PMATH 333 Real Analysis, Solutions to Assignment 3.5

1: For each of the following sequences of functions $\left(f_{n}\right)_{n \geq 1}$, find the set A of points $x \in \mathbb{R}$ for which the sequence of real numbers $\left(f_{n}(x)\right)_{n \geq 1}$ converges, find the pointwise limit $g(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for all $x \in A$, and determine whether $f_{n} \rightarrow g$ uniformly in A.
(a) $f_{n}(x)=(\sin x)^{n}$

Solution: If $x=\frac{\pi}{2}+2 \pi k$ for some $k \in \mathbb{Z}$ then $\sin x=1$ and so $f_{n}(x)=1$ for all n, and so $\lim _{n \rightarrow \infty} f_{n}(x)=1$. If $x=-\frac{\pi}{2}+2 \pi k$ for some $k \in \mathbb{Z}$ then $\sin x=-1$ so $f_{n}(x)=(-1)^{n}$ and so $\lim _{n \rightarrow \infty} f_{n}(x)$ does not exist. If $x \neq \frac{\pi}{2}+\pi k$ for any $k \in \mathbb{Z}$ then $|\sin x|<1$ so $\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty}(\sin x)^{n}=0$. Thus the set of points for which $\left(f_{n}(x)\right)$ converges is $A=\left\{x \in \mathbb{R} \left\lvert\, x \neq-\frac{\pi}{2}+2 \pi k\right.\right.$ for any $\left.k \in \mathbb{Z}\right\}$, and the limit function $g: A \rightarrow \mathbb{R}$ is given by

$$
g(x)=\left\{\begin{array}{l}
0, \text { if } x \neq \frac{\pi}{2}+\pi k \text { for any } k \in \mathbb{Z} \\
1, \text { if } x=\frac{\pi}{2}+2 \pi k \text { for some } k \in \mathbb{Z}
\end{array}\right.
$$

Since each function $f_{n}(x)$ is continuous everywhere but $g(x)$ is not continuous at the points $x=\frac{\pi}{2}+2 \pi k$ with $k \in \mathbb{Z}$, the convergence cannot be uniform.
(b) $f_{n}(x)=x e^{-n x^{2}}$

Solution: When $x=0$ we have $f_{n}(x)=0$ for all n, and when $x \neq 0$ we have $\lim _{n \rightarrow \infty} n x^{2}=\infty$ so that $\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} x e^{-n x^{2}}=0$. Thus the set of points at which $\left(f_{n}\right)_{n \geq 1}$ converges is $A=\mathbb{R}$, and the limit function is the zero function $g(x)=\lim _{n \rightarrow \infty} f_{n}(x)=0$. We claim that $f_{n} \rightarrow 0$ uniformly on \mathbb{R}. Since $e^{-n x^{2}}>0$ for all x, we have $f_{n}(x) \leq 0$ when $x \leq 0$ and $f_{n}(x) \geq 0$ when $x \geq 0$. Also, we have $f_{n}{ }^{\prime}(x)=\left(1-2 n x^{2}\right) e^{-n x^{2}}$ so that $f_{n}^{\prime}(x) \leq 0$ when $x \leq-\frac{1}{\sqrt{2 n}}, f_{n}^{\prime}(x) \geq 0$ when $-\frac{1}{\sqrt{2 n}} \leq x \leq \frac{1}{\sqrt{2 n}}$, and $f_{n}^{\prime}(x) \leq 0$ when $x \geq \frac{1}{\sqrt{2 n}}$. Thus the absolute minimum value of f_{n} is $f\left(-\frac{1}{\sqrt{2} n}\right)=-\frac{1}{\sqrt{2 n e}}$ and the absolute maximum value of f_{n} is $f_{n}\left(\frac{1}{\sqrt{2 n}}\right)=\frac{1}{\sqrt{2 n e}}$, and hence $\left|f_{n}(x)-0\right|<\frac{1}{\sqrt{2 n e}}$ for all $x \in \mathbb{R}$. It follows that $f_{n} \rightarrow 0$ uniformly on \mathbb{R} as claimed. To be explicit, given $\epsilon>0$ we can choose $m \in \mathbb{Z}^{+}$with $m>\frac{1}{2 e \epsilon^{2}}$ and then when $n \geq m$ we have $n>\frac{1}{2 e \epsilon^{2}}$ so that $\frac{1}{\sqrt{2 n e}}<\epsilon$, and hence $\left|f_{n}(x)-0\right|<\frac{1}{\sqrt{2 n \epsilon}}<\epsilon$ for all $x \in \mathbb{R}$.
(c) $f_{n}(x)=x^{n}-x^{2 n}$

Solution: Note that $f_{n}(x)=x^{n}-x^{2 n}=x^{n}\left(1-x^{2}\right)$. When $x<-1$, for even values of n we have $x^{n} \rightarrow+\infty$ and $\left(1-x^{n}\right) \rightarrow-\infty$ so that $f_{n}(x)=x^{n}\left(1-x^{n}\right) \rightarrow-\infty$, and for odd values of n we have $x^{n} \rightarrow-\infty$ and $\left(1-x^{2}\right) \rightarrow+\infty$ so that $f_{n}(x) \rightarrow-\infty$, and so $\lim _{n \rightarrow \infty} f_{n}(x)=-\infty$. When $x=-1$, for even values of n we have $f_{n}(x)=x^{n}-x^{2 n}=1-1=0$ and for odd values of n we have $f_{n}=x^{n}-x^{2 n}=-1-1=-2$ and so $\lim _{n \rightarrow \infty} f_{n}(x)$ does not exist. When $-1<x<1$ we have $x^{n} \rightarrow 0$ and $x^{2 n} \rightarrow 0$ and so $\lim _{n \rightarrow \infty} f_{n}(x)=0$. When $x=1$ we have $f_{n}(x)=0$ for all n so $\lim _{n \rightarrow \infty} f_{n}(x)=0$ When $x>1$ we have $x^{n} \rightarrow \infty$ and $\left(1-x^{n}\right) \rightarrow-\infty$ and so $f_{n}(x)=x^{n}\left(1-x^{n}\right) \rightarrow-\infty$. Thus the set of points $x \in \mathbb{R}$ for which the sequence $\left(f_{n}(x)\right)$ converges is $A=(-1,1]$ and the limit function $g:(-1,1] \rightarrow \mathbb{R}$ is given by $g(x)=0$ for all $x \in(-1,1]$. The convergence is not uniform because given any $n \in \mathbb{Z}^{+}$, since f_{n} is continuous everywhere with $f_{n}(-1)=-2$ and $f_{n}(0)=0$ we can, by the Intermediate Value Theorem, choose $x \in(-1,0)$ such that $f_{n}(x)=-1$ and then we have $\left|f_{n}(x)-g(x)\right|=1$.

2: Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence in \mathbb{R}, let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of functions $f_{n}: A \subseteq \mathbb{R} \rightarrow \mathbb{R}$, let $g: A \subseteq \mathbb{R} \rightarrow \mathbb{R}$ and let $h: \mathbb{R} \rightarrow \mathbb{R}$.
(a) Suppose that $\sum_{n \geq 1} a_{n}$ converges and $\left|f_{n+1}(x)-f_{n}(x)\right| \leq a_{n}$ for all $n \geq 1$ and all $x \in A$. Show that $\left(f_{n}\right)_{n \geq 0}$ converges uniformly on A.
Solution: Let $\epsilon>0$. Since each $a_{n} \geq 0$ and $\sum a_{n}$ converges, by the Cauchy Criterion for Series we can choose $m \in \mathbb{Z}^{+}$such that for all $\ell>k \geq m$ we have $\sum_{n=k+1}^{\ell} a_{n}<\epsilon$. Then for all $\ell>k \geq m$ and all $x \in A$ we have

$$
\begin{aligned}
\left|f_{\ell}(x)-f_{k}(x)\right| & =\left|\left(f_{\ell}(x)-f_{\ell-1}(x)\right)+\left(f_{\ell-1}(x)-f_{\ell-2}(x)\right)+\cdots+\left(f_{k+1}(x)-f_{k}(x)\right)\right| \\
& \leq\left|f_{\ell}(x)-f_{\ell-1}(x)\right|+\left|f_{\ell-1}(x)-f_{\ell-2}(x)\right|+\cdots+\left|f_{k+1}(x)-f_{k}(x)\right| \\
& \leq a_{\ell}+a_{\ell-1}+\cdots+a_{k+1}=\sum_{n=k+1}^{\ell} a_{n}<\epsilon
\end{aligned}
$$

Thus $f_{n} \rightarrow f$ uniformly in A by the Cauchy Criterion for Uniform Convergence of Sequences of Functions.
(b) Suppose that $f_{n} \rightarrow g$ uniformly on A and $f_{n}(x) \geq 0$ for all $n \geq 1$ and all $x \in A$. Show that $\sqrt{f_{n}} \rightarrow \sqrt{g}$ uniformly on A.
Solution: Let $\epsilon>0$. Since $f_{n} \rightarrow g$ uniformly on A we can choose $m \in \mathbb{Z}^{+}$such that for all $n \in \mathbb{Z}^{+}$, if $n \geq m$ then $\left|f_{n}(x)-g(x)\right|<\epsilon^{2}$ for all $x \in A$. Let $n \in \mathbb{Z}^{+}$with $n \geq m$ and let $x \in A$. If $\sqrt{f_{n}(x)}+\sqrt{g(x)}<\epsilon$ then (by the Triangle Inequality) $\left|\sqrt{f_{n}(x)}-\sqrt{g(x)}\right| \leq \sqrt{f_{n}(x)}+\sqrt{g(x)}<\epsilon$, and if $\sqrt{f_{n}(x)}+\sqrt{g(x)} \geq \epsilon$ then

$$
\left|\sqrt{f_{n}(x)}-\sqrt{g(x)}\right|=\frac{\left|\sqrt{f_{n}(x)}-\sqrt{g(x)}\right|\left|\sqrt{f_{n}(x)}+\sqrt{g(x)}\right|}{\left|\sqrt{f_{n}(x)}+\sqrt{g(x)}\right|}=\frac{\left|f_{n}(x)-g(x)\right|}{\sqrt{f_{n}(x)}+\sqrt{g(x)}}<\frac{\epsilon^{2}}{\epsilon}=\epsilon .
$$

Thus $\sqrt{f_{n}} \rightarrow \sqrt{g}$ uniformly on A, as required.
(c) Suppose that $f_{n} \rightarrow g$ uniformly on A, g is bounded, and h is continuous. Prove that $h \circ f_{n} \rightarrow h \circ g$ uniformly on A.
Solution: Since f is bounded we can choose $M \geq 0$ so that $|f(x)| \leq M$ for all $x \in A$. Since $f_{n} \rightarrow f$ uniformly on A we can choose $m_{1} \in \mathbb{Z}^{+}$such that $n \geq m_{1} \Longrightarrow\left|f_{n}(x)-f(x)\right| \leq 1$ for all $x \in A$. Then for $n \geq m_{1}$ and $x \in A$ we have $\left|f_{n}(x)\right| \leq\left|f_{n}(x)-f(x)\right|+|f(x)| \leq 1+M$ so that $f_{n}(x) \in[-(M+1), M+1]$. Let $\epsilon>0$. Since g is uniformly continuous on $[-(M+1), M+1]$, we can choose $\delta>0$ so that for all $u, v \in[-(M+1), M+1]$ we have $|u-v|<\delta \Longrightarrow|g(u)-g(v)|<\epsilon$. Since $f_{n} \rightarrow f$ uniformly on A we can choose $m \geq m_{1}$ so that $n \geq m \Longrightarrow\left|f_{n}(x)-f(x)\right|<\delta$ for all $x \in A$. Let $n \geq m$ and let $x \in A$. Then we have $f_{n}(x), f(x) \in[-(M+1), M+1]$ with $\left|f_{n}(x)-f(x)\right|<\delta$ and hence $\left|g\left(f_{n}(x)\right)-g(f(x))\right|<\epsilon$.

3: (a) Approximate $2^{-1 / 5}$ by a rational number so that the error is at most $\frac{1}{40}$.
Solution: By Theorem 4.40 (the sum of the binomial series)

$$
\begin{aligned}
2^{-1 / 5} & =\left(1-\frac{1}{2}\right)^{1 / 5}=\sum_{n=0}^{\infty}\binom{1 / 5}{n}\left(-\frac{1}{2}\right)^{n}=1-\left(\frac{1}{5}\right)\left(\frac{1}{2}\right)-\frac{\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)}{2!}\left(\frac{1}{2}\right)^{2}-\frac{\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)\left(\frac{9}{5}\right)}{3!}\left(\frac{1}{2}\right)^{3}-\cdots \\
& =1-\frac{1}{10}-\frac{1 \cdot 4}{10^{2} 2!}-\frac{1 \cdot 4 \cdot 9}{10^{3} 3!}-\frac{1 \cdot 4 \cdot 9 \cdot 14}{10^{4} 4!}-\cdots \\
& \cong 1-\frac{1}{10}-\frac{14}{10^{2} 2!}=1-\frac{1}{10}-\frac{1}{50}=\frac{22}{25}
\end{aligned}
$$

with error

$$
\begin{aligned}
E & =\frac{1 \cdot 4 \cdot 9}{10^{3} 3!}+\frac{1 \cdot 4 \cdot 9 \cdot 14}{10^{4} 4!}+\frac{1 \cdot 4 \cdot 9 \cdot 14 \cdot 19}{10^{5} 5!}+\cdots=\frac{1 \cdot 4 \cdot 9}{10^{3} 3!}\left(1+\frac{14}{10 \cdot 4}+\frac{14 \cdot 19}{10^{2} \cdot 4 \cdot 5}+\frac{14 \cdot 19 \cdot 24}{10^{3} \cdot 4 \cdot 5 \cdot 6}+\cdots\right) \\
& <\frac{1 \cdot 4 \cdot 9}{10^{3} 3!}\left(1+\frac{20}{10 \cdot 4}+\frac{20 \cdot 25}{10^{2} \cdot 4 \cdot 5}+\frac{20 \cdot 25 \cdot 30}{10^{3} \cdot 4 \cdot 5 \cdot 6}+\cdots\right)=\frac{6}{1000}\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\cdots\right)=\frac{12}{1000}<\frac{25}{1000}=\frac{1}{40} .
\end{aligned}
$$

(b) Evaluate $\sum_{n=1}^{\infty} \frac{n^{3}}{3^{n}}$.

Solution: Let $S=\sum_{n=1}^{\infty} \frac{n^{3}}{3^{n}}$ For $|x|<1$ we have $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$. Differentiate to get $\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}$. Multiply by x to get $\frac{x}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n}$. Differentiate again to get $\frac{1+x}{(1-x)^{3}}=\sum_{n=1}^{\infty} n^{2} x^{n-1}$. Multiply by x again to get $\frac{x+x^{2}}{(1-x)^{3}}=\sum_{n=1}^{\infty} n^{2} x^{n}$. Differentiate a third time to get $\frac{1+4 x+x^{2}}{(1-x)^{4}}=\sum_{n=1}^{\infty} n^{3} x^{n-1}$. Finally, multiply by x to get $\frac{x+4 x^{2}+x^{3}}{(1-x)^{4}}=\sum_{n=1}^{\infty} n^{3} x^{n}$. Put in $x=\frac{1}{3}$ to get $S=\frac{\frac{1}{3}+\frac{4}{9}+\frac{1}{27}}{\left(\frac{2}{3}\right)^{47}}=\frac{33}{8}$.
(c) Evaluate $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n}}\binom{2 n}{n}$.

Solution: Let $a_{n}=\frac{(-1)^{n}}{4^{n}}\binom{2 n}{n}$. For $n \geq 1$ we have

$$
\left|a_{n}\right|=\frac{1}{4^{n}}\binom{2 n}{n}=\frac{(2 n)!}{\left(2^{n} n!\right)^{2}}=\frac{1 \cdot 2 \cdot 3 \cdot \ldots \cdot 2 n}{(2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2 n)^{2}}=\frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2 n} .
$$

Since $\left|a_{n}\right|=\frac{3}{2} \cdot \frac{5}{4} \cdot \ldots \cdot \frac{2 n-1}{2 n-2} \cdot \frac{1}{2 n} \geq \frac{1}{2 n}$ and $\sum_{n=1}^{\infty} \frac{1}{2 n}$ diverges, it follows that $\sum\left|a_{n}\right|$ diverges by the Comparison Test. Since $a_{0}=1$ and $\left|a_{n}\right|=\frac{2 n-1}{2 n}\left|a_{n-1}\right| \leq\left|a_{n-1}\right|$ for $n \geq 1$, it follows that the sequence $\left(\left|a_{n}\right|\right)$ is decreasing. Since

$$
\left|a_{n}\right|^{2}=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \ldots \cdot \frac{2 n-1}{2 n} \cdot \frac{2 n-1}{2 n} \leq \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} \cdot \ldots \cdot \frac{2 n-1}{2 n} \cdot \frac{2 n}{2 n+1}=\frac{1}{2 n+1}
$$

we have $\left|a_{n}\right| \leq \frac{1}{\sqrt{2 n+1}} \longrightarrow 0$ as $n \rightarrow \infty$. Thus $\sum a_{n}=\sum(-1)^{n}\left|a_{n}\right|$ converges by the Alternating Series Test. Thus $\sum a_{n}$ is conditionally convergent. Note that

$$
\frac{(-1)^{n}}{4^{n}}\binom{2 n}{n}=\frac{(-1)^{n}}{4^{n}} \cdot \frac{(2 n)!}{(n!)^{2}}=(-1)^{n} \frac{1 \cdot 2 \cdot 3 \cdots(2 n)}{(2 \cdot 4 \cdot 6 \cdots(2 n))^{2}}=(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}=\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \cdots\left(-\frac{2 n-1}{2}\right)}{n!}=\binom{-1 / 2}{n}
$$

so for $|x|<1$, by Theorem 4.40 (the sum of the binomial series) we have

$$
(1+x)^{-1 / 2}=\sum_{n=0}^{\infty}\binom{-1 / 2}{n} x^{n}=\sum_{n=0}^{n} \frac{(-1)^{n}}{4^{n}}\binom{2 n}{n} x^{n}
$$

Since $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n}}\binom{2 n}{n}$ converges (conditionally), it follows from Abel's Theorem (Part 4 of Theorem 4.23) that $\sum_{n=0}^{n} \frac{(-1)^{n}}{4^{n}}\binom{2 n}{n} x^{n}$ converges uniformly on $[0,1]$ and hence by Theorem 4.14 (uniform convergence and continuity) its sum $g(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n}}\binom{2 n}{n} x^{n}$ is continuous on $[0,1]$. Since $f(x)=(1+x)^{-1 / 2}$ is also continuous on $[0,1]$ with $f(x)=g(x)$ when $x<1$, we have $g(1)=f(1)$, that is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n}}\binom{2 n}{n}=f(1)=(1+1)^{-1 / 2}=\frac{1}{\sqrt{2}}
$$

4: (a) Let $s_{n}=\sum_{k=0}^{n} a_{k}$ for $n \geq 0$. Show that if the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ has a positive radius of convergence, then so does the power series $\sum_{n=0}^{\infty} s_{n} x^{n}$.
Solution: Let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{x}^{n}$, and suppose that $R>0$. Recall that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for all $|x|<1$. Let $S=\min \{R, 1\}$. By the Multiplication of Power Series Theorem, since $\sum a_{n} x^{n}$ and $\sum x^{n}$ both converge for all $|x|<S$, the series $\sum s_{n} x^{n}$ also converges for all $|x|<S$ with

$$
\sum_{n=0}^{\infty} s_{n} x^{n}=\left(\sum_{n=0}^{n} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} x^{n}\right)=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \cdot \frac{1}{1-x}
$$

(b) (The Riemann Zeta Function) Define $\zeta:(1, \infty) \rightarrow \mathbb{R}$ by $\zeta(x)=\sum_{n=1}^{\infty} \frac{1}{n^{x}}$. Prove that ζ is differentiable on $(1, \infty)$. Hint: use the Weierstrass M-Test, together with convergence tests from first year calculus, to show that for all $r>1$ the series $\sum \frac{1}{n^{x}}$ and $\sum \frac{-\ln n}{n^{x}}$ both converge uniformly on $[r, \infty)$, then apply The Uniform Convergence and Differentiation Theorem.

Solution: Note that $\sum_{n \geq 1} \frac{1}{n^{x}}$ converges (it is a p-series with $p=x>1$) and so $\zeta(x)=\sum_{n=1}^{\infty} \frac{1}{n^{x}}$ is well-defined.
Let $r>1$. Let $f_{n}(x)=\frac{1}{n^{x}}$ and note that $f_{n}^{\prime}(x)=\frac{-\ln n}{n^{x}}$. For all $x \geq r$ we have $\left|f_{n}(x)\right|=\frac{1}{n^{x}} \leq \frac{1}{n^{r}}$, and the series $\sum \frac{1}{n^{r}}$ converges (its a p-series with $p=r$) and so the series $\sum f_{n}(x)$ converges uniformly on $[r, \infty$) by the Weierstrass M-Test. Also, for all $x \geq r$ we have $\left|f_{n}{ }^{\prime}(x)\right|=\frac{\ln . n}{n^{x}} \leq \frac{\ln n}{n^{r}}$. Choose p with $1<p<r$ and let $q=r-p>0$. Then $\frac{\ln n}{n^{r}}=\frac{\ln n}{n^{q}} \cdot \frac{1}{n^{p}}$. By l'Hôpital's Rule, we have $\lim _{n \rightarrow \infty} \frac{\ln n}{n^{q}}=\lim _{n \rightarrow \infty} \frac{n^{-1}}{q n^{q-1}}=\lim _{n \rightarrow \infty} \frac{1}{q n^{q}}=0$, so, for sufficiently large n, we have $\frac{\ln n}{n^{q}} \leq 1$ hence $\frac{\ln n}{n^{q}} \cdot \frac{1}{n^{p}} \leq \frac{1}{n^{p}}$. Since $\frac{\ln n}{n^{r}} \leq \frac{1}{n^{p}}$ for large values of n, and the series $\sum \frac{1}{n^{p}}$ converges (since $p>1$), it follows that the series $\sum \frac{\ln n}{n^{r}}$ converges by the Comparison Test. Since $\left|f_{n}(x)\right| \leq \frac{\ln n}{n^{r}}$ for all $x \in[r, \infty)$ and $\sum \frac{\ln n}{n^{r}}$ converges, it follows that $\sum f_{n}{ }^{\prime}(x)$ converges uniformly on $[r, \infty)$ by the Weierstrass M-Test. Since $\sum f_{n}(x)$ and $\sum f_{n}{ }^{\prime}$ converge uniforly on $[r, \infty)$, they also converge uniformly on $[r, s]$ for any value of $s>r$. By Theorem 4.16, it follows that the function $\zeta(x)=\sum_{n=1}^{\infty} f_{n}(x)$ is differentiable on $[r, s]$ for any value of $s>r$. Since ζ is differentiable on $[r, s]$ for every $1 \leq r<s$, it follows that ζ is differentiable on $(1, \infty)$. Indeed, given $a>1$ we can choose r and s with $1<r<a<s$ and then, since ζ is differentiable on $[r, s]$, it is differentiable at a.

