PMATH 333 Real Analysis, Solutions to Assignment 2

: Let (zy,)n>1 and (yn)n>1 be sequences in R.

(a) Prove, from the definition of the limit, that if z,, = ¥ f”; then lim z, = 2.
n— oo

Solution: Note that for all n € Z+ we have
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Given € > 0 we choose m € ZT such that ;- < e. Then when n > m we have |z, —2| < 1 < L <e

4n*4m

(b) Prove that if x,, > 0 for all n > 1 and lim z,, = 0 then the set {xn’n S Z*} has a maximum element.
n— oo

Solution: Suppose that =, > 0 for all n > 1 and that lim z, = 0 and let S = {z,|n € ZT}. If 2, = 0 for

n— oo
all n > 1 then S = {0} and b = 0 is the maximum element of S. Suppose that there is at least one value

of n such that z,, > 0. Choose ¢ > 1 such that xy > 0. Since lim z, = 0 we can choose m > 1 so that

n— oo
n > m = x, < xy (we remark that if we had ¢ > m then we would have xy < xy which is impossible, so
we must have m > ¢). Let b = max{x,xa, -, T¢, -+, ZTm}. Then b = x; for some 1 < k < m, so we have

be S, and z, <z, <bfor all n > 1 so we have b = max(5).

(c) Prove that if hm Tp =a >0 and y, > 0 for all n > 1 with hrn Yn = 0 then lim i—" = 00.

n—oo In

Solution: Suppose that hm Tp =a > 0andy, >0foralln >1with lim y, =0. Let R > 0. Choose a real

n—oo

number r with 0 < r < a Smce lim z,, = a > r we can choose m; > 1 so that n > m; =— x,, > r. Since
n—oo

Yn > 0 and lim y, = 0 we can choose my > 1 so that n > my —= 0 < y, < %. Let m = max{mj, ma}.
n— o0

Then for n > m we have z, > 7 and 0 < y, < % and so 2= > —*— = R. Thus lim I = co.

R Yn r/R n—oo Yn
(d) Prove that if (z,,)n>1 is increasing, and (y,)n>1 converges, and we have ’xn — yn| < f—fl for all n € Z*,
then (x,,)n,>1 converges.

Solution: Suppose that (z,)n>1 is increasing and (y,)n>1 converges and |a:n — yn| < f—fr’l for all n € Z+.
Let b= lim y,. Choosem>1sothatn>m:>|yn*b| <1l=b—-1<y, <b+ 1. Then for alln >m

n—oo

we have [z, — y,| < 25 < 2 so that y, —2 < 2, <y, + 2, and we have b — 1 <y, < b+ 1, and it follows
that z, <y, +2 < b + 3 Since z, < b+ 3 for all n > m, the sequence (Tp)p>1 18 bounded above (by the
maximum of x1, g, -, Zm—1 and b+3). Since the sequence (x,)n,>1 is increasing and bounded above, it

converges by the Monotone Convergence Theorem.



2: We denote the set of extended real numbers by [—o00, 00| (or by R U {#o0c}). This is an ordered set with
maximum element co and minimum element —oco. Note that every nonempty set A C R has a supremum
and an infimum in [—oo, 00] (when A is not bounded above in R we have sup A = oo, and when A is not
bounded below in R we have inf A = —o0). For a sequence (z,,)n>1 in R, we define the limit supremum and
the limit infimum of (x,,)n>1 to be the following extended real numbers:

limsup x,, = hm Uy, where u,, =sup {xk | k:>n} and hmmfxn = hm Ly, where ¢, =inf {xk | k:>n}
n—oo n—

(a) Explain why limsup z,, and hm 1nf x,, always exist in [—oo, co] for every sequence (x,,),>1 in R.
n—oQ

Solution: Note that when ) # S C T C R, every upper bound of T (including oo) is also an upper
bound of S, and so we have supT > supS. Likewise, every lower bound of T is also a lower bound
of S, and so inf7 < infS. If we let S, = {zx|k > n} then we have S; O Sy D S35 D --- and so
sup S; > sup Se > sup Sz > - -, that is w3 > ug > ug > -+ - in [—00, 00|. If u,, = oo for all n (that is, if every

set .S,, is not bounded above) then we shall agree that limsup x,, = hm Uy, = OQ.
n— oo

Suppose that u,, < oo for some m. Then S,, is bounded above, hence S1 is bounded above (by the
maximum of x1,xs, -+, x,_1, and sup S,,), and hence every S, is bounded above (since S,, C S1). We also
note that u,, > x,, > —o0 so that (u,),>1 is a decreasing sequence of real numbers, and so it has a limit in
the extended real numbers by the Monotone Convergence Theorem (if the sequence (uy,) is bounded below
then it has a finite limit in R, and if it is not bounded below then the limit is —oo). Similarly, the sequence
(€n,)n>1 is an increasing sequence in [—0o, 00), so it has a limit in the extended real numbers.

(b) Find lim sup z,, and lim inf z,, for the sequence given by x1 = 0, zox = 2 Top—1 and Togy1 = 2 + Tok.

n—oo n—00
Solution: By induction, we have zof = % — 2% and og41 = 1— 55 L for all k > 1. We claim that limsup z,, = 1
?’L—}OO
and liminf z,, = % Let S,, = {zx|k > n}. Since z9; = % — g < 5 < 1forall j and z9j41 =1 — g < 1 for
n—oo

all j, we have xj < 1 for all k, and so 1 is an upper bound for each of the sets S,,. Thus, for every n > 1, we
have u,, = sup S, < 1. On the other hand, we cannot have u,, < 1 because given any number r < 1 and any
n > 1 we can choose k = 2j + 1 > n so that xy = agjy1 =1 — 1 > r showing that r is not an upper bound
for S,,. Thus u,, =sup S, =1 for all n > 1, and so limsupz,, = lim u, = 1.

n—00 n—00

For n = 2m, the set S,, = So,, contains the elements xo; with k& > m and the elements x9x41 with
k > m. Note that xq,, = % — 2%1 is a lower bound for S,,, because when k& > m we have 2% > 2%” SO
xgk:%—% > %_%andekJ'_l :1—2% > 1—2% > %—2% Since xs,, is a lower bound for S5,
we have inf Sy, > z9,,. On the other hand, since xa,, € So,, we have inf Ss,, < xo,. It follows that
loy, = inf So,, = X9y, = % — 2," for all m > 1. A fairly similar (but not identical) argument shows that
loyn—1 = inf S,,,_1 = X9, for all m > 1. Since £, = loy_1 = % — % we have liminf z,, = lim ¢,, = ;

n—oo n—o0

(c) Show that for any sequence (z,)n,>1 in R, and for ¢ € [—o0, 0], we have lim z,, = c¢ if and only if
- n— o0

limsup z,, = hm 1nf Tn = C.
n—oo

Solution: Let u, = sup{zi|k > n} and ¢, = inf{xi|k > n}. Note that for all n > 1 we have £,, < x,, < uy,

and it follows byy comparison that liminf z,, = lim ¢, < lim w, = limsupz,.
n—oo n—oo n—oo n—oo

Suppose that lim z, = ¢ € [—oc0,00]. Consider the case ¢ = oco. Let r > 0. Choose m > 1 so
n—oo

that Kk > m = x > r. Then for all n > m, r is a lower bound for {xx|k > n}, so we have r < £,.

This shows that lim ¢, = oo and hence liminfxz, = lim ¢, = oo. Since liminfzx, < limsupz,, we
n— 00 n—00 n— 00 n—00 n—00
also have limsup x,, = co. Similarly, in the case ¢ = —oco0 we have lim w, = —oo, limsupzx, = —oo and
n—00 n—oo n—o00
liminf x,, = —o0o0. Consider the case c € R. Let ¢ > 0. Choose m > 1sothat k >m —=c—e<zp <c+e.
n— o0

For all n > m we have z < ¢+ € for all K > n and hence u,, < ¢+ €. It follows that hm Uy, < ¢+ €. Since

€ > 0 was arbitrary, it follows that limsup z,, = hm Uy < c. Similarly, we have hm mf T, = lim £, > c.
n—oo n—oo n—oo
Since ¢ < liminf z,, < limsup x, < ¢, we have hm 1nf r, = limsup z,, = c.
n—00 n—o0 n—0o0 n—00
Suppose, conversely, that limsup x,, = hm 1nf Xy = ¢ € [—00,00]. If ¢ = 0o then since ¢, < z,, for all
n—oo
n and lim ¢, = ¢ = oo we have lim z, = (by comparlson) If ¢ = —o0 then since z,, < u,, for all n
n—oo n—oo
and lim w, = ¢ = —oco we have lim z, = —oco (by comparison). If ¢ € R then since ¢, < z, < u, and
n—oo n—oo

lim ¢, = c¢= lim u, we have lim z, = ¢ (by the Squeeze Theorem).
n— o0 n— o0 n—oo



3: Let m € Z withm > 2, and let S,,, = {0,1,2,---,m—1}. In this problem we explore the base m representation
of a real number.

n
(a) Let ai,az,as, -+ € Sp. Forn € Z7, let s, = > % Show that the sequence (s,),>1 converges and
k=1
that its limit lies in [0, 1].

Solution: Since aj > 0 for all k, we have s,, =) > 0 for all n. Since a < m — 1 for all k¥ we have

n n
=y <y me
k=1 k=1

for all n. Since s, — 8,1 = % > 0 for all n, the sequence (s,,) is increasing. Since (s,,) is increasing and
bounded above (by 1), it converges by the Monotone Convergence Theorem. Since 0 < s, < 1 for all n we
have 0 < lim s, <1 by the Comparison Theorem.

n—oo

1

mk
Ot 1—om L

n

(b) Given z € [0, 1] show that there exist a1, as,as, -+ € Sy, such that for s, = > % we have v = ILm Sp,.-
k=1 n oo

Solution: Let = € [0,1]. If z =1 then we can choose a; = m — 1 for all k to get
1

=Y =S u o)) =) =1 1=

B

Suppose that = € [0,1). Then we have 0 < mz < m so we can choose a; € {0,1,---,m — 1} so that
a; < mz < aj + 1 (to be explicit, we choose a; = |mz| ) then we have 2 <z < %= + L Suppose that we

have constructed a1,a2, -+ a,_1 with each a;, € {0,1,- — 1} such that for s,,_1 = 2;11 2k we have
Sp_1 < x < Sn 1+ ——. Then we have 0 <  — s5,,_1 < —=1 hence 0 < m"(z — s,-1) < m. We choose
an € {0,1,- - 1} S0 that an, g m (x —Sp—1) < ap+1 (to be explicit, we choose a,, = |m"™(z — $p—1)])
and then we have An < p—yq < 2 ! and so Sp— 1—&—— <x< S 1+——|——n, thatis s, <z < sn—i—#
In this way, we obtam a sequence al, ag, as, - -- with each a € {0,1,- — 1} such that s, <z < s, + #

for all n > 0 (where we set sp = 0). Since (sn)n>0 is increasing and bounded above (by x), it converges.
Since s, < 7 < sy + % for all n > 1, the Comparison Theorem gives hm sp < x < lim s,, so that

n— o0
lim s, = x, as required.
n— oo
n n b
c) Let ay,as,a3,--- € Sy, and by,bg, b3, --- € S,,,. Let s, = 2k and let t, = ~k Suppose there
m m

k=1 k=1
exists p € Z with p > 1 such that ar = by, for all k <p, ap, =b, + 1, ar, =0 for all £ > p and b = m — 1 for

all k > p. Show that hm sp = lim t,

n—oo
p—1
Solution: Let z = lim s,. Choose p as above. Then for n > p we have 5, = > &
n—oo k=1
p—1
(independent of n) and so z = lim s, = > & oy betl Also, for n > p we have
S "ot R b n
t, = 7"’#"‘ Z mk — 7k+m7pp+(m_l) Z mk
k=1 k=p+1 k=1 k=p+
p—1 , 11 g, .
_ ak 1 1
= 3 b+ (m - I = Z t et T
k=1 m =
_ 1
=T — 55— T asn— o0



4: (a) Define f,g: R — R by f(z) = 2 and g(z) = ¢/z. Show that g is uniformly continuous but that f is not.

Solution: We claim that f(z) is not uniformly continuous. Choose € = 1. Let § > 0 Choose a = } and
2 =06+ 4. Then |z — a| = ¢ and we have

f@)~ f@)| = (6+ 1)~ (1) =30+3 L+ >3(0+1)>3>¢

because when 6 > lwehaveé—i—% > 4§ > 1andwhen0<6§1wehave6+% > % > 1. Thus f is not
uniformly continuous.

We claim that g is uniformly continuous. First we note that for § > 0 and for a,x € R, in the case that
la| <26, when |z — a| < § we have |z| < 36 and so

£(@) = F(@)] < [F@)| + [£a)] < (20)/3 + (30)/2 = (21/3 4 8V/3) §1/3 < 351/3

(because 3 < & = (%)3 so that 31/% < 2 and hence 21/3 + 3%/% < 2. 3 = 3) and in the case that |a| > 20,

when |z — a| < 0, the numbers a and = have the same sign and we have |z| > § and so
xr—a B |z — al
2273 1+ 21/3q1/3 1 2/3 2273 + |z|/3|al /3 + |a[2/3
) §1/3
< 5273 + 01/3(28)1/3 1 (26)2/3 T 1421/3441/3

[f(@) = fla)| = 2'/% —a'/?| =

< Y3 < 361/3.

Thus given € > 0 we can choose § = % €® so that 36'/3 = ¢ and then for all @,z € R with |z —a| < § we
have |f(z) — f(a)| < 38'/% = e. Thus g is uniformly continuous.

(b) Define f : [0,1) — R as follows. Given = € [0,1), write z in its binary (base 2) representation as
x = [aragas---|o = Y ;~ 5k with each ap € {0,1} so that Vm € Z* 3k > m aj # 1, then let f(z) be
the number whose ternary (base 3) representation is f(x) = [.a1azas---]s = Y.~ §k. Determine where the
function f is continuous.

Solution: We claim that f is continuous from the right at all points a € [0,1) and f is continuous from the
left at all points a € [0,1) except for the points of the form a = 2% where k € Z1 with 0 < k < 2™, in other
words, except for the points 0 # a € [0,1) with finite base 2 representations.

First, let us show that f is continuous from the right at all points a € [0,1). Let a € [0,1). Write a in
base 2 as a = [.ajazas - --]2 where Vm € Z™ Fk>m ap = 0. Let ¢ > 0. Choose m € ZT with 2-3™™ < ¢,
choose k > m such that a, = 0, and let § = 2%, For z € [0,1) with a < 2 < a + §, we shall prove on the
next page that the base 2 representations of a and x are of the form a = [.ajas -+ ag—10 agt1ak42 - - ]2 and
T = [.a1a2 s ak—lbkbk+1 .- -]2 with b, € {0, 1} and with [.0 -0 bkbk+1bk+2 .- '}2 > [.0 o 0agr1aK42 - ~]2.
Note that in base 3 we also have [.0---0bgbgy1 ]3> [.0-+-0aky16k12--+]3 and so

|f(x) = fla)| = f(z) = fla) = [araz - ap_1bpbey1---]3s — [araz - - ap—10 apqr -3
= [0+ Obgbpr1Js — [0 Oansrapiz- s
<[O---0bpbpyr--]3<2-37F<2.37m < e
Thus f is continuous from the right at a, as claimed.
A similar argument shows that when a € (0,1) does not have a finite base 2 representation, the map
f is continuous from the left at a. Note that for such a € (0,1), its base 2 representation [.ajag-- ‘]2 is

such that Ym € Z*™ 3k >m a;, = 1. Given € > 0 we choose m € ZT so that 2-3™™ < ¢, then we choose
k > m so that a;, = 1, and we take 6 = 27%. For a — § < = < a the base 2 representations of a and x

are of the form a = [.a1az - ar—11akt1 ]2 and © = [.araz - - ag—1bkbg41 - - ]2 with b, € {0,1} and with
[0 O0bgbri1-]J2 <[0---01agss--J2. As above, we have |f(z) — f(a)| = f(a) — f(x) <2-37F <e.
Finally, suppose that a € (0,1) has a finite base 2 representation, say a = [.ajaz - - - ap]2 with a,, = 1.

We claim that f is not continuous from the left at the point a (that is Je>0V§>0 Iz €[0,1) with |z —a|] < §
and |f(z) — f(a)| > €). Choose € = 37™~ 1. Let § > 0. Choose k € Z* with k > m and 27% < §. Choose
r=a—2""=[ajaz - an_1l]a — [0---01]y = [.a1az - - - @y, _1011 - - - 1], where the final 1 is in position .
Then we have |z —a| =27% < § but

|f(z) — f(a)] = f(a) — f(x) = [.@1a2 - am-11]3 — [.a1 - - @p—1011---1]3 =[.0---01---112]3

where the first 1 is in position m + 1 and the final 2 is in position k, and so |f(z) — f(a)| > 3™ ! =e.



Let a = [.a1ag - --]2 with ai = 0, and let @ = [.byby - -] where Vm e Z* 3j>m b; =0. Suppose that
a<x<a+ 2% Here is a proof that b; = a; for all j < k. Suppose that this is not true, and let £ be the
smallest integer with 1 < £ < k such that ay # by. Case 1: suppose that ay = 1 and by = 0. Since each
a;,b; € {0,1} so that a; —b; > —1, and since b; = 0 for some j > ¢, we have

1 = 4=bi 1 = 1 _ 1 _ 1
a—r=g+ X Tyt g 2 =g w=0
j=H 2

which contradicts the fact that > a. Case 2: suppose that a; = 0 and b, = 1. Then since a;,b; € {0,1} so
bj —aj; > —1, and a, = 0, we have

k—1 00
1 bj—a; b bj—a; 1 1 1 1 1 _ 1
Toa=gt 3 Tyttt X Tt 2 wtar— 2 % T T T aF TR
j=0+1 j=k+1 =041 j=kt1

[~

which contradicts the fact that ¢ < a + 2%



