MATH 247 Calculus 3, Exercises for Chapter 7

1: (a) Find $\int_{D} x y d A$ where D is the region bounded by $x+y=-1$ and $x+y^{2}=1$.
(b) Find $\int_{D} x^{2}+y d V$ where D is the tetrahedron bounded by $x+y+z=2, z=2, x=1$ and $y=x$.

2: (a) Find $\int_{D} e^{x-y} d A$ where D is the parallelogram with vertices at $(1,1),(3,2),(4,5)$ and $(2,4)$.
(b) Find $\int_{D} \sqrt{y^{3}+z} d V$ where $D=\left\{(x, y, z) \mid 0 \leq x \leq 1, \sqrt{x} \leq y \leq 1, y^{3} \leq z \leq 1\right\}$.

3: (a) Find the volume of the region which lies under the surface $z=e^{x+y}$ and above the triangle in the $x y$-plane with vertices at $(0,0),(1,1)$ and $(0,2)$.
(b) Find the volume of the region which lies outside the cylinder $x^{2}+y^{2}=1$, inside the cylinder $x^{2}+y^{2}=2 x$ and inside the sphere $x^{2}+y^{2}+z^{2}=4$.

4: (a) Find the mass of the solid tetrahedron with vertices at $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$ with density given by $f(x, y, z)=1 /(1+x)$.
(b) Find the mass of the solid which lies inside the cone $z=\sqrt{x^{2}+y^{2}}$ and inside the sphere $x^{2}+y^{2}+z^{2}=4$ with density given by $f(x, y, z)=2-z$.

5: (a) A cord, carrying an unevenly distributed charge, is wound around the cone $z=\sqrt{x^{2}+y^{2}}$ following the curve $(x, y, z)=\alpha(t)=(t \cos t, t \sin t, t)$ with $0 \leq t \leq 4$. The charge density (charge per unit length) of the cord at position (x, y, z) is given by $f(x, y, z)=z$. Find the total charge of the cord.
(b) The surface obtained by revolving the circle $(x-1)^{2}+z^{2}=1$ in the $x z$-plane about the z-axis can be given parametrically by

$$
(x, y, z)=\sigma(\theta, \phi)=((1+\cos \phi) \cos \theta,(1+\cos \phi) \sin \theta, \sin \phi)
$$

with $0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq 2 \pi$. Find the mass of this surface given that its density (mass per unit area) at position (x, y, z) is given by $f(x, y, z)=1+z^{2}$.

