1: Let $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ be sequences in \mathbb{R} .

- (a) Prove, from the definition of the limit, that if $x_n = \frac{\sqrt{4n+1}}{\sqrt{n}}$, then $\lim_{n \to \infty} x_n = 2$.
- (b) Prove that if $x_n \ge 0$ for all $n \ge 1$ and $\lim_{n \to \infty} x_n = 0$ then the set $\{x_n | n \in \mathbb{Z}^+\}$ has a maximum element.
- (c) Prove that if $\lim_{n \to \infty} x_n = a > 0$ and $y_n > 0$ for all $n \ge 1$ with $\lim_{n \to \infty} y_n = 0$ then $\lim_{n \to \infty} \frac{x_n}{y_n} = \infty$.

(d) Prove that if $(x_n)_{n\geq 1}$ is increasing, and $(y_n)_{n\geq 1}$ converges, and we have $|x_n - y_n| < \frac{2n}{n+1}$ for all $n \in \mathbb{Z}^+$, then $(x_n)_{n\geq 1}$ converges.

2: We denote the set of extended real numbers by $[-\infty, \infty]$ (or by $\mathbb{R} \cup \{\pm \infty\}$). This is an ordered set with maximum element ∞ and minimum element $-\infty$. Note that every nonempty set $A \subseteq \mathbb{R}$ has a supremum and an infimum in $[-\infty, \infty]$ (when A is not bounded above in \mathbb{R} we have $\sup A = \infty$, and when A is not bounded below in \mathbb{R} we have $\inf A = -\infty$). For a sequence $(x_n)_{n\geq 1}$ in \mathbb{R} , we define the *limit supremum* and the *limit infimum* of $(x_n)_{n\geq 1}$ to be the following extended real numbers:

 $\limsup_{n \to \infty} x_n = \lim_{n \to \infty} u_n, \text{ where } u_n = \sup \left\{ x_k \mid k \ge n \right\}, \text{ and } \liminf_{n \to \infty} x_n = \lim_{n \to \infty} \ell_n, \text{ where } \ell_n = \inf \left\{ x_k \mid k \ge n \right\}.$

- (a) Explain why $\limsup_{n \to \infty} x_n$ and $\liminf_{n \to \infty} x_n$ always exist in $[-\infty, \infty]$ for every sequence $(x_n)_{n \ge 1}$ in \mathbb{R} .
- (b) Find $\limsup_{n \to \infty} x_n$ and $\liminf_{n \to \infty} x_n$ for the sequence given by $x_1 = 0$, $x_{2k} = \frac{1}{2} x_{2k-1}$ and $x_{2k+1} = \frac{1}{2} + x_{2k}$.
- (c) Show that for any sequence $(x_n)_{n\geq 1}$ in \mathbb{R} , and for $c \in [-\infty, \infty]$, we have $\lim_{n\to\infty} x_n = c$ if and only if $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n = c$.
- **3:** Let $m \in \mathbb{Z}$ with $m \ge 2$, and let $S_m = \{0, 1, 2, \dots, m-1\}$. In this problem we explore the base *m* representation of a real number.

(a) Let $a_1, a_2, a_3, \dots \in S_m$. For $n \in \mathbb{Z}^+$, let $s_n = \sum_{k=1}^n \frac{a_k}{m^k}$. Show that the sequence $(s_n)_{n \ge 1}$ converges and that its limit lies in [0, 1].

(b) Given $x \in [0, 1]$ show that there exist $a_1, a_2, a_3, \dots \in S_m$ such that for $s_n = \sum_{k=1}^n \frac{a_k}{m^k}$ we have $x = \lim_{n \to \infty} s_n$.

(c) Let $a_1, a_2, a_3, \dots \in S_m$ and $b_1, b_2, b_3, \dots \in S_m$. Let $s_n = \sum_{k=1}^n \frac{a_k}{m^k}$ and let $t_n = \sum_{k=1}^n \frac{b_k}{m^k}$. Suppose there exists $p \in \mathbb{Z}$ with $p \ge 1$ such that $a_k = b_k$ for all k < p, $a_p = b_p + 1$, $a_k = 0$ for all k > p and $b_k = m - 1$ for all k > p. Show that $\lim_{n \to \infty} s_n = \lim_{n \to \infty} t_n$.

4: (a) Define $f, g: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3$ and $g(x) = \sqrt[3]{x}$. Show that g is uniformly continuous but that f is not. (b) Define $f: [0,1) \to \mathbb{R}$ as follows. Given $x \in [0,1)$, write x in its binary (base 2) representation as $x = [.a_1a_2a_3\cdots]_2 = \sum_{k=1}^{\infty} \frac{a_k}{2^k}$ with each $a_k \in \{0,1\}$ so that $\forall m \in \mathbb{Z}^+ \exists k \ge m \ a_k \ne 1$, then let f(x) be the number whose ternary (base 3) representation is $f(x) = [.a_1a_2a_3\cdots]_3 = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$. Determine where the function f is continuous.