MATH 247 Calculus 3 (Advanced), Solutions to the Midterm Test, Winter 2024

1: (a) Define $f : \mathbb{R} \to \mathbb{R}^2$ by $f(t) = (t^2, \frac{t}{t^2+1})$. Find (with proof) $g : \mathbb{R}^2 \to \mathbb{R}$ such that $\operatorname{Range}(f) = \operatorname{Null}(g)$ then prove that $\operatorname{Range}(f)$ is closed.

Solution: Define $g: \mathbb{R}^2 \to \mathbb{R}$ by $g(x,y) = y^2(x+1)^2 - x$. We claim that $\operatorname{Range}(f) = \operatorname{Null}(g)$. Suppose $(x,y) \in \operatorname{Range}(f)$. Choose $t \in \mathbb{R}$ so that $(x,y) = f(t) = (t^2, \frac{t}{t^2+1})$, that is $x = t^2$ and $y = \frac{t}{t^2+1}$. Then we have $g(x,y) = y^2(x+1)^2 - x = \left(\frac{t}{t^2+1}\right)^2 (t^2+1)^2 - t^2 = 0$, and so $(x,y) \in \text{Null}(g)$.

Suppose that $(x, y) \in \text{Null}(g)$ so that we have $0 = g(x, y) = y^2(x^2 + 1)^2 - x$, that is $y^2(x+1)^2 = x$. Let t = y(x+1). Then we have $t^2 = y^2(x+1)^2 = x$ and $\frac{t}{t^2+1} = \frac{y(x+1)}{x^2+1} = y$, so that (x, y) = f(t), and hence $(x, y) \in \text{Range}(f)$. Thus Range(f) = Null(g), as claimed.

Finally, note that Null(g) is closed in \mathbb{R}^2 because $g: \mathbb{R}^2 \to \mathbb{R}$ is continuous (it is a polynomial) and $\{0\}$ is closed in \mathbb{R} , and we have $\operatorname{Null}(q) = q^{-1}(\{0\})$.

(b) Define $g: \mathbb{R}^3 \to \mathbb{R}^2$ by $g(x, y, z) = (x^2 + y^2 + z, 2x + z)$. Find $f: \mathbb{R} \to \mathbb{R}^3$ such that $\operatorname{Range}(f) = g^{-1}(1, 1)$ then prove that $q^{-1}(1,1)$ is connected.

Solution: Define $f : \mathbb{R} \to \mathbb{R}^2$ by $f(t) = (1 + \cos t, \sin t, -1 - \cos t)$. We claim that $\operatorname{Range}(f) = g^{-1}(1, 1)$. Let $(x, y, z) \in g^{-1}(1, 1)$, so we have $x^2 + y^2 + z = 1$ and 2x + z = 1. Then $z = 1 - x^2 - y^2 = 1 - 2x$ so that $x^2 - 2x + y^2 = 0$, that is $(x-1)^2 + y^2 = 1$. Since (x, y) is on the circle of radius 1 centred at (1, 0), we can choose $t \in \mathbb{R}$ such that $(x, y) = (1 + \cos t, \sin t)$, and then $z = 1 - 2x = 1 - 2(1 + \cos t) = -1 - 2\cos t$. This shows that $q^{-1}(1,1) \subset \text{Range}(f)$.

Suppose, conversely, that $(x, y, z) \in \text{Range}(f)$, say $(x, y, z) = f(t) = (1 + \cos t, \sin t, -1 - 2\cos t)$. Then we have $x^2 + y^2 + z = (1 + \cos t)^2 + (\sin t)^2 - 1 - 2\cos t = 1 + 2\cos t + \cos^2 t + \sin^2 t - 1 - 2\cos t = 1$ and $2x + z = 2(1 + \cos t) - 1 - 2\cos t = 1$ so that g(x, y) = (1, 1). This shows that Range $(f) \subseteq g^{-1}(1, 1)$.

Finally, we claim that $\operatorname{Range}(f)$ is path-connected (hence connected). Let $a, b \in \operatorname{Range}(f)$, say a = f(r)and b = f(s). Then the map $\alpha: [0,1] \to \text{Range}(f)$ given by $\alpha(t) = f(a+t(b-a))$ is a continuous path from a to b in $\operatorname{Range}(f)$. Thus $\operatorname{Range}(f)$ is path-connected, as claimed.

2: (a) Let $A = \{(x, y) \in \mathbb{R}^2 | 3x + 2y < 6\}$. Prove, from the definition of an open set, that A is open in \mathbb{R}^2 .

Solution: Let $(a, b) \in A$, so we have 3a + 2b < 6. Let $r = \frac{1}{5}(6 - (3a + 2b)) > 0$ and note that 3a + 2b = 6 - 5r. When $(x, y) \in B((a, b), r)$ we have $x - a \le |x - a| = \sqrt{(x - a)^2} \le \sqrt{(x - a)^2 + (y - b)^2} < r$, and similarly we have y - b < r, and hence 3x + 2y < 3(a + r) + 2(b + r) = 3a + 2b + 5r = 6, so that $(x, y) \in A$.

(b) For $n \ge 1$, let $s_n = \sum_{k=1}^n \left(\frac{1+i}{3}\right)^k$. Prove, from the definition of a limit, that $\lim_{n \to \infty} s_n = \frac{1+3i}{5}$.

Solution: Using the formula for the sum of a geometric series, we have

$$s_n = \sum_{k=1}^n \left(\frac{1+i}{3}\right)^k = \frac{\left(\frac{1+i}{3}\right)\left(1 - \left(\frac{1+i}{3}\right)^n\right)}{1 - \left(\frac{1+i}{3}\right)} = \frac{\left(\frac{1+i}{3}\right)\left(1 - \left(\frac{1+i}{3}\right)^n\right)}{\frac{2-i}{3}} \cdot \frac{2+i}{2+i} = \frac{\frac{1+3i}{3}\left(1 - \left(\frac{1+i}{3}\right)^n\right)}{\frac{5}{3}} = \frac{1+3i}{5}\left(1 - \left(\frac{1+i}{3}\right)^n\right)$$

so that

$$\left|s_n - \frac{1+3i}{5}\right| = \left|\frac{1+3i}{5}\left(\frac{1+i}{3}\right)^n\right| = \left|\frac{1+3i}{5}\right| \cdot \left|\frac{1+i}{3}\right|^n = \sqrt{\frac{2}{5}} \cdot \left(\frac{\sqrt{2}}{3}\right)^n$$

Given $\epsilon > 0$ we choose $m \in \mathbb{Z}^+$ so that $\sqrt{\frac{2}{5}} \cdot \left(\frac{\sqrt{2}}{3}\right)^m < \epsilon$, and then for $n \ge m$ we have $\left|s_n - \frac{1+3i}{5}\right| < \epsilon$.

(c) Let $f(x) = \frac{xy}{x^2 + y^2}$. Prove, from the definition of a limit, that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

Solution: Suppose, for a contradiction, that $\lim_{(x,y)\to(0,0)} f(x,y)$ does exist, and let $b = \lim_{(x,y)\to(0,0)} f(x,y)$. Taking $\epsilon = \frac{1}{2}$, we can choose $\delta > 0$ such that for all (x,y), if $0 < \sqrt{x^2 + y^2} < \delta$ then $|f(x,y) - b| < \frac{1}{2}$. When $(x,y) = \left(\frac{\delta}{2}, \frac{\delta}{2}\right)$ we have $0 < \sqrt{x^2 + y^2} = \frac{\delta}{\sqrt{2}} < \delta$ and we have $f(x,y) = \frac{1}{2}$, and hence $\left|\frac{1}{2} - b\right| < \frac{1}{2}$, which implies that 0 < b < 1. On the other hand, when $(x,y) = \left(-\frac{\delta}{2}, \frac{\delta}{2}\right)$, we have $0 < \sqrt{x^2 + y^2} = \frac{\delta}{\sqrt{2}} < \delta$ and we have $f(x,y) = -\frac{1}{2}$, and hence $\left|-\frac{1}{2} - b\right| < \frac{1}{2}$, which implies that -1 < b < 0. This gives the desired contradiction (since we cannot have -1 < b < 0 and 0 < b < 1).

3: (a) Let $A \subseteq \mathbb{R}^n$. Prove that $\overline{A} = A \cup A'$ (this is part of Theorem 2.19).

Solution: We shall show that $A \cup A'$ is the smallest closed set which contains A. We claim that $A \cup A'$ is closed. Let $a \in (A \cup A')^c$. Since $a \notin A'$ we can choose r > 0 such that $B(a, r) \cap A = \emptyset$. Suppose, for a contradiction, that $B(a, r) \cap A' \neq \emptyset$, say $b \in B(a, r) \cap A'$. Since $b \in B(a, r)$, which is open, we can choose s > 0 such that $B(b, s) \subseteq B(a, r)$, and since $b \in A'$ we have $B(a, s) \cap A \neq \emptyset$. Since $B(a, s) \subseteq B(a, r)$ and $B(a, s) \cap A \neq \emptyset$, it follows that $B(a, r) \cap A \neq \emptyset$, giving the desired contradiction. Thus we have $B(a, r) \cap A' = \emptyset$. Since $B(a, r) \cap A = \emptyset$ and $B(a, r) \cap A' = \emptyset$, we have $B(a, r) \subseteq (A \cup A')^c$. Thus $A \cup A'$ is closed.

It remains to show that for every closed set $K \subseteq \mathbb{R}^n$ with $A \subseteq K$ we have $A \cup A' \subseteq K$. Let $K \subseteq \mathbb{R}^n$ be closed with $A \subseteq K$. Since K is closed we have K = K'. Since $A \subseteq K$ we have $A' \subseteq K' = K$. Since $A \subseteq K$ and $A' \subseteq K$ we have $A \cup A' \subseteq K$, as required.

(b) Let $A = \left\{ (u, v, w, x, y, z) \in \mathbb{R}^6 \, \Big| \, \operatorname{rank} \begin{pmatrix} u & v & w \\ x & y & z \end{pmatrix} < 2 \right\}$. Determine whether A is closed and whether A is compact.

Solution: Note that we have $\operatorname{rank}\begin{pmatrix} u & v & w \\ x & y & z \end{pmatrix} = 2$ if and only if some pair of columns is linearly independent if and only if one of the three 2×2 sub-matrices $\begin{pmatrix} u & v \\ x & y \end{pmatrix}$, $\begin{pmatrix} u & w \\ x & z \end{pmatrix}$ and $\begin{pmatrix} v & w \\ y & z \end{pmatrix}$ is invertible if and only if one of the three determinants uy - vx, uz - wx and vz - wy is non-zero. Thus we have

$$\operatorname{rank}\begin{pmatrix} u & v & w \\ x & y & z \end{pmatrix} < 2 \iff \left(uy - vx = 0 \text{ and } uz - wx = 0 \text{ and } vz - wy = 0 \right)$$

and hence $A = f^{-1}(\{0\}) \cap g^{-1}(\{0\}) \cap h^{-1}(\{0\})$ where $f, g, h : \mathbb{R}^6 \to \mathbb{R}$ are given by

$$f(u, v, w, x, y, z) = uy - vx$$
, $g(u, v, w, x, y, z) = uz - wx$, and $h(u, v, w, x, y, z) = vz - wy$.

Since f, g and h are continuous (they are polynomials) and $\{0\}$ is closed in \mathbb{R} , it follows that the sets $f^{-1}(\{0\})$, $g^{-1}(\{0\})$ and $h^{-1}(\{0\})$ are all closed, and hence the set A is closed. On the other hand, A is not bounded because for $e_1 = (1, 0, 0, 0, 0, 0)$ we have $re_1 \in A$ for all $r \in \mathbb{R}$ and $||re_1|| = |r|$. Since A is not bounded, it is not compact (by the Heine-Borel Theorem).

4: (a) Let $f : A \subseteq \mathbb{R}^n \to \mathbb{R}$ be continuous. Show that if A is non-empty and compact then f attains its maximum value on A (this is part of Theorem 3.37).

Solution: suppose that $f : A \subseteq \mathbb{R}^n \to \mathbb{R}$ with A is compact. Since A is compact and f is continuous, f(A) is compact by Part (2). Since f(A) is compact, it is closed and bounded by the Heine Borel Theorem. Since f(A) is bounded and non-empty (since $A \neq \emptyset$) it has a supremum and an infemum in \mathbb{R} . Let $u = \sup f(A)$. By the Approximation Property of the Supremum, for each $n \in \mathbb{Z}^+$ we can choose $x_n \in A$ with $u - \frac{1}{n} < f(x_n) \le u$, and it follows that $f(x_n) \to u$ and hence u is a limit point of f(A). Since u is a limit point of f(A) and f(A) is closed, we have $u \in f(A)$. Thus we can choose $a \in A$ such that $f(a) = u = \sup f(A) = \max f(A)$, and then f attains its maximum value at $a \in A$.

(b) Let $A, B \subseteq \mathbb{R}^n$. Show that if A is compact, B is closed and $A \cap B = \emptyset$, then there exists r > 0 such that the open sets $U = \bigcup_{a \in A} B(a, r)$ and $V = \bigcup_{b \in B} B(b, r)$ are disjoint.

Solution: Suppose that A is compact, B is closed and $A \cap B = \emptyset$. Since $A \cap B = \emptyset$ we have $A \subseteq B^c$. For each $a \in A$, since $a \in B^c$ and B^c is open, we can choose $r_a > 0$ such that $B(a, 3r_a) \subseteq B^c$. Note that the set $S = \{B(a, r_a) \mid a \in A\}$ is an open cover of A. Since A is compact, we can choose a finite subcover of S, so we can choose $a_1, a_2, \dots, a_\ell \in A$ such that $A \subseteq B(a_1, r_{a_1}) \cup \dots \cup B(a_\ell, r_{a_\ell})$. Let $r = \min\{r_{a_1}, \dots, r_{a_\ell}\}$.

Let $U = \bigcup_{a \in A} B(a, r)$ and $V = \bigcup_{b \in B} B(b, r)$. We claim that $U \cap V = \emptyset$. Suppose, for a contradiction, that $U \cap V \neq \emptyset$ and choose $x \in U \cup V$. Since $x \in U$ we can choose $a \in A$ such that $x \in B(a, r)$, since $a \in A$ we choose k so that $a \in B(a_k, r_k)$, and since $x \in V$ we can choose $b \in B$ so that $x \in B(b, r)$. But then we have $|b - a_k| \leq |b - x| + |x - a| + |a - a_k| < r + r + r_k \leq 3r_{a_k}$ so that $b \in B(a_k, 3r_{a_k})$. This is not possible since $b \in B$ and $B(a_k, 3r_{a_k}) \subseteq B^c$.