PMATH 333 Real Analysis, Solutions to Assignment 2

1: Let $\left(x_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ be sequences in \mathbb{R}.
(a) Prove, from the definition of the limit, that if $x_{n}=\frac{\sqrt{4 n+1}}{\sqrt{n}}$, then $\lim _{n \rightarrow \infty} x_{n}=2$.

Solution: Note that for all $n \in \mathbb{Z}^{+}$we have

$$
\begin{aligned}
\left|x_{n}-2\right| & =\left|\frac{\sqrt{4 n+1}}{\sqrt{n}}-2\right|=\left|\frac{\sqrt{4 n+1}-\sqrt{4 n}}{\sqrt{n}}\right|=\left|\frac{\sqrt{4 n+1}-\sqrt{4 n}}{\sqrt{n}} \cdot \frac{\sqrt{4 n+1}+\sqrt{4 n}}{\sqrt{4 n+1}+\sqrt{4 n}}\right| \\
& =\frac{1}{\sqrt{n}(\sqrt{4 n+1}+\sqrt{4 n})}<\frac{1}{\sqrt{n}(\sqrt{4 n}+\sqrt{4 n})}=\frac{1}{4 n} .
\end{aligned}
$$

Given $\epsilon>0$ we choose $m \in \mathbb{Z}^{+}$such that $\frac{1}{4 m}<\epsilon$. Then when $n \geq m$ we have $\left|x_{n}-2\right|<\frac{1}{4 n} \leq \frac{1}{4 m}<\epsilon$.
(b) Prove that if $x_{n} \geq 0$ for all $n \geq 1$ and $\lim _{n \rightarrow \infty} x_{n}=0$ then the set $\left\{x_{n} \mid n \in \mathbb{Z}^{+}\right\}$has a maximum element.

Solution: Suppose that $x_{n} \geq 0$ for all $n \geq 1$ and that $\lim _{n \rightarrow \infty} x_{n}=0$ and let $S=\left\{x_{n} \mid n \in \mathbb{Z}^{+}\right\}$. If $x_{n}=0$ for all $n \geq 1$ then $S=\{0\}$ and $b=0$ is the maximum element of S. Suppose that there is at least one value of n such that $x_{n}>0$. Choose $\ell \geq 1$ such that $x_{\ell}>0$. Since $\lim _{n \rightarrow \infty} x_{n}=0$ we can choose $m \geq 1$ so that $n \geq m \Longrightarrow x_{n}<x_{\ell}$ (we remark that if we had $\ell \geq m$ then we would have $x_{\ell}<x_{\ell}$ which is impossible, so we must have $m>\ell$). Let $b=\max \left\{x_{1}, x_{2}, \cdots, x_{\ell}, \cdots, x_{m}\right\}$. Then $b=x_{k}$ for some $1 \leq k \leq m$, so we have $b \in S$, and $x_{n} \leq x_{\ell} \leq b$ for all $n \geq 1$ so we have $b=\max (S)$.
(c) Prove that if $\lim _{n \rightarrow \infty} x_{n}=a>0$ and $y_{n}>0$ for all $n \geq 1$ with $\lim _{n \rightarrow \infty} y_{n}=0$ then $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\infty$.

Solution: Suppose that $\lim _{n \rightarrow \infty} x_{n}=a>0$ and $y_{n}>0$ for all $n \geq 1$ with $\lim _{n \rightarrow \infty} y_{n}=0$. Let $R>0$. Choose a real number r with $0<r<a$. Since $\lim _{n \rightarrow \infty} x_{n}=a>r$ we can choose $m_{1} \geq 1$ so that $n \geq m_{1} \Longrightarrow x_{n}>r$. Since $y_{n}>0$ and $\lim _{n \rightarrow \infty} y_{n}=0$ we can choose $m_{2} \geq 1$ so that $n \geq m_{2} \Longrightarrow 0<y_{n}<\frac{r}{R}$. Let $m=\max \left\{m_{1}, m_{2}\right\}$. Then for $n \geq m$ we have $x_{n}>r$ and $0<y_{n}<\frac{r}{R}$ and so $\frac{x_{n}}{y_{n}}>\frac{r}{r / R}=R$. Thus $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\infty$.
(d) Prove that if $\left(x_{n}\right)_{n \geq 1}$ is increasing, and $\left(y_{n}\right)_{n \geq 1}$ converges, and we have $\left|x_{n}-y_{n}\right|<\frac{2 n}{n+1}$ for all $n \in \mathbb{Z}^{+}$, then $\left(x_{n}\right)_{n \geq 1}$ converges.
Solution: Suppose that $\left(x_{n}\right)_{n \geq 1}$ is increasing and $\left(y_{n}\right)_{n \geq 1}$ converges and $\left|x_{n}-y_{n}\right|<\frac{2 n}{n+1}$ for all $n \in \mathbb{Z}^{+}$. Let $b=\lim _{n \rightarrow \infty} y_{n}$. Choose $m \geq 1$ so that $n \geq m \Longrightarrow\left|y_{n}-b\right|<1 \Longrightarrow b-1<y_{n}<b+1$. Then for all $n \geq m$ we have $\left|x_{n}-y_{n}\right|<\frac{2 n}{n+1}<2$ so that $y_{n}-2<x_{n}<y_{n}+2$, and we have $b-1<y_{n}<b+1$, and it follows that $x_{n}<y_{n}+2<b+3$. Since $x_{n}<b+3$ for all $n \geq m$, the sequence $\left(x_{n}\right)_{n \geq 1}$ is bounded above (by the maximum of $x_{1}, x_{2}, \cdots, x_{m-1}$ and $b+3$). Since the sequence $\left(x_{n}\right)_{n \geq 1}$ is increasing and bounded above, it converges by the Monotone Convergence Theorem.

2: We denote the set of extended real numbers by $[-\infty, \infty]$ (or by $\mathbb{R} \cup\{ \pm \infty\}$). This is an ordered set with maximum element ∞ and minimum element $-\infty$. Note that every nonempty set $A \subseteq \mathbb{R}$ has a supremum and an infimum in $[-\infty, \infty]$ (when A is not bounded above in \mathbb{R} we have $\sup A=\infty$, and when A is not bounded below in \mathbb{R} we have inf $A=-\infty)$. For a sequence $\left(x_{n}\right)_{n \geq 1}$ in \mathbb{R}, we define the limit supremum and the limit infimum of $\left(x_{n}\right)_{n \geq 1}$ to be the following extended real numbers:
$\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} u_{n}$, where $u_{n}=\sup \left\{x_{k} \mid k \geq n\right\}$, and $\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \ell_{n}$, where $\ell_{n}=\inf \left\{x_{k} \mid k \geq n\right\}$.
(a) Explain why $\limsup _{n \rightarrow \infty} x_{n}$ and $\liminf _{n \rightarrow \infty} x_{n}$ always exist in $[-\infty, \infty]$ for every sequence $\left(x_{n}\right)_{n \geq 1}$ in \mathbb{R}.

Solution: Note that when $\emptyset \neq S \subseteq T \subseteq \mathbb{R}$, every upper bound of T (including ∞) is also an upper bound of S, and so we have $\sup T \geq \sup S$. Likewise, every lower bound of T is also a lower bound of S, and so $\inf T \leq \inf S$. If we let $S_{n}=\left\{x_{k} \mid k \geq n\right\}$ then we have $S_{1} \supseteq S_{2} \supseteq S_{3} \supseteq \cdots$ and so $\sup S_{1} \geq \sup S_{2} \geq \sup S_{3} \geq \cdots$, that is $u_{1} \geq u_{2} \geq u_{3} \geq \cdots$ in $[-\infty, \infty]$. If $u_{n}=\infty$ for all n (that is, if every set S_{n} is not bounded above) then we shall agree that $\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} u_{n}=\infty$.

Suppose that $u_{m}<\infty$ for some m. Then S_{m} is bounded above, hence S_{1} is bounded above (by the maximum of $x_{1}, x_{2}, \cdots, x_{m-1}$, and $\sup S_{m}$), and hence every S_{n} is bounded above (since $S_{n} \subseteq S_{1}$). We also note that $u_{n} \geq x_{n}>-\infty$ so that $\left(u_{n}\right)_{n \geq 1}$ is a decreasing sequence of real numbers, and so it has a limit in the extended real numbers by the Monotone Convergence Theorem (if the sequence (u_{n}) is bounded below then it has a finite limit in \mathbb{R}, and if it is not bounded below then the limit is $-\infty)$. Similarly, the sequence $\left(\ell_{n}\right)_{n \geq 1}$ is an increasing sequence in $[-\infty, \infty)$, so it has a limit in the extended real numbers.
(b) Find $\limsup _{n \rightarrow \infty} x_{n}$ and $\liminf _{n \rightarrow \infty} x_{n}$ for the sequence given by $x_{1}=0, x_{2 k}=\frac{1}{2} x_{2 k-1}$ and $x_{2 k+1}=\frac{1}{2}+x_{2 k}$.

Solution: By induction, we have $x_{2 k}=\frac{1}{2}-\frac{1}{2^{k}}$ and $x_{2 k+1}=1-\frac{1}{2^{k}}$ for all $k \geq 1$. We claim that $\lim \sup x_{n}=1$ and $\liminf _{n \rightarrow \infty} x_{n}=\frac{1}{2}$. Let $S_{n}=\left\{x_{k} \mid k \geq n\right\}$. Since $x_{2 j}=\frac{1}{2}-\frac{1}{2^{j}}<\frac{1}{2}<1$ for all j and $x_{2 j+1}=1-\frac{1}{2^{j}}<1$ for all j, we have $x_{k}<1$ for all k, and so 1 is an upper bound for each of the sets S_{n}. Thus, for every $n \geq 1$, we have $u_{n}=\sup S_{n} \leq 1$. On the other hand, we cannot have $u_{n}<1$ because given any number $r<1$ and any $n \geq 1$ we can choose $k=2 j+1 \geq n$ so that $x_{k}=a_{2 j+1}=1-\frac{1}{2^{j}}>r$ showing that r is not an upper bound for S_{n}. Thus $u_{n}=\sup S_{n}=1$ for all $n \geq 1$, and so $\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} u_{n}=1$.

For $n=2 m$, the set $S_{n}=S_{2 m}$ contains the elements $x_{2 k}$ with $k \geq m$ and the elements $x_{2 k+1}$ with $k \geq m$. Note that $x_{2 m}=\frac{1}{2}-\frac{1}{2^{m}}$ is a lower bound for $S_{2 m}$ because when $k \geq m$ we have $\frac{1}{2^{k}} \geq \frac{1}{2^{m}}$ so $x_{2 k}=\frac{1}{2}-\frac{1}{2^{k}} \geq \frac{1}{2}-\frac{1}{2^{m}}$ and $x_{2 k+1}=1-\frac{1}{2^{k}} \geq 1-\frac{1}{2^{m}}>\frac{1}{2}-\frac{1}{2^{m}}$. Since $x_{2 m}$ is a lower bound for $S_{2 m}$ we have inf $S_{2 m} \geq x_{2 m}$. On the other hand, since $x_{2 m} \in S_{2 m}$ we have $\inf S_{2 m} \leq x_{2 m}$. It follows that $\ell_{2 m}=\inf S_{2 m}=x_{2 m}=\frac{1}{2}-\frac{1}{2^{m}}$ for all $m \geq 1$. A fairly similar (but not identical) argument shows that $\ell_{2 m-1}=\inf S_{2 m-1}=x_{2 m}$ for all $m \geq 1$. Since $\ell_{2 m}=\ell_{2 m-1}=\frac{1}{2}-\frac{1}{2^{m}}$ we have $\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \ell_{n}=\frac{1}{2}$.
(c) Show that for any sequence $\left(x_{n}\right)_{n \geq 1}$ in \mathbb{R}, and for $c \in[-\infty, \infty]$, we have $\lim _{n \rightarrow \infty} x_{n}=c$ if and only if $\limsup _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n}=c$.
Solution: Let $u_{n}=\sup \left\{x_{k} \mid k \geq n\right\}$ and $\ell_{n}=\inf \left\{x_{k} \mid k \geq n\right\}$. Note that for all $n \geq 1$ we have $\ell_{n} \leq x_{n} \leq u_{n}$, and it follows byy comparison that $\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \ell_{n} \leq \lim _{n \rightarrow \infty} u_{n}=\limsup _{n \rightarrow \infty} x_{n}$.

Suppose that $\lim _{n \rightarrow \infty} x_{n}=c \in[-\infty, \infty]$. Consider the case $c=\infty$. Let $r>0$. Choose $m \geq 1$ so that $k \geq m \Longrightarrow x_{k}>r$. Then for all $n \geq m, r$ is a lower bound for $\left\{x_{k} \mid k \geq n\right\}$, so we have $r \leq \ell_{n}$. This shows that $\lim _{n \rightarrow \infty} \ell_{n}=\infty$ and hence $\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \ell_{n}=\infty$. Since $\liminf _{n \rightarrow \infty} x_{n} \leq \limsup _{n \rightarrow \infty} x_{n}$, we also have $\limsup _{n \rightarrow \infty} x_{n}=\infty$. Similarly, in the case $c=-\infty$ we have $\lim _{n \rightarrow \infty} u_{n}=-\infty, \limsup _{n \rightarrow \infty} x_{n}=-\infty$ and $\liminf _{n \rightarrow \infty} x_{n}=-\infty$. Consider the case $c \in \mathbb{R}$. Let $\epsilon>0$. Choose $m \geq 1$ so that $k \geq m \Longrightarrow c-\epsilon<x_{k}<c+\epsilon$. For all $n \geq m$ we have $x_{k}<c+\epsilon$ for all $k \geq n$ and hence $u_{n} \leq c+\epsilon$. It follows that $\lim _{n \rightarrow \infty} u_{n} \leq c+\epsilon$. Since $\epsilon>0$ was arbitrary, it follows that $\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} u_{n} \leq c$. Similarly, we have $\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \ell_{n} \geq c$. Since $c \leq \liminf _{n \rightarrow \infty} x_{n} \leq \limsup _{n \rightarrow \infty} x_{n} \leq c$, we have $\liminf _{n \rightarrow \infty} x_{n}=\limsup _{n \rightarrow \infty} x_{n}=c$.

Suppose, conversely, that $\limsup _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n}=c \in[-\infty, \infty]$. If $c=\infty$ then since $\ell_{n} \leq x_{n}$ for all n and $\lim _{n \rightarrow \infty} \ell_{n}=c=\infty$ we have $\lim _{n \rightarrow \infty} x_{n}=\infty$ (by comparison). If $c=-\infty$ then since $x_{n} \leq u_{n}$ for all n and $\lim _{n \rightarrow \infty} u_{n}=c=-\infty$ we have $\lim _{n \rightarrow \infty} x_{n}=-\infty$ (by comparison). If $c \in \mathbb{R}$ then since $\ell_{n} \leq x_{n} \leq u_{n}$ and $\lim _{n \rightarrow \infty} \ell_{n}=c=\lim _{n \rightarrow \infty} u_{n}$ we have $\lim _{n \rightarrow \infty} x_{n}=c$ (by the Squeeze Theorem).

3: Let $m \in \mathbb{Z}$ with $m \geq 2$, and let $S_{m}=\{0,1,2, \cdots, m-1\}$. In this problem we explore the base m representation of a real number.
(a) Let $a_{1}, a_{2}, a_{3}, \cdots \in S_{m}$. For $n \in \mathbb{Z}^{+}$, let $s_{n}=\sum_{k=1}^{n} \frac{a_{k}}{m^{k}}$. Show that the sequence $\left(s_{n}\right)_{n \geq 1}$ converges and that its limit lies in $[0,1]$.
Solution: Since $a_{k} \geq 0$ for all k, we have $s_{n}=\sum_{k=1}^{n} \frac{a_{k}}{m^{k}} \geq 0$ for all n. Since $a_{k} \leq m-1$ for all k we have

$$
s_{n}=\sum_{k=1}^{n} \frac{a_{k}}{m^{k}} \leq \sum_{k=1}^{n} \frac{m-1}{m^{n}}=(m-1) \sum_{k=1}^{n} \frac{1}{m^{k}}=(m-1) \frac{1-\frac{1}{m^{n}}}{m-1}=1-\frac{1}{m^{n}} \leq 1
$$

for all n. Since $s_{n}-s_{n-1}=\frac{a_{n}}{m^{n}} \geq 0$ for all n, the sequence $\left(s_{n}\right)$ is increasing. Since $\left(s_{n}\right)$ is increasing and bounded above (by 1), it converges by the Monotone Convergence Theorem. Since $0 \leq s_{n} \leq 1$ for all n we have $0 \leq \lim _{n \rightarrow \infty} s_{n} \leq 1$ by the Comparison Theorem.
(b) Given $x \in[0,1]$ show that there exist $a_{1}, a_{2}, a_{3}, \cdots \in S_{m}$ such that for $s_{n}=\sum_{k=1}^{n} \frac{a_{k}}{m^{k}}$ we have $x=\lim _{n \rightarrow \infty} s_{n}$.

Solution: Let $x \in[0,1]$. If $x=1$ then we can choose $a_{k}=m-1$ for all k to get

$$
s_{n}=\sum_{k=1}^{n} \frac{a_{k}}{m^{k}}=\sum_{k=1}^{n} \frac{m-1}{m^{k}}=(m-1) \sum_{k=1}^{n} \frac{1}{m^{k}}=(m-1) \frac{1-\frac{1}{m^{n}}}{m-1}=1-\frac{1}{m^{n}} \longrightarrow 1=x
$$

Suppose that $x \in[0,1)$. Then we have $0 \leq m x<m$ so we can choose $a_{1} \in\{0,1, \cdots, m-1\}$ so that $a_{1} \leq m x<a_{1}+1$ (to be explicit, we choose $a_{1}=\lfloor m x\rfloor$) then we have $\frac{a_{1}}{m} \leq x<\frac{a_{1}}{m}+\frac{1}{m}$. Suppose that we have constructed $a_{1}, a_{2}, \cdots, a_{n-1}$ with each $a_{k} \in\{0,1, \cdots, m-1\}$ such that for $s_{n-1}=\sum_{k=1}^{n-1} \frac{a_{k}}{m^{k}}$ we have $s_{n-1} \leq x<s_{n-1}+\frac{1}{m^{n-1}}$. Then we have $0 \leq x-s_{n-1}<\frac{1}{m^{n-1}}$ hence $0 \leq m^{n}\left(x-s_{n-1}\right)<m$. We choose $a_{n} \in\{0,1, \cdots, m-1\}$ so that $a_{n} \leq m^{n}\left(x-s_{n-1}\right)<a_{n}+1$ (to be explicit, we choose $a_{n}=\left\lfloor m^{n}\left(x-s_{n-1}\right)\right\rfloor$) and then we have $\frac{a_{n}}{m^{n}} \leq x-s_{n-1}<\frac{a_{n}+1}{m^{n}}$ and so $s_{n-1}+\frac{a_{n}}{m^{n}} \leq x<s_{n-1}+\frac{a_{n}}{m^{n}}+\frac{1}{m^{n}}$, that is $s_{n} \leq x<s_{n}+\frac{1}{m^{n}}$. In this way, we obtain a sequence $a_{1}, a_{2}, a_{3}, \cdots$ with each $a_{k} \in\{0,1, \cdots, m-1\}$ such that $s_{n} \leq x<s_{n}+\frac{1}{m^{n}}$ for all $n \geq 0$ (where we set $s_{0}=0$). Since $\left(s_{n}\right)_{n \geq 0}$ is increasing and bounded above (by x), it converges. Since $s_{n} \leq x<s_{n}+\frac{1}{m^{n}}$ for all $n \geq 1$, the Comparison Theorem gives $\lim _{n \rightarrow \infty} s_{n} \leq x \leq \lim _{n \rightarrow \infty} s_{n}$, so that $\lim _{n \rightarrow \infty} s_{n}=x$, as required.
(c) Let $a_{1}, a_{2}, a_{3}, \cdots \in S_{m}$ and $b_{1}, b_{2}, b_{3}, \cdots \in S_{m}$. Let $s_{n}=\sum_{k=1}^{n} \frac{a_{k}}{m^{k}}$ and let $t_{n}=\sum_{k=1}^{n} \frac{b_{k}}{m^{k}}$. Suppose there exists $p \in \mathbb{Z}$ with $p \geq 1$ such that $a_{k}=b_{k}$ for all $k<p, a_{p}=b_{p}+1, a_{k}=0$ for all $k>p$ and $b_{k}=m-1$ for all $k>p$. Show that $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} t_{n}$.

Solution: Let $x=\lim _{n \rightarrow \infty} s_{n}$. Choose p as above. Then for $n \geq p$ we have $s_{n}=\sum_{k=1}^{p-1} \frac{a_{k}}{m^{k}}+\frac{b_{p}+1}{m^{p}}$ which is constant (independent of n) and so $x=\lim _{n \rightarrow \infty} s_{n}=\sum_{k=1}^{p-1} \frac{a_{k}}{m^{k}}+\frac{b_{p}+1}{m^{p}}$. Also, for $n \geq p$ we have

$$
\begin{aligned}
& t_{n}=\sum_{k=1}^{p-1} \frac{b_{k}}{m^{k}}+\frac{b_{p}}{m^{p}}+\sum_{k=p+1}^{n} \frac{m-1}{m^{k}}=\sum_{k=1}^{p-1} \frac{a_{k}}{m^{k}}+\frac{b_{p}}{m^{p}}+(m-1) \sum_{k=p+1}^{n} \frac{1}{m^{k}} \\
&=\sum_{k=1}^{p-1} \frac{a_{k}}{m^{k}}+\frac{b_{p}}{m^{p}}+(m-1) \frac{1}{m^{p}}-\frac{1}{m^{n}} \\
&=x-1 \\
&=\sum_{k=1}^{p-1} \frac{a_{k}}{m^{k}}+\frac{b_{p}}{m^{p}}+\frac{1}{m^{p}}-\frac{1}{m^{n}} \\
& \longrightarrow x \text { as } n \rightarrow \infty .
\end{aligned}
$$

4: (a) Define $f, g: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{3}$ and $g(x)=\sqrt[3]{x}$. Show that g is uniformly continuous but that f is not. Solution: We claim that $f(x)$ is not uniformly continuous. Choose $\epsilon=1$. Let $\delta>0$ Choose $a=\frac{1}{\delta}$ and $x=\delta+\frac{1}{\delta}$. Then $|x-a|=\delta$ and we have

$$
|f(x)-f(a)|=\left(\delta+\frac{1}{\delta}\right)^{3}-\left(\frac{1}{\delta}\right)^{3}=3 \delta+3 \cdot \frac{1}{\delta}+\delta^{3}>3\left(\delta+\frac{1}{\delta}\right)>3>\epsilon
$$

because when $\delta \geq 1$ we have $\delta+\frac{1}{\delta}>\delta \geq 1$ and when $0<\delta \leq 1$ we have $\delta+\frac{1}{\delta}>\frac{1}{\delta} \geq 1$. Thus f is not uniformly continuous.

We claim that g is uniformly continuous. First we note that for $\delta>0$ and for $a, x \in \mathbb{R}$, in the case that $|a| \leq 2 \delta$, when $|x-a|<\delta$ we have $|x|<3 \delta$ and so

$$
|f(x)-f(a)| \leq|f(x)|+|f(a)|<(2 \delta)^{1 / 3}+(3 \delta)^{1 / 3}=\left(2^{1 / 3}+3^{1 / 3}\right) \delta^{1 / 3}<3 \delta^{1 / 3}
$$

(because $3<\frac{27}{8}=\left(\frac{3}{2}\right)^{3}$ so that $3^{1 / 3}<\frac{3}{2}$ and hence $2^{1 / 3}+3^{1 / 3}<2 \cdot \frac{3}{2}=3$) and in the case that $|a| \geq 2 \delta$, when $|x-a|<\delta$, the numbers a and x have the same sign and we have $|x| \geq \delta$ and so

$$
\begin{aligned}
|f(x)-f(a)| & =\left|x^{1 / 3}-a^{1 / 3}\right|=\left|\frac{x-a}{x^{2 / 3}+x^{1 / 3} a^{1 / 3}+a^{2 / 3}}\right|=\frac{|x-a|}{|x|^{2 / 3}+|x|^{1 / 3}|a|^{1 / 3}+|a|^{2 / 3}} \\
& <\frac{\delta}{\delta^{2 / 3}+\delta^{1 / 3}(2 \delta)^{1 / 3}+(2 \delta)^{2 / 3}}=\frac{\delta^{1 / 3}}{1+2^{1 / 3}+4^{1 / 3}}<\delta^{1 / 3}<3 \delta^{1 / 3} .
\end{aligned}
$$

Thus given $\epsilon>0$ we can choose $\delta=\frac{1}{27} \epsilon^{3}$ so that $3 \delta^{1 / 3}=\epsilon$ and then for all $a, x \in \mathbb{R}$ with $|x-a|<\delta$ we have $|f(x)-f(a)|<3 \delta^{1 / 3}=\epsilon$. Thus g is uniformly continuous.
(b) Define $f:[0,1) \rightarrow \mathbb{R}$ as follows. Given $x \in[0,1$), write x in its binary (base 2) representation as $x=\left[. a_{1} a_{2} a_{3} \cdots\right]_{2}=\sum_{k=1}^{\infty} \frac{a_{k}}{2^{k}}$ with each $a_{k} \in\{0,1\}$ so that $\forall m \in \mathbb{Z}^{+} \exists k \geq m a_{k} \neq 1$, then let $f(x)$ be the number whose ternary (base 3) representation is $f(x)=\left[. a_{1} a_{2} a_{3} \cdots\right]_{3}=\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}}$. Determine where the function f is continuous.
Solution: We claim that f is continuous from the right at all points $a \in[0,1)$ and f is continuous from the left at all points $a \in[0,1)$ except for the points of the form $a=\frac{k}{2^{n}}$ where $k \in \mathbb{Z}^{+}$with $0<k<2^{n}$, in other words, except for the points $0 \neq a \in[0,1)$ with finite base 2 representations.

First, let us show that f is continuous from the right at all points $a \in[0,1)$. Let $a \in[0,1)$. Write a in base 2 as $a=\left[. a_{1} a_{2} a_{3} \cdots\right]_{2}$ where $\forall m \in \mathbb{Z}^{+} \exists k \geq m \quad a_{k}=0$. Let $\epsilon>0$. Choose $m \in \mathbb{Z}^{+}$with $2 \cdot 3^{-m}<\epsilon$, choose $k \geq m$ such that $a_{k}=0$, and let $\delta=2^{-k}$. For $x \in[0,1)$ with $a \leq x<a+\delta$, we shall prove on the next page that the base 2 representations of a and x are of the form $a=\left[. a_{1} a_{2} \cdots a_{k-1} 0 a_{k+1} a_{k+2} \cdots\right]_{2}$ and $x=\left[. a_{1} a_{2} \cdots a_{k-1} b_{k} b_{k+1} \cdots\right]_{2}$ with $b_{k} \in\{0,1\}$ and with $\left[.0 \cdots 0 b_{k} b_{k+1} b_{k+2} \cdots\right]_{2} \geq\left[.0 \cdots 0 a_{k+1} a_{k+2} \cdots\right]_{2}$. Note that in base 3 we also have $\left[.0 \cdots 0 b_{k} b_{k+1} \cdots\right]_{3} \geq\left[.0 \cdots 0 a_{k+1} a_{k+2} \cdots\right]_{3}$ and so

$$
\begin{aligned}
|f(x)-f(a)| & =f(x)-f(a)=\left[. a_{1} a_{2} \cdots a_{k-1} b_{k} b_{k+1} \cdots\right]_{3}-\left[. a_{1} a_{2} \cdots a_{k-1} 0 a_{k+1} \cdots\right]_{3} \\
& =\left[.0 \cdots 0 b_{k} b_{k+1} \cdots\right]_{3}-\left[.0 \cdots 0 a_{k+1} a_{k+2} \cdots\right]_{3} \\
& \leq\left[.0 \cdots 0 b_{k} b_{k+1} \cdots\right]_{3} \leq 2 \cdot 3^{-k} \leq 2 \cdot 3^{-m}<\epsilon .
\end{aligned}
$$

Thus f is continuous from the right at a, as claimed.
A similar argument shows that when $a \in(0,1)$ does not have a finite base 2 representation, the map f is continuous from the left at a. Note that for such $a \in(0,1)$, its base 2 representation $\left[. a_{1} a_{2} \cdots\right]_{2}$ is such that $\forall m \in \mathbb{Z}^{+} \exists k \geq m a_{k}=1$. Given $\epsilon>0$ we choose $m \in \mathbb{Z}^{+}$so that $2 \cdot 3^{-m}<\epsilon$, then we choose $k \geq m$ so that $a_{k}=1$, and we take $\delta=2^{-k}$. For $a-\delta<x \leq a$ the base 2 representations of a and x are of the form $a=\left[. a_{1} a_{2} \cdots a_{k-1} 1 a_{k+1} \cdots\right]_{2}$ and $x=\left[. a_{1} a_{2} \cdots a_{k-1} b_{k} b_{k+1} \cdots\right]_{2}$ with $b_{k} \in\{0,1\}$ and with $\left[.0 \cdots 0 b_{k} b_{k+1} \cdots\right]_{2} \leq\left[.0 \cdots 01 a_{k+1} \cdots\right]_{2}$. As above, we have $|f(x)-f(a)|=f(a)-f(x) \leq 2 \cdot 3^{-k}<\epsilon$.

Finally, suppose that $a \in(0,1)$ has a finite base 2 representation, say $a=\left[. a_{1} a_{2} \cdots a_{m}\right]_{2}$ with $a_{m}=1$. We claim that f is not continuous from the left at the point a (that is $\exists \epsilon>0 \forall \delta>0 \exists x \in[0,1$) with $|x-a| \leq \delta$ and $|f(x)-f(a)|>\epsilon)$. Choose $\epsilon=3^{-m-1}$. Let $\delta>0$. Choose $k \in \mathbb{Z}^{+}$with $k>m$ and $2^{-k}<\delta$. Choose $x=a-2^{-k}=\left[. a_{1} a_{2} \cdots a_{m-1} 1\right]_{2}-[.0 \cdots 01]_{2}=\left[. a_{1} a_{2} \cdots a_{m-1} 011 \cdots 1\right]_{2}$ where the final 1 is in position k. Then we have $|x-a|=2^{-k}<\delta$ but

$$
|f(x)-f(a)|=f(a)-f(x)=\left[. a_{1} a_{2} \cdots a_{m-1} 1\right]_{3}-\left[. a_{1} \cdots a_{m-1} 011 \cdots 1\right]_{3}=[.0 \cdots 01 \cdots 112]_{3}
$$

where the first 1 is in position $m+1$ and the final 2 is in position k, and so $|f(x)-f(a)|>3^{-m-1}=\epsilon$.

Let $a=\left[. a_{1} a_{2} \cdots\right]_{2}$ with $a_{k}=0$, and let $x=\left[. b_{1} b_{2} \cdots\right]_{2}$ where $\forall m \in \mathbb{Z}^{+} \exists j \geq m b_{j}=0$. Suppose that $a \leq x<a+\frac{1}{2^{k}}$. Here is a proof that $b_{j}=a_{j}$ for all $j<k$. Suppose that this is not true, and let ℓ be the smallest integer with $1 \leq \ell<k$ such that $a_{\ell} \neq b_{\ell}$. Case 1 : suppose that $a_{\ell}=1$ and $b_{\ell}=0$. Since each $a_{j}, b_{j} \in\{0,1\}$ so that $a_{j}-b_{j} \geq-1$, and since $b_{j}=0$ for some $j>\ell$, we have

$$
a-x=\frac{1}{2^{\ell}}+\sum_{j=\ell+1}^{\infty} \frac{a_{j}-b_{j}}{2^{j}}>\frac{1}{2^{\ell}}-\sum_{j=\ell+1}^{\infty} \frac{1}{2^{j}}=\frac{1}{2^{\ell}}-\frac{1}{2^{\ell}}=0
$$

which contradicts the fact that $x \geq a$. Case 2: suppose that $a_{\ell}=0$ and $b_{\ell}=1$. Then since $a_{j}, b_{j} \in\{0,1\}$ so $b_{j}-a_{j} \geq-1$, and $a_{k}=0$, we have

$$
x-a=\frac{1}{2^{\ell}}+\sum_{j=\ell+1}^{k-1} \frac{b_{j}-a_{j}}{2^{j}}+\frac{b_{k}}{2^{k}}+\sum_{j=k+1}^{\infty} \frac{b_{j}-a_{j}}{2^{j}} \geq \frac{1}{2^{\ell}}-\sum_{j=\ell+1}^{k-1} \frac{1}{2^{j}}+\frac{0}{2^{k}}-\sum_{j=k+1}^{\infty} \frac{1}{2^{j}}=\frac{1}{2^{k-1}}-\frac{1}{2^{k}}=\frac{1}{2^{k}}
$$

which contradicts the fact that $x<a+\frac{1}{2^{k}}$.

