ≥ m
then |fn(x) − g(x)| < ε2 for all x ∈ A. Let n ∈ Z+ with n ≥ m and let x ∈ A. If

√
fn(x) +

√
g(x) < ε then

(by the Triangle Inequality)
∣∣√fn(x)−

√
g(x)

∣∣ ≤√fn(x) +
√
g(x) < ε, and if

√
fn(x) +

√
g(x) ≥ ε then∣∣√fn(x)−

√
g(x)

∣∣ =

∣∣√fn(x)−√g(x)∣∣ ∣∣√fn(x)+√g(x)∣∣∣∣√fn(x)+√g(x)∣∣ =
|fn(x)−g(x)|√
fn(x)+

√
g(x)

<
ε2

ε = ε.

Thus
√
fn →

√
g uniformly on A, as required.

(c) Suppose that fn → g uniformly on A, g is bounded, and h is continuous. Prove that h ◦ fn → h ◦ g
uniformly on A.

Solution: Since f is bounded we can choose M ≥ 0 so that |f(x)| ≤ M for all x ∈ A. Since fn → f
uniformly on A we can choose m1 ∈ Z+ such that n ≥ m1 =⇒

∣∣fn(x) − f(x)
∣∣ ≤ 1 for all x ∈ A. Then for

n ≥ m1 and x ∈ A we have
∣∣fn(x)

∣∣ ≤ ∣∣fn(x) − f(x)
∣∣ +

∣∣f(x)
∣∣ ≤ 1 + M so that fn(x) ∈

[
− (M+1),M+1

]
.

Let ε > 0. Since g is uniformly continuous on
[
− (M +1),M +1

]
, we can choose δ > 0 so that for all

u, v ∈
[
− (M+1),M+1

]
we have |u − v| < δ =⇒

∣∣g(u) − g(v)
∣∣ < ε. Since fn → f uniformly on A we can

choose m ≥ m1 so that n ≥ m =⇒
∣∣fn(x)− f(x)

∣∣ < δ for all x ∈ A. Let n ≥ m and let x ∈ A. Then we have

fn(x), f(x) ∈
[
− (M+1),M+1

]
with

∣∣fn(x)− f(x)
∣∣ < δ and hence

∣∣g(fn(x)
)
− g
(
f(x)

)∣∣ < ε.



3: (a) Approximate 2−1/5 by a rational number so that the error is at most 1
40 .

Solution: By Theorem 4.40 (the sum of the binomial series)

2−1/5 =
(
1− 1

2

)1/5
=
∞∑
n=0

(
1/5
n

) (
− 1

2

)n
= 1−

(
1
5

) (
1
2

)
− ( 1

5 )( 4
5 )

2!

(
1
2

)2 − ( 1
5 )( 4

5 )( 9
5 )

3!

(
1
2

)3 − · · ·
= 1− 1

10 −
1·4

1022! −
1·4·9
1033! −

1·4·9·14
1044! − · · ·

∼= 1− 1
10 −

1·4
1022! = 1− 1

10 −
1
50 = 22

25

with error

E = 1·4·9
1033! + 1·4·9·14

1044! + 1·4·9·14·19
1055! + · · · = 1·4·9

1033!

(
1 + 14

10·4 + 14·19
102·4·5 + 14·19·24

103·4·5·6 + · · ·
)

< 1·4·9
1033!

(
1 + 20

10·4 + 20·25
102·4·5 + 20·25·30

103·4·5·6 + · · ·
)

= 6
1000

(
1 + 1

2 +
(
1
2

)2
+
(
1
2

)3
+ · · ·

)
= 12

1000 <
25

1000 = 1
40 .

(b) Evaluate
∞∑
n=1

n3

3n .

Solution: Let S =
∞∑
n=1

n3

3n For |x| < 1 we have 1
1−x =

∞∑
n=0

xn. Differentiate to get 1
(1−x)2 =

∞∑
n=1

nxn−1. Multiply

by x to get x
(1−x)2 =

∞∑
n=1

nxn. Differentiate again to get 1+x
(1−x)3 =

∞∑
n=1

n2xn−1. Multiply by x again to get

x+x2

(1−x)3 =
∞∑
n=1

n2xn. Differentiate a third time to get 1+4x+x2

(1−x)4 =
∞∑
n=1

n3xn−1. Finally, multiply by x to get

x+4x2+x3

(1−x)4 =
∞∑
n=1

n3xn. Put in x = 1
3 to get S =

1
3+

4
9+

1
27

( 2
3 )

4 = 33
8 .

(c) Evaluate
∞∑
n=0

(−1)n
4n

(
2n
n

)
.

Solution: Let an = (−1)n
4n

(
2n
n

)
. For n ≥ 1 we have

|an| = 1
4n

(
2n
n

)
= (2n)!

(2nn!)2 = 1·2·3·...·2n
(2·4·6·...·2n)2 = 1·3·5·...·(2n−1)

2·4·6·...·2n .

Since |an| = 3
2 ·

5
4 · . . . ·

2n−1
2n−2 ·

1
2n ≥

1
2n and

∞∑
n=1

1
2n diverges, it follows that

∑
|an| diverges by the Comparison

Test. Since a0 = 1 and |an| = 2n−1
2n |an−1| ≤ |an−1| for n ≥ 1, it follows that the sequence

(
|an|

)
is decreasing.

Since
|an|2 = 1

2 ·
1
2 ·

3
4 ·

3
4 ·

5
6 ·

5
6 · . . . ·

2n−1
2n ·

2n−1
2n ≤ 1

2 ·
2
3 ·

3
4 ·

4
5 · . . . ·

2n−1
2n ·

2n
2n+1 = 1

2n+1

we have |an| ≤ 1√
2n+1

−→ 0 as n→∞. Thus
∑
an =

∑
(−1)n|an| converges by the Alternating Series Test.

Thus
∑
an is conditionally convergent. Note that

(−1)n
4n

(
2n
n

)
= (−1)n

4n · (2n)!(n!)2 = (−1)n 1·2·3···(2n)
(2·4·6···(2n))2 = (−1)n 1·3·5···(2n−1)

2·4·6···(2n) =
(− 1

2 )(−
3
2 )(−

5
2 )···(−

2n−1
2 )

n! =
(−1/2

n

)
so for |x| < 1, by Theorem 4.40 (the sum of the binomial series) we have

(1 + x)−1/2 =
∞∑
n=0

(−1/2
n

)
xn =

n∑
n=0

(−1)n
4n

(
2n
n

)
xn.

Since
∞∑
n=0

(−1)n
4n

(
2n
n

)
converges (conditionally), it follows from Abel’s Theorem (Part 4 of Theorem 4.23)

that
n∑
n=0

(−1)n
4n

(
2n
n

)
xn converges uniformly on [0, 1] and hence by Theorem 4.14 (uniform convergence and

continuity) its sum g(x) =
∞∑
n=0

(−1)n
4n

(
2n
n

)
xn is continuous on [0, 1]. Since f(x) = (1+x)−1/2 is also continuous

on [0, 1] with f(x) = g(x) when x < 1, we have g(1) = f(1), that is

∞∑
n=0

(−1)n
4n

(
2n
n

)
= f(1) = (1 + 1)−1/2 = 1√

2
.



4: (a) Let sn =
∑n
k=0 ak for n ≥ 0. Show that if the power series

∑∞
n=0 anx

n has a positive radius of convergence,
then so does the power series

∑∞
n=0 snx

n.

Solution: Let R be the radius of convergence of the power series
∑∞
n=0 a

n
x , and suppose that R > 0. Recall

that 1
1−x =

∑∞
n=0 x

n for all |x| < 1. Let S = min{R, 1}. By the Multiplication of Power Series Theorem,
since

∑
anx

n and
∑
xn both converge for all |x| < S, the series

∑
snx

n also converges for all |x| < S with

∞∑
n=0

snx
n =

( n∑
n=0

anx
n
)( ∞∑

n=0
xn
)

=
( ∞∑
n=0

anx
n
)
· 1
1−x .

(b) (The Riemann Zeta Function) Define ζ : (1,∞) → R by ζ(x) =
∞∑
n=1

1
nx . Prove that ζ is differentiable

on (1,∞). Hint: use the Weierstrass M-Test, together with convergence tests from first year calculus, to show

that for all r > 1 the series
∑

1
nx and

∑ − lnn
nx both converge uniformly on [r,∞), then apply The Uniform

Convergence and Differentiation Theorem.

Solution: Note that
∑
n≥1

1
nx converges (it is a p-series with p = x > 1) and so ζ(x) =

∞∑
n=1

1
nx is well-defined.

Let r > 1. Let fn(x) = 1
nx and note that fn

′(x) = − lnn
nx . For all x ≥ r we have

∣∣fn(x)
∣∣ = 1

nx ≤ 1
nr , and

the series
∑

1
nr converges (its a p-series with p = r) and so the series

∑
fn(x) converges uniformly on [r,∞)

by the Weierstrass M-Test. Also, for all x ≥ r we have
∣∣fn′(x)

∣∣ = ln .n
nx ≤ lnn

nr . Choose p with 1 < p < r and

let q = r − p > 0. Then lnn
nr = lnn

nq · 1
np . By l’Hôpital’s Rule, we have lim

n→∞
lnn
nq = lim

n→∞
n−1

q nq−1 = lim
n→∞

1
q nq = 0,

so, for sufficiently large n, we have lnn
nq ≤ 1 hence lnn

nq · 1
np ≤ 1

np . Since lnn
nr ≤ 1

np for large values of n, and

the series
∑

1
np converges (since p > 1), it follows that the series

∑
lnn
nr converges by the Comparison Test.

Since
∣∣fn(x)

∣∣ ≤ lnn
nr for all x ∈ [r,∞) and

∑
lnn
nr converges, it follows that

∑
fn
′(x) converges uniformly on

[r,∞) by the Weierstrass M-Test. Since
∑
fn(x) and

∑
fn
′ converge uniforly on [r,∞), they also converge

uniformly on [r, s] for any value of s > r. By Theorem 4.16, it follows that the function ζ(x) =
∞∑
n=1

fn(x) is

differentiable on [r, s] for any value of s > r. Since ζ is differentiable on [r, s] for every 1 ≤ r < s, it follows
that ζ is differentiable on (1,∞). Indeed, given a > 1 we can choose r and s with 1 < r < a < s and then,
since ζ is differentiable on [r, s], it is differentiable at a.


