
PMATH 333 Real Analysis, Solutions to Assignment 1

1: In this problem, you will use the rules R1-R9 which define rings and fields, exactly as stated in the lecture
notes, along with the rule R0 which states that for every a ∈ R we have a · 0 = 0 and 0 · a = 0 (this is Part
4 of Properties of Rings). In your solution, your proof should be very detailed, using only one rule at each
step in the proof, and explicitly indicating which rule is used at each step. Note, for example, that to prove
that 0 + a = a you need to use both R3 and R2.

(a) Let R be a ring. Using only the rules R1-R7 which define a ring, together with rule R0 as stated above,
prove that for all a, b, c, d ∈ R, if a+ c = 0 and ab+ d = 0 then cb = d (this is Part 6 of Properties of Rings).

Solution: Let a, b, c, d ∈ R. Suppose that a+ c = 0 and ab+ d = 0. By R4, we can choose e ∈ R such that
ab+ e = 0. Then

ab+ cb = (a+ c)b , by R7

= 0 · b , since a+ c = 0

= 0 , by R0

= ab+ d , since ab+ d = 0

cb+ ab = d+ ab , by R2

(cb+ ab) + e = (d+ ab) + e , since cb+ ab = d+ ab

cb+ (ab+ e) = d+ (ab+ e) , by R1

cb+ 0 = d+ 0 , since ab+ e = 0

cb = d , by R0.

(b) Let F be a field. Using only the rules R1-R9 which define a field, together with rule R0 as stated above,
prove that for all x, y ∈ F , if x · x = y · y then either x = y or x+ y = 0.

Solution: Let x, y ∈ F . Suppose that x · x = y · y. Suppose x+ y 6= 0. Since x+ y 6= 0, by R9 we can choose
z ∈ F such that (x+ y) · z = 1. Then

x = x · 1 , by R6

= x · ((x+ y) · z) , since (x+ y) · z = 1

= (x · (x+ y)) · z , by R5

= (x · x+ x · y) · z , by R7

= (y · y + x · y) · z , since x · x = y · y
= ((y + x) · y) · z , by R7

= ((x+ y) · y) · z , by R1

= (y · (x+ y)) · z , by R8

= y · ((x+ y) · z) , by R5

= y · 1 , since (x+ y) · z = 1

= y , by R3.



2: In this problem, you will use rules R1-R9 and O1-O5 which define an ordered field, exactly as stated in the
lecture notes, along with rule R0, as stated in Problem 1. Your proof should be very detailed, using only
one rule at each step in the proof, and explicitly indicating which rule is used at each step.

(a) Let F be an ordered field. Using only the rules R1-R9 and O1-O5 which define an ordered field, together
with the rule R0 from Problem 1, prove that for all x ∈ F , if 0 ≤ x and x ≤ 1 then x · x ≤ x.

Solution: Let x ∈ F . Suppose that 0 ≤ x and x ≤ 1. Using R4, choose u ∈ F such that 1 + u = 0 (so that
we have u = −1). Using R4, choose y ∈ F such that x+ y = 0 (so that we have y = −x). Then

x+ y ≤ 1 + y , by O4, since x ≤ 1

0 ≤ 1 + y , since x+ y = 0

0 ≤ x · (1 + y) , by O5, since 0 ≤ x and 0 ≤ 1 + y

0 ≤ x · 1 + x · y , by R7

0 ≤ x+ x · y , by R6

0 + x · x ≤ (x+ x · y) + x · x , by O4

x · x+ 0 ≤ (x+ x · y) + x · x , by R2

x · x ≤ (x+ x · y) + x · x , by R3

x · x ≤ x+ (x · y + x · x) , by R1

x · x ≤ x+ x · (y + x) , by R7

x · x ≤ x+ x · (x+ y) , by R2

x · x ≤ x+ x · 0 , since x+ y = 0

x · x ≤ x+ 0 , by R0

x · x ≤ x , by R3

(b) Let F be an ordered field. Using only the rules R1-R9 and O1-O5 which define an ordered field, together
with the rule R0 from Problem 1, prove that for all x, y ∈ F , if x ≤ 0 and y ≤ 0 then 0 ≤ xy.

Solution: Let x, y ∈ F . Suppose that 0 ≤ x and 0 ≤ y. Using R4, choose u, v ∈ F such that x+ u = 0 and
y + v = 0. Note that

uv = uv + 0 · y , by R3

= uv + 0 · y , by R0

= uv + (x+ u) · y , since x+ u = 0

= uv + (xy + uy) , by R7

= (xy + uy) + uv , by R2

= xy + (uy + uv) , by R1

= xy + u(y + v) , by R7

= xy + u · 0 , since y + v = 0

= xy + 0 , by R0

= xy , by R3.

Since x ≤ 0 we have

x+ u ≤ 0 + u , by O4

0 ≤ 0 + u , since x+ u = 0

0 ≤ u+ 0 , by R2

0 ≤ u , by R3.

Since y ≤ 0 we have

y + v ≤ 0 + v , by O4

0 ≤ 0 + v , since y + v = 0

0 ≤ v + 0 , by R2

0 ≤ v , by R3.

Since 0 ≤ u and 0 ≤ v we have 0 ≤ uv by O5, and since uv = xy, this gives 0 ≤ xy, as required.



3: In this problem, you can freely use any of the familiar properties which hold in ordered fields (you do not
need to explicitly indicate when your proof uses these rules). But your must explicitly indicate each time
your proof uses one of the named order properties involving Z, Q and R. To be specific, you must clearly
indicate each time your proof uses any of the following properties: the Discreteness Property of Z, the Least
Upper (or Greatest Lower) Bound Property of R, the Approximation Property of the Supremum or Infimum,
the Well-Ordering Property of Z in R, the Floor and Ceiling Properties of Z in R, the Archimedian Property
of Z in R, the Density of Q in R, the Induction Principle in Z, or the Strong Induction Principle in Z.

(a) Let S =
{ 2+(−1)n

n

∣∣n ∈ Z+
}

. Find (with proof) supS and inf S.

Solution: Let an = 2+(−1)n

n so that S = {an|n ∈ Z+}. We claim that supS = maxS = 3
2 . Note that 3

2 is an

upper bound for S because a1 = 1 < 3
2 and a2 = 3

2 and for n ≥ 2 we have an = 2+(−1)n

n ≤ 3
n ≤

3
3 = 1 < 3

2 .
Since 3

2 is an upper bound for S with 3
2 = a2 ∈ S it follows that supS = maxS = 3

2 .

We claim that inf S = 0. Note that 0 is a lower bound for S because an = 2+(−1)n

n ≥ 1
n > 0 for all

n ≥ 1. Let m be any lower bound for S. We need to show that m ≤ 0. Suppose, for a contradiction,
that m > 0. By the Archimedean Property, we can choose n ∈ Z+ with n > 3

m so that 3
n < m. Then

an = 2+(−1)n

n ≤ 3
n < m, which contradicts the fact that m is a lower bound for S. Thus m ≤ 0, as required.

(b) Let A and B be nonempty bounded subsets of R and let C =
{
x+y

∣∣x ∈ A, y ∈ B}
. Prove that C is

bounded and supA+ supB = supC.

Solution: We claim that C is bounded. Let r and s be lower bounds for A and B, respectively, and let u
and v be upper bounds for A and B. Let z ∈ C. Say z = x+ y with x ∈ A and y ∈ B. Since r ≤ x ≤ u and
s ≤ y ≤ v we have r + s ≤ x+ y ≤ u+ v. Thus r + s ≤ z for every z ∈ C, so r + s is a lower bound for C,
and z ≤ u+ v for every z ∈ C, so u+ v is an upper bound for C. Thus C is bounded, as claimed.

Now let u = supA, v = supB and w = supC (these exist by the Least Upper Bound Property of R).
We need to show that u+ v = w. Since u and v are upper bounds for A and B, it follows, as shown above,
that u+ v is an upper bound for C, and so w ≤ u+ v (since w is the least upper bound). It remains to show
that u + v ≤ w. Let ε > 0. By the Approximation Property, we can choose x ∈ A with u − ε

2 < x and we
can choose y ∈ B with v − ε

2 < y. Then we have x+ y > (u− ε
2

)
+

(
v − ε

2

)
= (u+ v)− ε. Since x+ y ∈ C

and w is an upper bound for C we have w ≥ x+ y > (u+ v)− ε. Since w > u+ v − ε for all ε > 0 it follows
that w ≥ u+ v.

(c) Let S be a nonempty set in R which is bounded above. Suppose there exists δ > 0 such that for all
x, y ∈ S, if x 6= y then |y − x| ≥ δ. Prove that S has a maximum element.

Solution: Choose δ > 0 so that |y−x| ≥ δ for all x, y ∈ S. Since S is nonempty and bounded above, it has a
supremum in R (by the Least Upper Bound Property). Let b = supS. We need to show that b ∈ S. Suppose,
for a contradiction, that b /∈ S. By the Approximation Property, we can choose x ∈ S with b − δ < x ≤ b.
Since x ∈ S and b /∈ S we have x 6= b and so b − δ < x < b, hence also b < x + δ. By the Approximation
Property again, we can choose y ∈ S with x < y ≤ b. Since y ∈ S and b /∈ S we have y 6= b and so x < y < b.
Thus x < y < b < x+ δ. But then |y − x| = y − x < (x+ δ)− x = δ, and this contradicts the choice of δ.



4: Let n ∈ Z+ and let 0 < y ∈ R. In this problem you will prove that y has a unique positive nth root x ∈ R.
You can freely use any of the rules and properties discussed in Chapter 1 (you do not need to explicitly
indicate when the various rules and properties are being used).

(a) Show that for all a, b ∈ R, if 0 < a < b then bn − an ≤ n bn−1(b− a).

Solution: When n = 1 we have bn − an = b− a and nbn−1(b− a) = b− a, and when n ≥ 2 we have

bn − an = (b− a)(bn−1 + abn−2 + · · ·+ an−2b+ an−1) < (b− a) · nbn−1.

(b) Let A =
{

0 < t ∈ R
∣∣ tn < y

}
. Show that A is nonempty and bounded above and let x = supA.

Solution: The set A is not empty because if y > 1 then we have 1n = 1 < y so that 1 ∈ A and if 0 < y ≤ 1
then for t = y

2 < 1 we have tn < tn−1 < · · · < t2 < t < y so that t ∈ A. The set A is bounded above because
if y ≤ 1 then A is bounded above by 1 since if t > 1 then tn > t > 1 > y so that t /∈ A, and if y ≥ 1 then A
is bounded above by y since if t > y ≥ 1 then tn > t > y so that t /∈ A.

(c) Using Part (a), or otherwise, show that xn ≥ y, where x is as in Part (b).

Solution: Let x = supA, as above, and suppose, for a contradiction, that xn < y. To obtain a contradiction,
we wish to show that x is not an upper bound for A by finding ε > 0 so that x + ε ∈ A, that is so
that (x + ε)n < y. To get (x + ε)n < y we need (x + ε)n − xn < y − xn. From Part (a), we know

that (x + ε)n − xn ≤ ε · n(x + ε)n−1. Choose ε > 0 with ε ≤ 1 and ε < y−xn

n(x+1)n−1 . Then we have

(x + ε)n − xn ≤ ε · n(x + ε)n−1 ≤ ε · n(x + 1)n−1 < y − xn. Thus (x + ε)n < y and so x + ε ∈ A hence
x 6= supA, giving the desired contradiction.

(d) Using Part (a), or otherwise, show that xn ≤ y.

Solution: Suppose, for a contradiction, that xn > y. Choose ε > 0 with ε < xn−y
nxn−1 . For all t > 0, if t > x− ε

then tn > (x− ε)n so we have

xn − tn < xn − (x− ε)n ≤ ε · nxn−1 < xn − y

and hence tn > y so that t /∈ A. This shows that x− ε is an upper bound for A, which contradicts the fact
that x is the least upper bound.

(e) Finally, show that if x1 and x2 are positive real numbers with x1
n = x2

n then x1 = x2.

Solution: If x1, x2 > 0 with x1 6= x2, say 0 < x1 < x2, then we have 0 < x1
n < x2

n and hence xn1 6= xn2 .


