
PMATH 333 Real Analysis, Solutions to Assignment 2

1: Let (xn)n≥1 and (yn)n≥1 be sequences in R.

(a) Prove, from the definition of the limit, that if xn =
√
4n+1√
n

, then lim
n→∞

xn = 2.

Solution: Note that for all n ∈ Z+ we have∣∣xn − 2
∣∣ =

∣∣∣√4n+1√
n
− 2
∣∣∣ =

∣∣∣√4n+1−
√
4n√

n

∣∣∣ =
∣∣∣√4n+1−

√
4n√

n
·
√
4n+1+

√
4n√

4n+1+
√
4n

∣∣∣
= 1√

n(
√
4n+1+

√
4n)

< 1√
n(
√
4n+
√
4n)

= 1
4n .

Given ε > 0 we choose m ∈ Z+ such that 1
4m < ε. Then when n ≥ m we have |xn − 2| < 1

4n ≤
1

4m < ε.

(b) Prove that if xn ≥ 0 for all n ≥ 1 and lim
n→∞

xn = 0 then the set
{
xn
∣∣n ∈ Z+

}
has a maximum element.

Solution: Suppose that xn ≥ 0 for all n ≥ 1 and that lim
n→∞

xn = 0 and let S = {xn|n ∈ Z+}. If xn = 0 for

all n ≥ 1 then S = {0} and b = 0 is the maximum element of S. Suppose that there is at least one value
of n such that xn > 0. Choose ` ≥ 1 such that x` > 0. Since lim

n→∞
xn = 0 we can choose m ≥ 1 so that

n ≥ m =⇒ xn < x` (we remark that if we had ` ≥ m then we would have x` < x` which is impossible, so
we must have m > `). Let b = max{x1, x2, · · · , x`, · · · , xm}. Then b = xk for some 1 ≤ k ≤ m, so we have
b ∈ S, and xn ≤ x` ≤ b for all n ≥ 1 so we have b = max(S).

(c) Prove that if lim
n→∞

xn = a > 0 and yn > 0 for all n ≥ 1 with lim
n→∞

yn = 0 then lim
n→∞

xn

yn
=∞.

Solution: Suppose that lim
n→∞

xn = a > 0 and yn > 0 for all n ≥ 1 with lim
n→∞

yn = 0. Let R > 0. Choose a real

number r with 0 < r < a. Since lim
n→∞

xn = a > r we can choose m1 ≥ 1 so that n ≥ m1 =⇒ xn > r. Since

yn > 0 and lim
n→∞

yn = 0 we can choose m2 ≥ 1 so that n ≥ m2 =⇒ 0 < yn <
r
R . Let m = max{m1,m2}.

Then for n ≥ m we have xn > r and 0 < yn <
r
R and so

xn

yn
> r

r/R = R. Thus lim
n→∞

xn

yn
=∞.

(d) Prove that if (xn)n≥1 is increasing, and (yn)n≥1 converges, and we have
∣∣xn − yn∣∣ < 2n

n+1 for all n ∈ Z+,
then (xn)n≥1 converges.

Solution: Suppose that (xn)n≥1 is increasing and (yn)n≥1 converges and
∣∣xn − yn∣∣ < 2n

n+1 for all n ∈ Z+.
Let b = lim

n→∞
yn. Choose m ≥ 1 so that n ≥ m =⇒ |yn − b| < 1 =⇒ b− 1 < yn < b+ 1. Then for all n ≥ m

we have |xn − yn| < 2n
n+1 < 2 so that yn − 2 < xn < yn + 2, and we have b− 1 < yn < b+ 1, and it follows

that xn < yn + 2 < b + 3. Since xn < b + 3 for all n ≥ m, the sequence (xn)n≥1 is bounded above (by the
maximum of x1, x2, · · · , xm−1 and b+3). Since the sequence (xn)n≥1 is increasing and bounded above, it
converges by the Monotone Convergence Theorem.



2: We denote the set of extended real numbers by [−∞,∞] (or by R ∪ {±∞}). This is an ordered set with
maximum element ∞ and minimum element −∞. Note that every nonempty set A ⊆ R has a supremum
and an infimum in [−∞,∞] (when A is not bounded above in R we have supA = ∞, and when A is not
bounded below in R we have inf A = −∞). For a sequence (xn)n≥1 in R, we define the limit supremum and
the limit infimum of (xn)n≥1 to be the following extended real numbers:

lim sup
n→∞

xn = lim
n→∞

un, where un=sup
{
xk
∣∣ k≥n} , and lim inf

n→∞
xn = lim

n→∞
`n, where `n=inf

{
xk
∣∣ k≥n}.

(a) Explain why lim sup
n→∞

xn and lim inf
n→∞

xn always exist in [−∞,∞] for every sequence (xn)n≥1 in R.

Solution: Note that when ∅ 6= S ⊆ T ⊆ R, every upper bound of T (including ∞) is also an upper
bound of S, and so we have supT ≥ supS. Likewise, every lower bound of T is also a lower bound
of S, and so inf T ≤ inf S. If we let Sn = {xk | k ≥ n} then we have S1 ⊇ S2 ⊇ S3 ⊇ · · · and so
supS1 ≥ supS2 ≥ supS3 ≥ · · ·, that is u1 ≥ u2 ≥ u3 ≥ · · · in [−∞,∞]. If un =∞ for all n (that is, if every
set Sn is not bounded above) then we shall agree that lim sup

n→∞
xn = lim

n→∞
un =∞.

Suppose that um < ∞ for some m. Then Sm is bounded above, hence S1 is bounded above (by the
maximum of x1, x2, · · · , xm−1, and supSm), and hence every Sn is bounded above (since Sn ⊆ S1). We also
note that un ≥ xn > −∞ so that (un)n≥1 is a decreasing sequence of real numbers, and so it has a limit in
the extended real numbers by the Monotone Convergence Theorem (if the sequence (un) is bounded below
then it has a finite limit in R, and if it is not bounded below then the limit is −∞). Similarly, the sequence
(`n)n≥1 is an increasing sequence in [−∞,∞), so it has a limit in the extended real numbers.

(b) Find lim sup
n→∞

xn and lim inf
n→∞

xn for the sequence given by x1 = 0, x2k = 1
2 x2k−1 and x2k+1 = 1

2 + x2k.

Solution: By induction, we have x2k = 1
2−

1
2k

and x2k+1 = 1− 1
2k

for all k ≥ 1. We claim that lim sup
n→∞

xn = 1

and lim inf
n→∞

xn = 1
2 . Let Sn = {xk|k ≥ n}. Since x2j = 1

2 −
1
2j <

1
2 < 1 for all j and x2j+1 = 1− 1

2j < 1 for

all j, we have xk < 1 for all k, and so 1 is an upper bound for each of the sets Sn. Thus, for every n ≥ 1, we
have un = supSn ≤ 1. On the other hand, we cannot have un < 1 because given any number r < 1 and any
n ≥ 1 we can choose k = 2j + 1 ≥ n so that xk = a2j+1 = 1− 1

2j > r showing that r is not an upper bound
for Sn. Thus un = supSn = 1 for all n ≥ 1, and so lim sup

n→∞
xn = lim

n→∞
un = 1.

For n = 2m, the set Sn = S2m contains the elements x2k with k ≥ m and the elements x2k+1 with
k ≥ m. Note that x2m = 1

2 −
1
2m is a lower bound for S2m because when k ≥ m we have 1

2k
≥ 1

2m so

x2k = 1
2 −

1
2k
≥ 1

2 −
1
2m and x2k+1 = 1 − 1

2k
≥ 1 − 1

2m > 1
2 −

1
2m . Since x2m is a lower bound for S2m

we have inf S2m ≥ x2m. On the other hand, since x2m ∈ S2m we have inf S2m ≤ x2m. It follows that
`2m = inf S2m = x2m = 1

2 −
1
2m for all m ≥ 1. A fairly similar (but not identical) argument shows that

`2m−1 = inf S2m−1 = x2m for all m ≥ 1. Since `2m = `2m−1 = 1
2 −

1
2m we have lim inf

n→∞
xn = lim

n→∞
`n = 1

2 .

(c) Show that for any sequence (xn)n≥1 in R, and for c ∈ [−∞,∞], we have lim
n→∞

xn = c if and only if

lim sup
n→∞

xn = lim inf
n→∞

xn = c.

Solution: Let un = sup{xk|k ≥ n} and `n = inf{xk|k ≥ n}. Note that for all n ≥ 1 we have `n ≤ xn ≤ un,
and it follows byy comparison that lim inf

n→∞
xn = lim

n→∞
`n ≤ lim

n→∞
un = lim sup

n→∞
xn.

Suppose that lim
n→∞

xn = c ∈ [−∞,∞]. Consider the case c = ∞. Let r > 0. Choose m ≥ 1 so

that k ≥ m =⇒ xk > r. Then for all n ≥ m, r is a lower bound for {xk|k ≥ n}, so we have r ≤ `n.
This shows that lim

n→∞
`n = ∞ and hence lim inf

n→∞
xn = lim

n→∞
`n = ∞. Since lim inf

n→∞
xn ≤ lim sup

n→∞
xn, we

also have lim sup
n→∞

xn = ∞. Similarly, in the case c = −∞ we have lim
n→∞

un = −∞, lim sup
n→∞

xn = −∞ and

lim inf
n→∞

xn = −∞. Consider the case c ∈ R. Let ε > 0. Choose m ≥ 1 so that k ≥ m =⇒ c− ε < xk < c+ ε.

For all n ≥ m we have xk < c+ ε for all k ≥ n and hence un ≤ c+ ε. It follows that lim
n→∞

un ≤ c+ ε. Since

ε > 0 was arbitrary, it follows that lim sup
n→∞

xn = lim
n→∞

un ≤ c. Similarly, we have lim inf
n→∞

xn = lim
n→∞

`n ≥ c.

Since c ≤ lim inf
n→∞

xn ≤ lim sup
n→∞

xn ≤ c, we have lim inf
n→∞

xn = lim sup
n→∞

xn = c.

Suppose, conversely, that lim sup
n→∞

xn = lim inf
n→∞

xn = c ∈ [−∞,∞]. If c = ∞ then since `n ≤ xn for all

n and lim
n→∞

`n = c = ∞ we have lim
n→∞

xn = ∞ (by comparison). If c = −∞ then since xn ≤ un for all n

and lim
n→∞

un = c = −∞ we have lim
n→∞

xn = −∞ (by comparison). If c ∈ R then since `n ≤ xn ≤ un and

lim
n→∞

`n = c = lim
n→∞

un we have lim
n→∞

xn = c (by the Squeeze Theorem).



3: Letm ∈ Z withm ≥ 2, and let Sm = {0, 1, 2, · · · ,m−1}. In this problem we explore the basem representation
of a real number.

(a) Let a1, a2, a3, · · · ∈ Sm. For n ∈ Z+, let sn =
n∑
k=1

ak
mk . Show that the sequence (sn)n≥1 converges and

that its limit lies in [0, 1].

Solution: Since ak ≥ 0 for all k, we have sn =
∑n
k=1

ak
mk ≥ 0 for all n. Since ak ≤ m− 1 for all k we have

sn =
n∑
k=1

ak
mk ≤

n∑
k=1

m−1
mn = (m− 1)

n∑
k=1

1
mk = (m− 1)

1− 1
mn

m−1 = 1− 1
mn ≤ 1

for all n. Since sn − sn−1 =
an
mn ≥ 0 for all n, the sequence (sn) is increasing. Since (sn) is increasing and

bounded above (by 1), it converges by the Monotone Convergence Theorem. Since 0 ≤ sn ≤ 1 for all n we
have 0 ≤ lim

n→∞
sn ≤ 1 by the Comparison Theorem.

(b) Given x ∈ [0, 1] show that there exist a1, a2, a3, · · · ∈ Sm such that for sn =
n∑
k=1

ak
mk we have x = lim

n→∞
sn.

Solution: Let x ∈ [0, 1]. If x = 1 then we can choose ak = m− 1 for all k to get

sn =
n∑
k=1

ak
mk =

n∑
k=1

m−1
mk = (m− 1)

n∑
k=1

1
mk = (m− 1)

1− 1
mn

m− 1
= 1− 1

mn −→ 1 = x.

Suppose that x ∈ [0, 1). Then we have 0 ≤ mx < m so we can choose a1 ∈ {0, 1, · · · ,m − 1} so that
a1 ≤ mx < a1 + 1 (to be explicit, we choose a1 = bmxc ) then we have

a1
m ≤ x <

a1
m + 1

m . Suppose that we

have constructed a1, a2, · · · , an−1 with each ak ∈ {0, 1, · · · ,m − 1} such that for sn−1 =
∑n−1
k=1

ak
mk we have

sn−1 ≤ x < sn−1 + 1
mn−1 . Then we have 0 ≤ x − sn−1 < 1

mn−1 hence 0 ≤ mn(x − sn−1) < m. We choose
an ∈ {0, 1, · · · ,m− 1} so that an ≤ mn(x− sn−1) < an + 1 (to be explicit, we choose an = bmn(x− sn−1)c)
and then we have

an
mn ≤ x−sn−1 < an+1

mn and so sn−1+
an
mn ≤ x < sn−1+

an
mn + 1

mn , that is sn ≤ x < sn+ 1
mn .

In this way, we obtain a sequence a1, a2, a3, · · · with each ak ∈ {0, 1, · · · ,m− 1} such that sn ≤ x < sn + 1
mn

for all n ≥ 0 (where we set s0 = 0). Since (sn)n≥0 is increasing and bounded above (by x), it converges.
Since sn ≤ x < sn + 1

mn for all n ≥ 1, the Comparison Theorem gives lim
n→∞

sn ≤ x ≤ lim
n→∞

sn, so that

lim
n→∞

sn = x, as required.

(c) Let a1, a2, a3, · · · ∈ Sm and b1, b2, b3, · · · ∈ Sm. Let sn =
n∑
k=1

ak
mk and let tn =

n∑
k=1

bk
mk . Suppose there

exists p ∈ Z with p ≥ 1 such that ak = bk for all k < p, ap = bp + 1, ak = 0 for all k > p and bk = m− 1 for
all k > p. Show that lim

n→∞
sn = lim

n→∞
tn.

Solution: Let x = lim
n→∞

sn. Choose p as above. Then for n ≥ p we have sn =
p−1∑
k=1

ak
mk +

bp+1
mp which is constant

(independent of n) and so x = lim
n→∞

sn =
p−1∑
k=1

ak
mk +

bp+1
mp . Also, for n ≥ p we have

tn =
p−1∑
k=1

bk
mk +

bp
mp +

n∑
k=p+1

m−1
mk =

p−1∑
k=1

ak
mk +

bp
mp + (m− 1)

n∑
k=p+1

1
mk

=
p−1∑
k=1

ak
mk +

bp
mp + (m− 1)

1
mp − 1

mn

m− 1
=

p−1∑
k=1

ak
mk +

bp
mp + 1

mp − 1
mn

= x− 1
mn −→ x as n→∞.



4: (a) Define f, g : R→ R by f(x) = x3 and g(x) = 3
√
x. Show that g is uniformly continuous but that f is not.

Solution: We claim that f(x) is not uniformly continuous. Choose ε = 1. Let δ > 0 Choose a = 1
δ and

x = δ + 1
δ . Then |x− a| = δ and we have∣∣f(x)− f(a)

∣∣ =
(
δ + 1

δ

)3 − ( 1δ )3 = 3δ + 3 · 1δ + δ3 > 3
(
δ + 1

δ

)
> 3 > ε

because when δ ≥ 1 we have δ + 1
δ > δ ≥ 1 and when 0 < δ ≤ 1 we have δ + 1

δ >
1
δ ≥ 1. Thus f is not

uniformly continuous.
We claim that g is uniformly continuous. First we note that for δ > 0 and for a, x ∈ R, in the case that

|a| ≤ 2δ, when |x− a| < δ we have |x| < 3δ and so

|f(x)− f(a)| ≤ |f(x)|+ |f(a)| < (2δ)1/3 + (3δ)1/3 = (21/3 + 31/3) δ1/3 < 3 δ1/3

(because 3 < 27
8 =

(
3
2

)3
so that 31/3 < 3

2 and hence 21/3 + 31/3 < 2 · 32 = 3) and in the case that |a| ≥ 2δ,
when |x− a| < δ, the numbers a and x have the same sign and we have |x| ≥ δ and so

|f(x)− f(a)| = |x1/3 − a1/3| =
∣∣∣∣ x− a
x2/3 + x1/3a1/3 + a2/3

∣∣∣∣ =
|x− a|

|x|2/3 + |x|1/3|a|1/3 + |a|2/3

<
δ

δ2/3 + δ1/3(2δ)1/3 + (2δ)2/3
=

δ1/3

1 + 21/3 + 41/3
< δ1/3 < 3 δ1/3.

Thus given ε > 0 we can choose δ = 1
27 ε

3 so that 3 δ1/3 = ε and then for all a, x ∈ R with |x − a| < δ we

have |f(x)− f(a)| < 3 δ1/3 = ε. Thus g is uniformly continuous.

(b) Define f : [0, 1) → R as follows. Given x ∈ [0, 1), write x in its binary (base 2) representation as
x = [.a1a2a3 · · ·]2 =

∑∞
k=1

ak
2k

with each ak ∈ {0, 1} so that ∀m ∈ Z+ ∃k ≥ m ak 6= 1, then let f(x) be
the number whose ternary (base 3) representation is f(x) = [.a1a2a3 · · ·]3 =

∑∞
k=1

ak
3k

. Determine where the
function f is continuous.

Solution: We claim that f is continuous from the right at all points a ∈ [0, 1) and f is continuous from the
left at all points a ∈ [0, 1) except for the points of the form a = k

2n where k ∈ Z+ with 0 < k < 2n, in other
words, except for the points 0 6= a ∈ [0, 1) with finite base 2 representations.

First, let us show that f is continuous from the right at all points a ∈ [0, 1). Let a ∈ [0, 1). Write a in
base 2 as a = [.a1a2a3 · · ·]2 where ∀m∈Z+ ∃k≥m ak = 0. Let ε > 0. Choose m∈Z+ with 2 · 3−m < ε,
choose k ≥ m such that ak = 0, and let δ = 2−k. For x ∈ [0, 1) with a ≤ x < a + δ, we shall prove on the
next page that the base 2 representations of a and x are of the form a = [.a1a2 · · · ak−10 ak+1ak+2 · · ·]2 and
x = [.a1a2 · · · ak−1bkbk+1 · · ·]2 with bk ∈ {0, 1} and with [.0 · · · 0 bkbk+1bk+2 · · ·]2 ≥ [.0 · · · 0 ak+1ak+2 · · ·]2.
Note that in base 3 we also have [.0 · · · 0 bkbk+1 · · ·]3 ≥ [.0 · · · 0 ak+1ak+2 · · ·]3 and so∣∣f(x)− f(a)

∣∣ = f(x)− f(a) = [.a1a2 · · · ak−1bkbk+1 · · ·]3 − [.a1a2 · · · ak−10 ak+1 · · ·]3
= [.0 · · · 0 bkbk+1 · · ·]3 − [.0 · · · 0 ak+1ak+2 · · ·]3
≤ [.0 · · · 0 bkbk+1 · · ·]3 ≤ 2 · 3−k ≤ 2 · 3−m < ε.

Thus f is continuous from the right at a, as claimed.
A similar argument shows that when a ∈ (0, 1) does not have a finite base 2 representation, the map

f is continuous from the left at a. Note that for such a ∈ (0, 1), its base 2 representation [.a1a2 · · ·]2 is
such that ∀m ∈ Z+ ∃k ≥m ak = 1. Given ε > 0 we choose m ∈ Z+ so that 2 · 3−m < ε, then we choose
k ≥ m so that ak = 1, and we take δ = 2−k. For a − δ < x ≤ a the base 2 representations of a and x
are of the form a = [.a1a2 · · · ak−11 ak+1 · · ·]2 and x = [.a1a2 · · · ak−1bkbk+1 · · ·]2 with bk ∈ {0, 1} and with
[.0 · · · 0 bkbk+1 · · ·]2 ≤ [.0 · · · 0 1 ak+1 · · ·]2. As above, we have |f(x)− f(a)| = f(a)− f(x) ≤ 2 · 3−k < ε.

Finally, suppose that a ∈ (0, 1) has a finite base 2 representation, say a = [.a1a2 · · · am]2 with am = 1.
We claim that f is not continuous from the left at the point a (that is ∃ε>0 ∀δ>0 ∃x∈ [0, 1) with |x−a| ≤ δ
and |f(x) − f(a)| > ε). Choose ε = 3−m−1. Let δ > 0. Choose k ∈ Z+ with k > m and 2−k < δ. Choose
x = a − 2−k = [.a1a2 · · · am−11]2 − [.0 · · · 01]2 = [.a1a2 · · · am−1011 · · · 1]2 where the final 1 is in position k.
Then we have |x− a| = 2−k < δ but

|f(x)− f(a)| = f(a)− f(x) = [.a1a2 · · · am−11]3 − [.a1 · · · am−1011 · · · 1]3 = [.0 · · · 01 · · · 112]3

where the first 1 is in position m+ 1 and the final 2 is in position k, and so |f(x)− f(a)| > 3−m−1 = ε.



Let a = [.a1a2 · · ·]2 with ak = 0, and let x = [.b1b2 · · ·]2 where ∀m∈Z+ ∃ j ≥m bj = 0. Suppose that
a ≤ x < a + 1

2k
. Here is a proof that bj = aj for all j < k. Suppose that this is not true, and let ` be the

smallest integer with 1 ≤ ` < k such that a` 6= b`. Case 1: suppose that a` = 1 and b` = 0. Since each
aj , bj ∈ {0, 1} so that aj − bj ≥ −1, and since bj = 0 for some j > `, we have

a− x = 1
2`

+
∞∑

j=`+1

aj−bj
2j > 1

2`
−

∞∑
j=`+1

1
2j = 1

2`
− 1

2`
= 0

which contradicts the fact that x ≥ a. Case 2: suppose that a` = 0 and b` = 1. Then since aj , bj ∈ {0, 1} so
bj − aj ≥ −1, and ak = 0, we have

x− a = 1
2`

+
k−1∑
j=`+1

bj−aj
2j + bk

2k
+

∞∑
j=k+1

bj−aj
2j ≥ 1

2`
−

k−1∑
j=`+1

1
2j + 0

2k
−

∞∑
j=k+1

1
2j = 1

2k−1 − 1
2k

= 1
2k

which contradicts the fact that x < a+ 1
2k

.


