- 1: For each of the following sequences of functions $(f_n)_{n\geq 1}$, find the set A of points $x \in \mathbb{R}$ for which the sequences of real numbers $(f_n(x))_{n\geq 1}$ converges, find the pointwise limit $g(x) = \lim_{n\to\infty} f_n(x)$ for all $x \in A$, and determine whether $f_n \to g$ uniformly in A.
 - (a) $f_n(x) = (\sin x)^n$

Solution: If $x = \frac{\pi}{2} + 2\pi k$ for some $k \in \mathbb{Z}$ then $\sin x = 1$ and so $f_n(x) = 1$ for all n, and so $\lim_{n \to \infty} f_n(x) = 1$. If $x = -\frac{\pi}{2} + 2\pi k$ for some $k \in \mathbb{Z}$ then $\sin x = -1$ so $f_n(x) = (-1)^n$ and so $\lim_{n \to \infty} f_n(x)$ does not exist. If $x \neq \frac{\pi}{2} + \pi k$ for any $k \in \mathbb{Z}$ then $|\sin x| < 1$ so $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} (\sin x)^n = 0$. Thus the set of points for which $(f_n(x))$ converges is $A = \{x \in \mathbb{R} \mid x \neq -\frac{\pi}{2} + 2\pi k \text{ for any } k \in \mathbb{Z}\}$, and the limit function $g : A \to \mathbb{R}$ is given by

$$g(x) = \begin{cases} 0 \text{, if } x \neq \frac{\pi}{2} + \pi k \text{ for any } k \in \mathbb{Z} \\ 1 \text{, if } x = \frac{\pi}{2} + 2\pi k \text{ for some } k \in \mathbb{Z}. \end{cases}$$

Since each function $f_n(x)$ is continuous everywhere but g(x) is not continuous at the points $x = \frac{\pi}{2} + 2\pi k$ with $k \in \mathbb{Z}$, the convergence cannot be uniform.

(b) $f_n(x) = x e^{-nx^2}$

Solution: When x = 0 we have $f_n(x) = 0$ for all n, and when $x \neq 0$ we have $\lim_{n\to\infty} nx^2 = \infty$ so that $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} x e^{-nx^2} = 0$. Thus the set of points at which $(f_n)_{n\geq 1}$ converges is $A = \mathbb{R}$, and the limit function is the zero function $g(x) = \lim_{n\to\infty} f_n(x) = 0$. We claim that $f_n \to 0$ uniformly on \mathbb{R} . Since $e^{-nx^2} > 0$ for all x, we have $f_n(x) \leq 0$ when $x \leq 0$ and $f_n(x) \geq 0$ when $x \geq 0$. Also, we have $f_n'(x) = (1 - 2nx^2)e^{-nx^2}$ so that $f'_n(x) \leq 0$ when $x \leq -\frac{1}{\sqrt{2n}}$, $f'_n(x) \geq 0$ when $-\frac{1}{\sqrt{2n}} \leq x \leq \frac{1}{\sqrt{2n}}$, and $f'_n(x) \leq 0$ when $x \geq \frac{1}{\sqrt{2n}}$. Thus the absolute minimum value of f_n is $f\left(-\frac{1}{\sqrt{2n}}\right) = -\frac{1}{\sqrt{2ne}}$ and the absolute maximum value of f_n is $f_n\left(\frac{1}{\sqrt{2n}}\right) = \frac{1}{\sqrt{2ne}}$, and hence $|f_n(x) - 0| < \frac{1}{\sqrt{2ne}}$ for all $x \in \mathbb{R}$. It follows that $f_n \to 0$ uniformly on \mathbb{R} as claimed. To be explicit, given $\epsilon > 0$ we can choose $m \in \mathbb{Z}^+$ with $m > \frac{1}{2e\epsilon^2}$ and then when $n \geq m$ we have $n > \frac{1}{2e\epsilon^2}$ so that $\frac{1}{\sqrt{2ne}} < \epsilon$, and hence $|f_n(x) - 0| < \frac{1}{\sqrt{2n\epsilon}} < \epsilon$ for all $x \in \mathbb{R}$.

(c) $f_n(x) = x^n - x^{2n}$

Solution: Note that $f_n(x) = x^n - x^{2n} = x^n(1-x^2)$. When x < -1, for even values of n we have $x^n \to +\infty$ and $(1-x^n) \to -\infty$ so that $f_n(x) = x^n(1-x^n) \to -\infty$, and for odd values of n we have $x^n \to -\infty$ and $(1-x^2) \to +\infty$ so that $f_n(x) \to -\infty$, and so $\lim_{n \to \infty} f_n(x) = -\infty$. When x = -1, for even values of n we have $f_n(x) = x^n - x^{2n} = 1 - 1 = 0$ and for odd values of n we have $f_n = x^n - x^{2n} = -1 - 1 = -2$ and so $\lim_{n \to \infty} f_n(x)$ does not exist. When -1 < x < 1 we have $x^n \to 0$ and $x^{2n} \to 0$ and so $\lim_{n \to \infty} f_n(x) = 0$. When x = 1 we have $f_n(x) = 0$ for all n so $\lim_{n \to \infty} f_n(x) = 0$ When x > 1 we have $x^n \to \infty$ and $(1-x^n) \to -\infty$ and so $f_n(x) = x^n(1-x^n) \to -\infty$. Thus the set of points $x \in \mathbb{R}$ for which the sequence $(f_n(x))$ converges is A = (-1, 1] and the limit function $g: (-1, 1] \to \mathbb{R}$ is given by g(x) = 0 for all $x \in (-1, 1]$. The convergence is not uniform because given any $n \in \mathbb{Z}^+$, since f_n is continuous everywhere with $f_n(-1) = -2$ and $f_n(0) = 0$ we can, by the Intermediate Value Theorem, choose $x \in (-1, 0)$ such that $f_n(x) = -1$ and then we have $|f_n(x) - g(x)| = 1$. **2:** Let $(a_n)_{n\geq 1}$ be a sequence in \mathbb{R} , let $(f_n)_{n\geq 1}$ be a sequence of functions $f_n: A \subseteq \mathbb{R} \to \mathbb{R}$, let $g: A \subseteq \mathbb{R} \to \mathbb{R}$ and let $h: \mathbb{R} \to \mathbb{R}$.

(a) Suppose that $\sum_{n\geq 1} a_n$ converges and $|f_{n+1}(x) - f_n(x)| \leq a_n$ for all $n \geq 1$ and all $x \in A$. Show that $(f_n)_{n\geq 0}$ converges uniformly on A.

Solution: Let $\epsilon > 0$. Since each $a_n \ge 0$ and $\sum a_n$ converges, by the Cauchy Criterion for Series we can choose $m \in \mathbb{Z}^+$ such that for all $\ell > k \ge m$ we have $\sum_{n=k+1}^{\ell} a_n < \epsilon$. Then for all $\ell > k \ge m$ and all $x \in A$ we have

$$\begin{aligned} \left| f_{\ell}(x) - f_{k}(x) \right| &= \left| (f_{\ell}(x) - f_{\ell-1}(x)) + (f_{\ell-1}(x) - f_{\ell-2}(x)) + \dots + (f_{k+1}(x) - f_{k}(x)) \right| \\ &\leq \left| f_{\ell}(x) - f_{\ell-1}(x) \right| + \left| f_{\ell-1}(x) - f_{\ell-2}(x) \right| + \dots + \left| f_{k+1}(x) - f_{k}(x) \right| \\ &\leq a_{\ell} + a_{\ell-1} + \dots + a_{k+1} = \sum_{n=k+1}^{\ell} a_{n} < \epsilon. \end{aligned}$$

Thus $f_n \to f$ uniformly in A by the Cauchy Criterion for Uniform Convergence of Sequences of Functions.

(b) Suppose that $f_n \to g$ uniformly on A and $f_n(x) \ge 0$ for all $n \ge 1$ and all $x \in A$. Show that $\sqrt{f_n} \to \sqrt{g}$ uniformly on A.

Solution: Let $\epsilon > 0$. Since $f_n \to g$ uniformly on A we can choose $m \in \mathbb{Z}^+$ such that for all $n \in \mathbb{Z}^+$, if $n \ge m$ then $|f_n(x) - g(x)| < \epsilon^2$ for all $x \in A$. Let $n \in \mathbb{Z}^+$ with $n \ge m$ and let $x \in A$. If $\sqrt{f_n(x)} + \sqrt{g(x)} < \epsilon$ then (by the Triangle Inequality) $|\sqrt{f_n(x)} - \sqrt{g(x)}| \le \sqrt{f_n(x)} + \sqrt{g(x)} < \epsilon$, and if $\sqrt{f_n(x)} + \sqrt{g(x)} \ge \epsilon$ then

$$\left|\sqrt{f_n(x)} - \sqrt{g(x)}\right| = \frac{\left|\sqrt{f_n(x)} - \sqrt{g(x)}\right| \left|\sqrt{f_n(x)} + \sqrt{g(x)}\right|}{\left|\sqrt{f_n(x)} + \sqrt{g(x)}\right|} = \frac{\left|f_n(x) - g(x)\right|}{\sqrt{f_n(x)} + \sqrt{g(x)}} < \frac{\epsilon^2}{\epsilon} = \epsilon.$$

Thus $\sqrt{f_n} \to \sqrt{g}$ uniformly on A, as required.

(c) Suppose that $f_n \to g$ uniformly on A, g is bounded, and h is continuous. Prove that $h \circ f_n \to h \circ g$ uniformly on A.

Solution: Since f is bounded we can choose $M \ge 0$ so that $|f(x)| \le M$ for all $x \in A$. Since $f_n \to f$ uniformly on A we can choose $m_1 \in \mathbb{Z}^+$ such that $n \ge m_1 \Longrightarrow |f_n(x) - f(x)| \le 1$ for all $x \in A$. Then for $n \ge m_1$ and $x \in A$ we have $|f_n(x)| \le |f_n(x) - f(x)| + |f(x)| \le 1 + M$ so that $f_n(x) \in [-(M+1), M+1]$. Let $\epsilon > 0$. Since g is uniformly continuous on [-(M+1), M+1], we can choose $\delta > 0$ so that for all $u, v \in [-(M+1), M+1]$ we have $|u - v| < \delta \Longrightarrow |g(u) - g(v)| < \epsilon$. Since $f_n \to f$ uniformly on A we can choose $m \ge m_1$ so that $n \ge m \Longrightarrow |f_n(x) - f(x)| < \delta$ for all $x \in A$. Let $n \ge m$ and let $x \in A$. Then we have $f_n(x), f(x) \in [-(M+1), M+1]$ with $|f_n(x) - f(x)| < \delta$ and hence $|g(f_n(x)) - g(f(x))| < \epsilon$. **3:** (a) Approximate $2^{-1/5}$ by a rational number so that the error is at most $\frac{1}{40}$.

Solution: By Theorem 4.40 (the sum of the binomial series)

$$2^{-1/5} = \left(1 - \frac{1}{2}\right)^{1/5} = \sum_{n=0}^{\infty} {\binom{1/5}{n}} \left(-\frac{1}{2}\right)^n = 1 - \left(\frac{1}{5}\right) \left(\frac{1}{2}\right) - \frac{\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)}{2!} \left(\frac{1}{2}\right)^2 - \frac{\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)\left(\frac{9}{5}\right)}{3!} \left(\frac{1}{2}\right)^3 - \cdots$$
$$= 1 - \frac{1}{10} - \frac{1\cdot4}{10^22!} - \frac{1\cdot4\cdot9}{10^33!} - \frac{1\cdot4\cdot9\cdot14}{10^44!} - \cdots$$
$$\cong 1 - \frac{1}{10} - \frac{1\cdot4}{10^22!} = 1 - \frac{1}{10} - \frac{1}{50} = \frac{22}{25}$$

with error

$$E = \frac{1 \cdot 4 \cdot 9}{10^3 \cdot 3!} + \frac{1 \cdot 4 \cdot 9 \cdot 14}{10^4 \cdot 4!} + \frac{1 \cdot 4 \cdot 9 \cdot 14 \cdot 19}{10^5 \cdot 5!} + \cdots = \frac{1 \cdot 4 \cdot 9}{10^3 \cdot 3!} \left(1 + \frac{14}{10 \cdot 4} + \frac{14 \cdot 19}{10^2 \cdot 4 \cdot 5} + \frac{14 \cdot 19 \cdot 24}{10^3 \cdot 4 \cdot 5 \cdot 6} + \cdots \right)$$

$$< \frac{1 \cdot 4 \cdot 9}{10^3 \cdot 3!} \left(1 + \frac{20}{10 \cdot 4} + \frac{20 \cdot 25}{10^2 \cdot 4 \cdot 5} + \frac{20 \cdot 25 \cdot 30}{10^3 \cdot 4 \cdot 5 \cdot 6} + \cdots \right) = \frac{6}{1000} \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \cdots \right) = \frac{12}{1000} < \frac{25}{1000} = \frac{1}{40}$$

(b) Evaluate $\sum_{n=1}^{\infty} \frac{n^3}{3^n}$.

Solution: Let $S = \sum_{n=1}^{\infty} \frac{n^3}{3^n}$ For |x| < 1 we have $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$. Differentiate to get $\frac{1}{(1-x)^2} = \sum_{n=1}^{\infty} n x^{n-1}$. Multiply by x to get $\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} n x^n$. Differentiate again to get $\frac{1+x}{(1-x)^3} = \sum_{n=1}^{\infty} n^2 x^{n-1}$. Multiply by x again to get $\frac{x+x^2}{(1-x)^3} = \sum_{n=1}^{\infty} n^2 x^n$. Differentiate a third time to get $\frac{1+4x+x^2}{(1-x)^4} = \sum_{n=1}^{\infty} n^3 x^{n-1}$. Finally, multiply by x to get $\frac{x+4x^2+x^3}{(1-x)^4} = \sum_{n=1}^{\infty} n^3 x^n$. Put in $x = \frac{1}{3}$ to get $S = \frac{\frac{1}{3} + \frac{4}{9} + \frac{1}{27}}{\left(\frac{2}{3}\right)^4} = \frac{33}{8}$.

(c) Evaluate $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n} \binom{2n}{n}.$

Solution: Let $a_n = \frac{(-1)^n}{4^n} \binom{2n}{n}$. For $n \ge 1$ we have

$$a_n = \frac{1}{4^n} \binom{2n}{n} = \frac{(2n)!}{(2^n n!)^2} = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot 2n}{(2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n)^2} = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n}.$$

Since $|a_n| = \frac{3}{2} \cdot \frac{5}{4} \cdot \ldots \cdot \frac{2n-1}{2n-2} \cdot \frac{1}{2n} \ge \frac{1}{2n}$ and $\sum_{n=1}^{\infty} \frac{1}{2n}$ diverges, it follows that $\sum |a_n|$ diverges by the Comparison Test. Since $a_0 = 1$ and $|a_n| = \frac{2n-1}{2n} |a_{n-1}| \le |a_{n-1}|$ for $n \ge 1$, it follows that the sequence $(|a_n|)$ is decreasing. Since

$$|a_n|^2 = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} \cdot \frac{2n-1}{2n} \le \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} \cdot \dots \cdot \frac{2n-1}{2n} \cdot \frac{2n}{2n+1} = \frac{1}{2n+1}$$

we have $|a_n| \leq \frac{1}{\sqrt{2n+1}} \longrightarrow 0$ as $n \to \infty$. Thus $\sum a_n = \sum (-1)^n |a_n|$ converges by the Alternating Series Test. Thus $\sum a_n$ is conditionally convergent. Note that

$$\frac{(-1)^n}{4^n} \binom{2n}{n} = \frac{(-1)^n}{4^n} \cdot \frac{(2n)!}{(n!)^2} = (-1)^n \frac{1 \cdot 2 \cdot 3 \cdots (2n)}{(2 \cdot 4 \cdot 6 \cdots (2n))^2} = (-1)^n \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} = \frac{(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2}) \cdots (-\frac{2n-1}{2})}{n!} = \binom{-1/2}{n}$$

so for |x| < 1, by Theorem 4.40 (the sum of the binomial series) we have

$$(1+x)^{-1/2} = \sum_{n=0}^{\infty} {\binom{-1/2}{n}} x^n = \sum_{n=0}^n \frac{(-1)^n}{4^n} {\binom{2n}{n}} x^n.$$

Since $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n} {\binom{2n}{n}}$ converges (conditionally), it follows from Abel's Theorem (Part 4 of Theorem 4.23) that $\sum_{n=0}^{n} \frac{(-1)^n}{4^n} {\binom{2n}{n}} x^n$ converges uniformly on [0, 1] and hence by Theorem 4.14 (uniform convergence and continuity) its sum $g(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^n} {\binom{2n}{n}} x^n$ is continuous on [0, 1]. Since $f(x) = (1+x)^{-1/2}$ is also continuous on [0, 1] with f(x) = g(x) when x < 1, we have g(1) = f(1), that is

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n} \binom{2n}{n} = f(1) = (1+1)^{-1/2} = \frac{1}{\sqrt{2}}$$

4: (a) Let $s_n = \sum_{k=0}^n a_k$ for $n \ge 0$. Show that if the power series $\sum_{n=0}^{\infty} a_n x^n$ has a positive radius of convergence, then so does the power series $\sum_{n=0}^{\infty} s_n x^n$.

Solution: Let R be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_x^n$, and suppose that R > 0. Recall that $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for all |x| < 1. Let $S = \min\{R, 1\}$. By the Multiplication of Power Series Theorem, since $\sum a_n x^n$ and $\sum x^n$ both converge for all |x| < S, the series $\sum s_n x^n$ also converges for all |x| < S with

$$\sum_{n=0}^{\infty} s_n x^n = \left(\sum_{n=0}^n a_n x^n\right) \left(\sum_{n=0}^{\infty} x^n\right) = \left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \frac{1}{1-x}.$$

(b) (The Riemann Zeta Function) Define $\zeta : (1, \infty) \to \mathbb{R}$ by $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$. Prove that ζ is differentiable on $(1, \infty)$. Hint: use the Weierstrass M-Test, together with convergence tests from first year calculus, to show that for all r > 1 the series $\sum \frac{1}{n^x}$ and $\sum \frac{-\ln n}{n^x}$ both converge uniformly on $[r, \infty)$, then apply The Uniform Convergence and Differentiation Theorem.

Solution: Note that $\sum_{n\geq 1} \frac{1}{n^x}$ converges (it is a *p*-series with p = x > 1) and so $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ is well-defined.

Let r > 1. Let $f_n(x) = \frac{1}{n^x}$ and note that $f_n'(x) = \frac{-\ln n}{n^x}$. For all $x \ge r$ we have $|f_n(x)| = \frac{1}{n^x} \le \frac{1}{n^r}$, and the series $\sum \frac{1}{n^r}$ converges (its a *p*-series with p = r) and so the series $\sum f_n(x)$ converges uniformly on $[r, \infty)$ by the Weierstrass M-Test. Also, for all $x \ge r$ we have $|f_n'(x)| = \frac{\ln n}{n^x} \le \frac{\ln n}{n^r}$. Choose p with 1 and let <math>q = r - p > 0. Then $\frac{\ln n}{n^r} = \frac{\ln n}{n^q} \cdot \frac{1}{n^p}$. By l'Hôpital's Rule, we have $\lim_{n\to\infty} \frac{\ln n}{n^q} = \lim_{n\to\infty} \frac{n^{-1}}{q^{n^{q-1}}} = \lim_{n\to\infty} \frac{1}{q^{n^q}} = 0$, so, for sufficiently large n, we have $\frac{\ln n}{n^q} \le 1$ hence $\frac{\ln n}{n^q} \cdot \frac{1}{n^p} \le \frac{1}{n^p}$. Since $\frac{\ln n}{n^r} \le \frac{1}{n^p}$ for large values of n, and the series $\sum \frac{1}{n^p}$ converges (since p > 1), it follows that the series $\sum \frac{\ln n}{n^r}$ converges by the Comparison Test. Since $|f_n(x)| \le \frac{\ln n}{n^r}$ for all $x \in [r, \infty)$ and $\sum \frac{\ln n}{n^r}$ converges, it follows that $\sum f_n'(x)$ converges uniformly on $[r, \infty)$ by the Weierstrass M-Test. Since $\sum f_n(x)$ and $\sum f_n'$ converge uniforly on $[r, \infty)$, they also converge uniformly on [r, s] for any value of s > r. By Theorem 4.16, it follows that the function $\zeta(x) = \sum_{n=1}^{\infty} f_n(x)$ is differentiable on [r, s] for any value of s > r. Since ζ is differentiable on [r, s] for every $1 \le r < s$, it follows that ζ is differentiable on [r, s], it is differentiable at a.