MATH 247 Calculus 3 (Advanced), Solutions to the Midterm Test, Winter 2024

1: (a) Define $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by $f(t)=\left(t^{2}, \frac{t}{t^{2}+1}\right)$. Find (with proof) $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that Range $(f)=\operatorname{Null}(g)$ then prove that Range (f) is closed.
Solution: Define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $g(x, y)=y^{2}(x+1)^{2}-x$. We claim that Range $(f)=\operatorname{Null}(g)$. Suppose $(x, y) \in \operatorname{Range}(f)$. Choose $t \in \mathbb{R}$ so that $(x, y)=f(t)=\left(t^{2}, \frac{t}{t^{2}+1}\right)$, that is $x=t^{2}$ and $y=\frac{t}{t^{2}+1}$. Then we have $g(x, y)=y^{2}(x+1)^{2}-x=\left(\frac{t}{t^{2}+1}\right)^{2}\left(t^{2}+1\right)^{2}-t^{2}=0$, and so $(x, y) \in \operatorname{Null}(g)$.

Suppose that $(x, y) \in \operatorname{Null}(g)$ so that we have $0=g(x, y)=y^{2}\left(x^{2}+1\right)^{2}-x$, that is $y^{2}(x+1)^{2}=x$. Let $t=y(x+1)$. Then we have $t^{2}=y^{2}(x+1)^{2}=x$ and $\frac{t}{t^{2}+1}=\frac{y(x+1)}{x^{2}+1}=y$, so that $(x, y)=f(t)$, and hence $(x, y) \in \operatorname{Range}(f)$. Thus Range $(f)=\operatorname{Null}(g)$, as claimed.

Finally, note that $\operatorname{Null}(g)$ is closed in \mathbb{R}^{2} because $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous (it is a polynomial) and $\{0\}$ is closed in \mathbb{R}, and we have $\operatorname{Null}(g)=g^{-1}(\{0\})$.
(b) Define $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $g(x, y, z)=\left(x^{2}+y^{2}+z, 2 x+z\right)$. Find $f: \mathbb{R} \rightarrow \mathbb{R}^{3}$ such that Range $(f)=g^{-1}(1,1)$ then prove that $g^{-1}(1,1)$ is connected.
Solution: Define $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by $f(t)=(1+\cos t, \sin t,-1-\cos t)$. We claim that Range $(f)=g^{-1}(1,1)$.
Let $(x, y, z) \in g^{-1}(1,1)$, so we have $x^{2}+y^{2}+z=1$ and $2 x+z=1$. Then $z=1-x^{2}-y^{2}=1-2 x$ so that $x^{2}-2 x+y^{2}=0$, that is $(x-1)^{2}+y^{2}=1$. Since (x, y) is on the circle of radius 1 centred at $(1,0)$, we can choose $t \in \mathbb{R}$ such that $(x, y)=(1+\cos t, \sin t)$, and then $z=1-2 x=1-2(1+\cos t)=-1-2 \cos t$. This shows that $g^{-1}(1,1) \subseteq \operatorname{Range}(f)$.

Suppose, conversely, that $(x, y, z) \in \operatorname{Range}(f)$, say $(x, y, z)=f(t)=(1+\cos t, \sin t,-1-2 \cos t)$. Then we have $x^{2}+y^{2}+z=(1+\cos t)^{2}+(\sin t)^{2}-1-2 \cos t=1+2 \cos t+\cos ^{2} t+\sin ^{2} t-1-2 \cos t=1$ and $2 x+z=2(1+\cos t)-1-2 \cos t=1$ so that $g(x, y)=(1,1)$, This shows that Range $(f) \subseteq g^{-1}(1,1)$.

Finally, we claim that Range (f) is path-connected (hence connected). Let $a, b \in \operatorname{Range}(f)$, say $a=f(r)$ and $b=f(s)$. Then the map $\alpha:[0,1] \rightarrow$ Range (f) given by $\alpha(t)=f(a+t(b-a))$ is a continuous path from a to b in Range (f). Thus Range (f) is path-connected, as claimed.

2: (a) Let $A=\left\{(x, y) \in \mathbb{R}^{2} \mid 3 x+2 y<6\right\}$. Prove, from the definition of an open set, that A is open in \mathbb{R}^{2}.
Solution: Let $(a, b) \in A$, so we have $3 a+2 b<6$. Let $r=\frac{1}{5}(6-(3 a+2 b))>0$ and note that $3 a+2 b=6-5 r$. When $(x, y) \in B((a, b), r)$ we have $x-a \leq|x-a|=\sqrt{(x-a)^{2}} \leq \sqrt{(x-a)^{2}+(y-b)^{2}}<r$, and similarly we have $y-b<r$, and hence $3 x+2 y<3(a+r)+2(b+r)=3 a+2 b+5 r=6$, so that $(x, y) \in A$.
(b) For $n \geq 1$, let $s_{n}=\sum_{k=1}^{n}\left(\frac{1+i}{3}\right)^{k}$. Prove, from the definition of a limit, that $\lim _{n \rightarrow \infty} s_{n}=\frac{1+3 i}{5}$.

Solution: Using the formula for the sum of a geometric series, we have

$$
s_{n}=\sum_{k=1}^{n}\left(\frac{1+i}{3}\right)^{k}=\frac{\left(\frac{1+i}{3}\right)\left(1-\left(\frac{1+i}{3}\right)^{n}\right)}{1-\left(\frac{1+i}{3}\right)}=\frac{\left(\frac{1+i}{3}\right)\left(1-\left(\frac{1+i}{3}\right)^{n}\right)}{\frac{2-i}{3}} \cdot \frac{2+i}{2+i}=\frac{\frac{1+3 i}{3}\left(1-\left(\frac{1+i}{3}\right)^{n}\right)}{\frac{5}{3}}=\frac{1+3 i}{5}\left(1-\left(\frac{1+i}{3}\right)^{n}\right)
$$

so that

$$
\left|s_{n}-\frac{1+3 i}{5}\right|=\left|\frac{1+3 i}{5}\left(\frac{1+i}{3}\right)^{n}\right|=\left|\frac{1+3 i}{5}\right| \cdot\left|\frac{1+i}{3}\right|^{n}=\sqrt{\frac{2}{5}} \cdot\left(\frac{\sqrt{2}}{3}\right)^{n}
$$

Given $\epsilon>0$ we choose $m \in \mathbb{Z}^{+}$so that $\sqrt{\frac{2}{5}} \cdot\left(\frac{\sqrt{2}}{3}\right)^{m}<\epsilon$, and then for $n \geq m$ we have $\left|s_{n}-\frac{1+3 i}{5}\right|<\epsilon$.
(c) Let $f(x)=\frac{x y}{x^{2}+y^{2}}$. Prove, from the definition of a limit, that $\underset{(x, y) \rightarrow(0,0)}{\lim } \underset{(x, y) \text { does not exist. }}{ }$

Solution: Suppose, for a contradiction, that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does exist, and let $b \underset{(x, y) \rightarrow(0,0)}{ } f(x, y)$. Taking $\epsilon=\frac{1}{2}$, we can choose $\delta>0$ such that for all (x, y), if $0<\sqrt{x^{2}+y^{2}}<\delta$ then $|f(x, y)-b|<\frac{1}{2}$. When $(x, y)=\left(\frac{\delta}{2}, \frac{\delta}{2}\right)$ we have $0<\sqrt{x^{2}+y^{2}}=\frac{\delta}{\sqrt{2}}<\delta$ and we have $f(x, y)=\frac{1}{2}$, and hence $\left|\frac{1}{2}-b\right|<\frac{1}{2}$, which implies that $0<b<1$. On the other hand, when $(x, y)=\left(-\frac{\delta}{2}, \frac{\delta}{2}\right)$, we have $0<\sqrt{x^{2}+y^{2}}=\frac{\delta}{\sqrt{2}}<\delta$ and we have $f(x, y)=-\frac{1}{2}$, and hence $\left|-\frac{1}{2}-b\right|<\frac{1}{2}$, which implies that $-1<b<0$. This gives the desired contradiction (since we cannot have $-1<b<0$ and $0<b<1$).

3: (a) Let $A \subseteq \mathbb{R}^{n}$. Prove that $\bar{A}=A \cup A^{\prime}$ (this is part of Theorem 2.19).
Solution: We shall show that $A \cup A^{\prime}$ is the smallest closed set which contains A. We claim that $A \cup A^{\prime}$ is closed. Let $a \in\left(A \cup A^{\prime}\right)^{c}$. Since $a \notin A^{\prime}$ we can choose $r>0$ such that $B(a, r) \cap A=\emptyset$. Suppose, for a contradiction, that $B(a, r) \cap A^{\prime} \neq \emptyset$, say $b \in B(a, r) \cap A^{\prime}$. Since $b \in B(a, r)$, which is open, we can choose $s>0$ such that $B(b, s) \subseteq B(a, r)$, and since $b \in A^{\prime}$ we have $B(a, s) \cap A \neq \emptyset$. Since $B(a, s) \subseteq B(a, r)$ and $B(a, s) \cap A \neq \emptyset$, it follows that $B(a, r) \cap A \neq \emptyset$, giving the desired contradiction. Thus we have $B(a, r) \cap A^{\prime}=\emptyset$. Since $B(a, r) \cap A=\emptyset$ and $B(a, r) \cap A^{\prime}=\emptyset$, we have $B(a, r) \subseteq\left(A \cup A^{\prime}\right)^{c}$. Thus $A \cup A^{\prime}$ is closed.

It remains to show that for every closed set $K \subseteq \mathbb{R}^{n}$ with $A \subseteq K$ we have $A \cup A^{\prime} \subseteq K$. Let $K \subseteq \mathbb{R}^{n}$ be closed with $A \subseteq K$. Since K is closed we have $K=K^{\prime}$. Since $A \subseteq K$ we have $A^{\prime} \subseteq K^{\prime}=K$. Since $A \subseteq K$ and $A^{\prime} \subseteq K$ we have $A \cup A^{\prime} \subseteq K$, as required.
(b) Let $A=\left\{(u, v, w, x, y, z) \in \mathbb{R}^{6} \left\lvert\, \operatorname{rank}\left(\begin{array}{lll}u & v & w \\ x & y & z\end{array}\right)<2\right.\right\}$. Determine whether A is closed and whether A is compact.
Solution: Note that we have $\operatorname{rank}\left(\begin{array}{ccc}u & v & w \\ x & y & z\end{array}\right)=2$ if and only if some pair of columns is linearly independent if and only if one of the three 2×2 sub-matrices $\left(\begin{array}{ll}u & v \\ x & y\end{array}\right),\left(\begin{array}{ll}u & w \\ x & z\end{array}\right)$ and $\left(\begin{array}{cc}v & w \\ y & z\end{array}\right)$ is invertible if and only if one of the three determinants $u y-v x, u z-w x$ and $v z-w y$ is non-zero. Thus we have

$$
\operatorname{rank}\left(\begin{array}{lll}
u & v & w \\
x & y & z
\end{array}\right)<2 \Longleftrightarrow(u y-v x=0 \text { and } u z-w x=0 \text { and } v z-w y=0)
$$

and hence $A=f^{-1}(\{0\}) \cap g^{-1}(\{0\}) \cap h^{-1}(\{0\})$ where $f, g, h: \mathbb{R}^{6} \rightarrow \mathbb{R}$ are given by

$$
f(u, v, w, x, y, z)=u y-v x, g(u, v, w, x, y, z)=u z-w x, \text { and } h(u, v, w, x, y, z)=v z-w y
$$

Since f, g and h are continuous (they are polynomials) and $\{0\}$ is closed in \mathbb{R}, it follows that the sets $f^{-1}(\{0\}), g^{-1}(\{0\})$ and $h^{-1}(\{0\})$ are all closed, and hence the set A is closed. On the other hand, A is not bounded because for $e_{1}=(1,0,0,0,0,0)$ we have $r e_{1} \in A$ for all $r \in \mathbb{R}$ and $\left\|r e_{1}\right\|=|r|$. Since A is not bounded, it is not compact (by the Heine-Borel Theorem).

4: (a) Let $f: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous. Show that if A is non-empty and compact then f attains its maximum value on A (this is part of Theorem 3.37).
Solution: suppose that $f: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ with A is compact. Since A is compact and f is continuous, $f(A)$ is compact by Part (2). Since $f(A)$ is compact, it is closed and bounded by the Heine Borel Theorem. Since $f(A)$ is bounded and non-empty (since $A \neq \emptyset$) it has a supremum and an infemum in \mathbb{R}. Let $u=\sup f(A)$. By the Approximation Property of the Supremum, for each $n \in \mathbb{Z}^{+}$we can choose $x_{n} \in A$ with $u-\frac{1}{n}<f\left(x_{n}\right) \leq u$, and it follows that $f\left(x_{n}\right) \rightarrow u$ and hence u is a limit point of $f(A)$. Since u is a limit point of $f(A)$ and $f(A)$ is closed, we have $u \in f(A)$. Thus we can choose $a \in A$ such that $f(a)=u=\sup f(A)=\max f(A)$, and then f attains its maximum value at $a \in A$.
(b) Let $A, B \subseteq \mathbb{R}^{n}$. Show that if A is compact, B is closed and $A \cap B=\emptyset$, then there exists $r>0$ such that the open sets $U=\bigcup_{a \in A} B(a, r)$ and $V=\bigcup_{b \in B} B(b, r)$ are disjoint.
Solution: Suppose that A is compact, B is closed and $A \cap B=\emptyset$. Since $A \cap B=\emptyset$ we have $A \subseteq B^{c}$. For each $a \in A$, since $a \in B^{c}$ and B^{c} is open, we can choose $r_{a}>0$ such that $B\left(a, 3 r_{a}\right) \subseteq B^{c}$. Note that the set $S=\left\{B\left(a, r_{a}\right) \mid a \in A\right\}$ is an open cover of A. Since A is compact, we can choose a finite subcover of S, so we can choose $a_{1}, a_{2}, \cdots, a_{\ell} \in A$ such that $A \subseteq B\left(a_{1}, r_{a_{1}}\right) \cup \cdots \cup B\left(a_{\ell}, r_{a_{\ell}}\right)$. Let $r=\min \left\{r_{a_{1}}, \cdots, r_{a_{\ell}}\right\}$.

Let $U=\bigcup_{a \in A} B(a, r)$ and $V=\bigcup_{b \in B} B(b, r)$. We claim that $U \cap V=\emptyset$. Suppose, for a contradiction, that $U \cap V \neq \emptyset$ and choose $x \in U \cup V$. Since $x \in U$ we can choose $a \in A$ such that $x \in B(a, r)$, since $a \in A$ we choose k so that $a \in B\left(a_{k}, r_{k}\right)$, and since $x \in V$ we can choose $b \in B$ so that $x \in B(b, r)$. But then we have $\left|b-a_{k}\right| \leq|b-x|+|x-a|+\left|a-a_{k}\right|<r+r+r_{k} \leq 3 r_{a_{k}}$ so that $b \in B\left(a_{k}, 3 r_{a_{k}}\right)$. This is not possible since $b \in B$ and $B\left(a_{k}, 3 r_{a_{k}}\right) \subseteq B^{c}$.

