- 1: For each of the following sequences of functions $(f_n)_{n\geq 1}$, find the set A of points $x \in \mathbb{R}$ for which the sequence of real numbers $(f_n(x))_{n\geq 1}$ converges, find the pointwise limit $g(x) = \lim_{n\to\infty} f_n(x)$ for all $x \in A$, and determine whether $f_n \to g$ uniformly in A.
 - (a) $f_n(x) = (\sin x)^n$
 - (b) $f_n(x) = x e^{-nx^2}$
 - (c) $f_n(x) = x^n x^{2n}$
- **2:** Let $(a_n)_{n\geq 1}$ be a sequence in \mathbb{R} , let $(f_n)_{n\geq 1}$ be a sequence of functions $f_n: A \subseteq \mathbb{R} \to \mathbb{R}$, let $g: A \subseteq \mathbb{R} \to \mathbb{R}$ and let $h: \mathbb{R} \to \mathbb{R}$.
 - (a) Suppose that $\sum_{n\geq 1} a_n$ converges and $|f_{n+1}(x) f_n(x)| \leq a_n$ for all $n \geq 1$ and all $x \in A$. Show that $(f_n)_{n\geq 0}$ converges uniformly on A.

(b) Suppose that $f_n \to g$ uniformly on A and $f_n(x) \ge 0$ for all $n \ge 1$ and all $x \in A$. Show that $\sqrt{f_n} \to \sqrt{g}$ uniformly on A.

(c) Suppose that $f_n \to g$ uniformly on A, g is bounded, and h is continuous. Prove that $h \circ f_n \to h \circ g$ uniformly on A.

- **3:** (a) Approximate $2^{-1/5}$ by a rational number so that the error is at most $\frac{1}{40}$.
 - (b) Evaluate $\sum_{n=1}^{\infty} \frac{n^3}{3^n}$. (c) Evaluate $\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n} \binom{2n}{n}$.
- 4: (a) Let $s_n = \sum_{k=0}^n a_k$ for $n \ge 0$. Show that if the power series $\sum_{n=0}^\infty a_n x^n$ has a positive radius of convergence, then so does the power series $\sum_{n=0}^\infty s_n x^n$.

(b) (The Riemann Zeta Function) Define $\zeta : (1, \infty) \to \mathbb{R}$ by $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$. Prove that ζ is differentiable on $(1, \infty)$. Hint: use the Weierstrass M-Test, together with convergence tests from first year calculus, to show that for all r > 1 the series $\sum \frac{1}{n^x}$ and $\sum \frac{-\ln n}{n^x}$ both converge uniformly on $[r, \infty)$, then apply The Uniform Convergence and Differentiation Theorem.