
MATH 247 Calculus 3 (Advanced), Solutions to the Midterm Test, Winter 2024

1: (a) Define f : R → R2 by f(t) =
(
t2 , t

t2+1

)
. Find (with proof) g : R2 → R such that Range(f) = Null(g)

then prove that Range(f) is closed.

Solution: Define g : R2 → R by g(x, y) = y2(x + 1)2 − x. We claim that Range(f) = Null(g). Suppose
(x, y) ∈ Range(f). Choose t ∈ R so that (x, y) = f(t) =

(
t2 , t

t2+1

)
, that is x = t2 and y = t

t2+1 . Then we

have g(x, y) = y2(x+ 1)2 − x =
(

t
t2+1

)2(
t2 + 1)2 − t2 = 0, and so (x, y) ∈ Null(g).

Suppose that (x, y) ∈ Null(g) so that we have 0 = g(x, y) = y2(x2 + 1)2 − x, that is y2(x+ 1)2 = x. Let

t = y(x + 1). Then we have t2 = y2(x + 1)2 = x and t
t2+1 = y(x+1)

x2+1 = y, so that (x, y) = f(t), and hence
(x, y) ∈ Range(f). Thus Range(f) = Null(g), as claimed.

Finally, note that Null(g) is closed in R2 because g : R2 → R is continuous (it is a polynomial) and {0}
is closed in R, and we have Null(g) = g−1

(
{0}
)
.

(b) Define g : R3 → R2 by g(x, y, z) =
(
x2+y2+z , 2x+z

)
. Find f : R→ R3 such that Range(f) = g−1(1, 1)

then prove that g−1(1, 1) is connected.

Solution: Define f : R→ R2 by f(t) =
(
1+cos t , sin t , −1−cos t

)
. We claim that Range(f) = g−1(1, 1).

Let (x, y, z) ∈ g−1(1, 1), so we have x2 + y2 + z = 1 and 2x+ z = 1. Then z = 1− x2 − y2 = 1− 2x so
that x2 − 2x+ y2 = 0, that is (x−1)2 + y2 = 1. Since (x, y) is on the circle of radius 1 centred at (1, 0), we
can choose t ∈ R such that (x, y) = (1+cos t, sin t), and then z = 1− 2x = 1− 2(1+cos t) = −1−2 cos t. This
shows that g−1(1, 1) ⊆ Range(f).

Suppose, conversely, that (x, y, z) ∈ Range(f), say (x, y, z) = f(t) =
(
1+cos t, sin t,−1−2 cos t

)
. Then

we have x2 + y2 + z = (1 + cos t)2 + (sin t)2 − 1 − 2 cos t = 1 + 2 cos t + cos2 t + sin2 t − 1 − 2 cos t = 1 and
2x+ z = 2(1 + cos t)− 1− 2 cos t = 1 so that g(x, y) = (1, 1), This shows that Range(f) ⊆ g−1(1, 1).

Finally, we claim that Range(f) is path-connected (hence connected). Let a, b ∈ Range(f), say a = f(r)
and b = f(s). Then the map α : [0, 1]→ Range(f) given by α(t) = f(a+ t(b− a)) is a continuous path from
a to b in Range(f). Thus Range(f) is path-connected, as claimed.
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2: (a) Let A =
{

(x, y) ∈ R2
∣∣ 3x+ 2y < 6

}
. Prove, from the definition of an open set, that A is open in R2.

Solution: Let (a, b) ∈ A, so we have 3a+2b < 6. Let r = 1
5

(
6− (3a+2b)

)
> 0 and note that 3a+2b = 6−5r.

When (x, y) ∈ B
(
(a, b), r

)
we have x − a ≤ |x − a| =

√
(x− a)2 ≤

√
(x− a)2 + (y − b)2 < r, and similarly

we have y − b < r, and hence 3x+ 2y < 3(a+ r) + 2(b+ r) = 3a+ 2b+ 5r = 6, so that (x, y) ∈ A.

(b) For n ≥ 1, let sn =
n∑
k=1

(
1+i
3

)k
. Prove, from the definition of a limit, that lim

n→∞
sn = 1+3 i

5 .

Solution: Using the formula for the sum of a geometric series, we have

sn =
n∑
k=1

(
1+i
3

)k
=

(
1+i
3

)(
1−
(

1+i
3

)n)
1−
(

1+i
3

) =

(
1+i
3

)(
1−
(

1+i
3

)n)
2−i
3

· 2+i2+i =
1+3i

3

(
1−
(

1+i
3

)n)
5
3

= 1+3i
5

(
1−

(
1+i
3

)n)
so that ∣∣sn − 1+3i

5

∣∣ =
∣∣ 1+3i

5

(
1+i
3

)n∣∣ =
∣∣ 1+3i

5

∣∣ · ∣∣ 1+i3 ∣∣n =
√

2
5 ·
(√

2
3

)n
.

Given ε > 0 we choose m ∈ Z+ so that
√

2
5 ·
(√

2
3

)m
< ε, and then for n ≥ m we have

∣∣sn − 1+3i
5

∣∣ < ε.

(c) Let f(x) =
xy

x2+y2
. Prove, from the definition of a limit, that lim

(x,y)→(0,0)
f(x, y) does not exist.

Solution: Suppose, for a contradiction, that lim
(x,y)→(0,0)

f(x, y) does exist, and let b = lim
(x,y)→(0,0)

f(x, y). Taking

ε = 1
2 , we can choose δ > 0 such that for all (x, y), if 0 <

√
x2 + y2 < δ then

∣∣f(x, y) − b
∣∣ < 1

2 . When

(x, y) =
(
δ
2 ,

δ
2

)
we have 0 <

√
x2 + y2 = δ√

2
< δ and we have f(x, y) = 1

2 , and hence
∣∣ 1
2 − b

∣∣ < 1
2 , which

implies that 0 < b < 1. On the other hand, when (x, y) =
(
− δ

2 ,
δ
2

)
, we have 0 <

√
x2 + y2 = δ√

2
< δ and

we have f(x, y) = − 1
2 , and hence

∣∣ − 1
2 − b

∣∣ < 1
2 , which implies that −1 < b < 0. This gives the desired

contradiction (since we cannot have −1 < b < 0 and 0 < b < 1).
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3: (a) Let A ⊆ Rn. Prove that A = A ∪A′ (this is part of Theorem 2.19).

Solution: We shall show that A∪A′ is the smallest closed set which contains A. We claim that A∪A′ is closed.
Let a ∈ (A∪A′)c. Since a /∈ A′ we can choose r > 0 such that B(a, r)∩A = ∅. Suppose, for a contradiction,
that B(a, r) ∩ A′ 6= ∅, say b ∈ B(a, r) ∩ A′. Since b ∈ B(a, r), which is open, we can choose s > 0 such that
B(b, s) ⊆ B(a, r), and since b ∈ A′ we have B(a, s) ∩ A 6= ∅. Since B(a, s) ⊆ B(a, r) and B(a, s) ∩ A 6= ∅,
it follows that B(a, r) ∩ A 6= ∅, giving the desired contradiction. Thus we have B(a, r) ∩ A′ = ∅. Since
B(a, r) ∩A = ∅ and B(a, r) ∩A′ = ∅, we have B(a, r) ⊆ (A ∪A′)c. Thus A ∪A′ is closed.

It remains to show that for every closed set K ⊆ Rn with A ⊆ K we have A ∪A′ ⊆ K. Let K ⊆ Rn be
closed with A ⊆ K. Since K is closed we have K = K ′. Since A ⊆ K we have A′ ⊆ K ′ = K. Since A ⊆ K
and A′ ⊆ K we have A ∪A′ ⊆ K, as required.

(b) Let A =
{

(u, v, w, x, y, z) ∈ R6
∣∣∣ rank

(
u v w
x y z

)
< 2

}
. Determine whether A is closed and whether A is

compact.

Solution: Note that we have rank
(
u v w
x y z

)
= 2 if and only if some pair of columns is linearly independent if

and only if one of the three 2× 2 sub-matrices
(
u v
x y

)
,
(
u w
x z

)
and

(
v w
y z

)
is invertible if and only if one of the

three determinants uy − vx, uz − wx and vz − wy is non-zero. Thus we have

rank
(
u v w
x y z

)
< 2 ⇐⇒

(
uy − vx = 0 and uz − wx = 0 and vz − wy = 0

)
and hence A = f−1

(
{0}
)
∩ g−1

(
{0}
)
∩ h−1

(
{0}
)

where f, g, h : R6 → R are given by

f(u, v, w, x, y, z) = uy − vx , g(u, v, w, x, y, z) = uz − wx , and h(u, v, w, x, y, z) = vz − wy .

Since f , g and h are continuous (they are polynomials) and {0} is closed in R, it follows that the sets
f−1

(
{0}
)
, g−1

(
{0}
)

and h−1
(
{0}
)

are all closed, and hence the set A is closed. On the other hand, A is
not bounded because for e1 = (1, 0, 0, 0, 0, 0) we have re1 ∈ A for all r ∈ R and ‖re1‖ = |r|. Since A is not
bounded, it is not compact (by the Heine-Borel Theorem).
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4: (a) Let f : A ⊆ Rn → R be continuous. Show that if A is non-empty and compact then f attains its
maximum value on A (this is part of Theorem 3.37).

Solution: suppose that f : A ⊆ Rn → R with A is compact. Since A is compact and f is continuous, f(A) is
compact by Part (2). Since f(A) is compact, it is closed and bounded by the Heine Borel Theorem. Since f(A)
is bounded and non-empty (since A 6= ∅) it has a supremum and an infemum in R. Let u = sup f(A). By the
Approximation Property of the Supremum, for each n ∈ Z+ we can choose xn ∈ A with u− 1

n < f(xn) ≤ u,
and it follows that f(xn) → u and hence u is a limit point of f(A). Since u is a limit point of f(A) and
f(A) is closed, we have u ∈ f(A). Thus we can choose a ∈ A such that f(a) = u = sup f(A) = max f(A),
and then f attains its maximum value at a ∈ A.

(b) Let A,B ⊆ Rn. Show that if A is compact, B is closed and A∩B = ∅, then there exists r > 0 such that
the open sets U =

⋃
a∈AB(a, r) and V =

⋃
b∈B B(b, r) are disjoint.

Solution: Suppose that A is compact, B is closed and A ∩ B = ∅. Since A ∩ B = ∅ we have A ⊆ Bc. For
each a ∈ A, since a ∈ Bc and Bc is open, we can choose ra > 0 such that B(a, 3ra) ⊆ Bc. Note that the set
S =

{
B(a, ra)

∣∣ a ∈ A} is an open cover of A. Since A is compact, we can choose a finite subcover of S, so
we can choose a1, a2, · · · , a` ∈ A such that A ⊆ B(a1, ra1) ∪ · · · ∪B(a`, ra`). Let r = min{ra1 , · · · , ra`}.

Let U =
⋃
a∈AB

(
a, r
)

and V =
⋃
b∈B B

(
b, r
)
. We claim that U ∩ V = ∅. Suppose, for a contradiction,

that U ∩ V 6= ∅ and choose x ∈ U ∪ V . Since x ∈ U we can choose a ∈ A such that x ∈ B
(
a, r
)
, since a ∈ A

we choose k so that a ∈ B(ak, rk), and since x ∈ V we can choose b ∈ B so that x ∈ B
(
b, r
)
. But then we

have |b− ak| ≤ |b− x|+ |x− a|+ |a− ak| < r + r + rk ≤ 3rak so that b ∈ B(ak, 3rak). This is not possible
since b ∈ B and B(ak, 3rak) ⊆ Bc.
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