1: Let $\left(x_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ be sequences in \mathbb{R}.
(a) Prove, from the definition of the limit, that if $x_{n}=\frac{\sqrt{4 n+1}}{\sqrt{n}}$, then $\lim _{n \rightarrow \infty} x_{n}=2$.
(b) Prove that if $x_{n} \geq 0$ for all $n \geq 1$ and $\lim _{n \rightarrow \infty} x_{n}=0$ then the set $\left\{x_{n} \mid n \in \mathbb{Z}^{+}\right\}$has a maximum element.
(c) Prove that if $\lim _{n \rightarrow \infty} x_{n}=a>0$ and $y_{n}>0$ for all $n \geq 1$ with $\lim _{n \rightarrow \infty} y_{n}=0$ then $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\infty$.
(d) Prove that if $\left(x_{n}\right)_{n \geq 1}$ is increasing, and $\left(y_{n}\right)_{n \geq 1}$ converges, and we have $\left|x_{n}-y_{n}\right|<\frac{2 n}{n+1}$ for all $n \in \mathbb{Z}^{+}$, then $\left(x_{n}\right)_{n \geq 1}$ converges.

2: We denote the set of extended real numbers by $[-\infty, \infty]$ (or by $\mathbb{R} \cup\{ \pm \infty\}$). This is an ordered set with maximum element ∞ and minimum element $-\infty$. Note that every nonempty set $A \subseteq \mathbb{R}$ has a supremum and an infimum in $[-\infty, \infty]$ (when A is not bounded above in \mathbb{R} we have $\sup A=\infty$, and when A is not bounded below in \mathbb{R} we have inf $A=-\infty)$. For a sequence $\left(x_{n}\right)_{n \geq 1}$ in \mathbb{R}, we define the limit supremum and the limit infimum of $\left(x_{n}\right)_{n \geq 1}$ to be the following extended real numbers:

$$
\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} u_{n} \text {, where } u_{n}=\sup \left\{x_{k} \mid k \geq n\right\}, \text { and } \liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \ell_{n} \text {, where } \ell_{n}=\inf \left\{x_{k} \mid k \geq n\right\} \text {. }
$$

(a) Explain why $\limsup _{n \rightarrow \infty} x_{n}$ and $\liminf _{n \rightarrow \infty} x_{n}$ always exist in $[-\infty, \infty]$ for every sequence $\left(x_{n}\right)_{n \geq 1}$ in \mathbb{R}.
(b) Find $\limsup _{n \rightarrow \infty} x_{n}$ and $\liminf _{n \rightarrow \infty} x_{n}$ for the sequence given by $x_{1}=0, x_{2 k}=\frac{1}{2} x_{2 k-1}$ and $x_{2 k+1}=\frac{1}{2}+x_{2 k}$.
(c) Show that for any sequence $\left(x_{n}\right)_{n \geq 1}$ in \mathbb{R}, and for $c \in[-\infty, \infty]$, we have $\lim _{n \rightarrow \infty} x_{n}=c$ if and only if $\limsup _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n}=c$.

3: Let $m \in \mathbb{Z}$ with $m \geq 2$, and let $S_{m}=\{0,1,2, \cdots, m-1\}$. In this problem we explore the base m representation of a real number.
(a) Let $a_{1}, a_{2}, a_{3}, \cdots \in S_{m}$. For $n \in \mathbb{Z}^{+}$, let $s_{n}=\sum_{k=1}^{n} \frac{a_{k}}{m^{k}}$. Show that the sequence $\left(s_{n}\right)_{n \geq 1}$ converges and that its limit lies in $[0,1]$.
(b) Given $x \in[0,1]$ show that there exist $a_{1}, a_{2}, a_{3}, \cdots \in S_{m}$ such that for $s_{n}=\sum_{k=1}^{n} \frac{a_{k}}{m^{k}}$ we have $x=\lim _{n \rightarrow \infty} s_{n}$. (c) Let $a_{1}, a_{2}, a_{3}, \cdots \in S_{m}$ and $b_{1}, b_{2}, b_{3}, \cdots \in S_{m}$. Let $s_{n}=\sum_{k=1}^{n} \frac{a_{k}}{m^{k}}$ and let $t_{n}=\sum_{k=1}^{n} \frac{b_{k}}{m^{k}}$. Suppose there exists $p \in \mathbb{Z}$ with $p \geq 1$ such that $a_{k}=b_{k}$ for all $k<p, a_{p}=b_{p}+1, a_{k}=0$ for all $k>p$ and $b_{k}=m-1$ for all $k>p$. Show that $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} t_{n}$.

4: (a) Define $f, g: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{3}$ and $g(x)=\sqrt[3]{x}$. Show that g is uniformly continuous but that f is not. (b) Define $f:[0,1) \rightarrow \mathbb{R}$ as follows. Given $x \in[0,1$), write x in its binary (base 2) representation as $x=\left[\cdot a_{1} a_{2} a_{3} \cdots\right]_{2}=\sum_{k=1}^{\infty} \frac{a_{k}}{2^{k}}$ with each $a_{k} \in\{0,1\}$ so that $\forall m \in \mathbb{Z}^{+} \exists k \geq m a_{k} \neq 1$, then let $f(x)$ be the number whose ternary (base 3) representation is $f(x)=\left[\cdot a_{1} a_{2} a_{3} \cdots\right]_{3}=\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}}$. Determine where the function f is continuous.

