MATH 247 Calculus 3, Solutions to the Exercises for Chapter 6

1: (a) A function $f(x, y)$ is called harmonic if it is a solution to Laplace's equation, which is the partial differential equation $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$. Determine which of the following two functions are harmonic.
(i) $f(x, y)=\ln \sqrt{x^{2}+y^{2}}$

Solution: We have $f(x, y)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$, so $\frac{\partial f}{\partial x}=\frac{x}{x^{2}+y^{2}}$ and $\frac{\partial f}{\partial y}=\frac{y}{x^{2}+y^{2}}$ and so $\frac{\partial^{2} f}{\partial x^{2}}=\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$ and $\frac{\partial^{2} f}{\partial y^{2}}=$ $\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$. Since $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0, f(x, y)$ is harmonic.
(ii) $f(x, y)=\tan ^{-1} \frac{y}{x}$.

Solution: We have $\frac{\partial f}{\partial x}=\frac{-\frac{y}{x}}{1+\frac{y^{2}}{x^{2}}}=-\frac{y}{x^{2}+y^{2}}$ and $\frac{\partial f}{\partial y}=\frac{\frac{1}{x}}{1+\frac{y^{2}}{x^{2}}}=\frac{x}{x^{2}+y^{2}}$ and so we have $\frac{\partial^{2} f}{\partial x^{2}}=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}$ and $\frac{\partial^{2} f}{\partial y^{2}}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}$. Since $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0, f(x, y)$ is harmonic.
(b) Find the Taylor polynomial of degree 2, centred at $(-2,1)$, for $f(x, y)=(2-x) e^{x+2 y}$.

Solution: We have

$$
\frac{\partial f}{\partial x}=(1-x) e^{x+2 y}, \frac{\partial f}{\partial y}=2(2-x) e^{x+2 y}, \frac{\partial^{2} f}{\partial x^{2}}=(-x) e^{x+2 y}, \frac{\partial^{2} f}{\partial x \partial y}=2(1-x) e^{x+2 y}, \frac{\partial^{2} f}{\partial y^{2}}=4(2-x) e^{x+2 y}
$$

and so

$$
f(-2,1)=4, \frac{\partial f}{\partial x}(-2,1)=3, \frac{\partial f}{\partial y}(-2,1)=8, \frac{\partial^{2} f}{\partial x^{2}}(-2,1)=2, \frac{\partial^{2} f}{\partial x \partial y}(-2,1)=6, \frac{\partial^{2} f}{\partial y^{2}}(-2,1)=16
$$

Thus the second Taylor polynomial is

$$
T_{2}(x, y)=4+3(x+2)+8(y-1)+(x+2)+6(x+2)(y-1)+8(y-1)^{2} .
$$

2: (a) Let $z=f(x, y)=x^{2} y+2 x^{2}+y^{2}$. Find and classify all the critical points of $f(x, y)$, then find the maximum and minimum values of $z=f(x, y)$ in $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 8\right\}$.
Solution: We have $D f(x, y)=\left(\begin{array}{ll}\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}\end{array}\right)=\left(\begin{array}{ll}2 x y+4 x & x^{2}+2 y\end{array}\right)$. Note that

$$
\frac{\partial f}{\partial x}=0 \Longleftrightarrow 2 x y+4 x=0 \Longleftrightarrow 2 x(y+2)=0 \Longleftrightarrow x=0 \text { or } y=-2
$$

When $x=0$ we have $x^{2}+2 y=0 \Longleftrightarrow y=0$, and when $y=-2$ we have $x^{2}+2 y=0 \Longleftrightarrow x= \pm 2$. Thus we have $D f(x, y)=0$ at the points $(0,0),(2,-2)$ and $(-2,-2)$. The Hessian matrix is

$$
H f(x, y)=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right)=\left(\begin{array}{cc}
2 y+4 & 2 x \\
2 x & 2
\end{array}\right)
$$

When $(x, y)=(0,0)$, we have $H f=\left(\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right)$, which has eigenvalues 4 and 2 , so f has a local minimum at $(0,0)$. When $(x, y)=(2,-2)$, we have $H f=\left(\begin{array}{ll}0 & 4 \\ 4 & 2\end{array}\right)$ and $\operatorname{det}(H f-\lambda I)=\operatorname{det}\left(\begin{array}{cc}-\lambda & 4 \\ 4 & \lambda\end{array}\right)=\lambda^{2}-2 \lambda-16$, so $H f$ has eigenvalues $\lambda=\frac{2 \pm \sqrt{4+4 \cdot 16}}{2}=1 \pm \sqrt{17}$, and so f has a saddle point at $(-2,2)$. When $(x, y)=(-2,-2)$, we have $H f=\left(\begin{array}{cc}-0 & -4 \\ -4 & 2\end{array}\right)$, which also has eigenvalues $1 \pm \sqrt{17}$, so f also has a saddle point at $(-2,-2)$.

On the boundary, where $x^{2}=8-y^{2}$ with $-2 \sqrt{2} \leq y \leq 2 \sqrt{2}$, we have

$$
f(x, y)=\left(8-y^{2}\right) y+2\left(8-y^{2}\right)+y^{2}=-y^{3}-y^{2}+8 y+16
$$

so we let $g(y)=-y^{3}-y^{2}+8 y+16$. Then $g^{\prime}(y)=-3 y^{2}-2 y+8=-(3 y-4)(y+2)$, so $g^{\prime}(y)=0$ when $y=\frac{4}{3}$ and -2 . When $y=\frac{4}{3}$ we have $x= \pm \sqrt{8-\frac{16}{9}}= \pm \frac{2 \sqrt{14}}{3}$, when $y=-2$ we have $x= \pm 2$, and when $y= \pm 2 \sqrt{2}$ we have $x=0$. Note that $f(0,0)=0$, and $f(\pm 2,-2)=g(-2)=4$, and $f\left(\pm \frac{2 \sqrt{14}}{3}, \frac{4}{3}\right)=g\left(\frac{4}{3}\right)=\frac{608}{27}$, and $f(\pm 2 \sqrt{2}, 0)=g(\pm 2 \sqrt{2})=8$, so the minimum value of f is $f(0,0)=0$ and the maximum value of f is $f\left(\pm \frac{\sqrt{14}}{3}, \frac{4}{3}\right)=\frac{608}{27}$.
(b) Find the maximum possible area for a quadrilateral with vertices at $(0,0),(1-r, 0),(1-r+r \cos \theta, r \sin \theta)$ and $(0, r \sin \theta)$, with $0 \leq r \leq 1$ and $0 \leq \theta \leq \frac{\pi}{2}$.
Solution: The area is given by

$$
A(r, \theta)=(1-r)(r \sin \theta)+\frac{1}{2}(r \sin \theta)(r \cos \theta)=r \sin \theta-r^{2} \sin \theta+\frac{1}{2} r^{2} \sin \theta \cos \theta
$$

and we have

$$
D A(r, \theta)=\left(\frac{\partial A}{\partial r}, \frac{\partial A}{\partial \theta}\right)=\left(\sin \theta-2 r \sin \theta+r \sin \theta \cos \theta, r \cos \theta-r^{2} \cos \theta+\frac{1}{2} r^{2} \cos ^{2} \theta-\frac{1}{2} r^{2} \sin ^{2} \theta\right)
$$

Let us find the critical points with $0<r<1$ and $0<\theta<\frac{\pi}{2}$. We have $D A(r, \theta)=0$ when

$$
\begin{equation*}
\sin \theta(1-2 r+r \cos \theta)=0 \quad \text { (1) and } r \cos \theta-r^{2} \cos \theta+r^{2} \cos ^{2} \theta-\frac{1}{2} r^{2}=0 \tag{2}
\end{equation*}
$$

For $0<\theta<\frac{\pi}{2}$ we have $\sin \theta \neq 0$, so equation (1) gives $1-2 r+r \cos \theta=0$, that is $\cos \theta=\frac{2 r-1}{r}$. Put this into equation (2) to get $(2 r-1)-r(2 r-1)+(2 r-1)^{2}-\frac{1}{2} r^{2}=0$, that is $\frac{3}{2} r^{2}-r=0$. For $r>0$ this gives $r=\frac{2}{3}$, and since $\cos \theta=\frac{2 r-1}{r}=\frac{1}{2}$, we have $\theta=\frac{\pi}{3}$. Thus the only critical point is at $\left(\frac{2}{3}, \frac{\pi}{2}\right)$, and we have $A\left(\frac{2}{3}, \frac{\pi}{3}\right)=\frac{\sqrt{3}}{9}+\frac{\sqrt{3}}{18}=\frac{\sqrt{3}}{6}$.

On the boundary, when $r=0$ we have $A=0$, when $r=1$ we have $A=\frac{1}{2} \sin \theta \cos \theta=\frac{1}{4} \sin 2 \theta \leq \frac{1}{4}<\frac{\sqrt{3}}{6}$, when $\theta=0$ we have $A=0$, and when $\theta=\frac{\pi}{2}$ we have $A=(1-r) r=\frac{1}{4}-\left(r-\frac{1}{2}\right)^{2} \leq \frac{1}{4}<\frac{\sqrt{3}}{6}$. Thus the maximum possible area is $A=\frac{\sqrt{3}}{6}$, which we obtain when $(r, \theta)=\left(\frac{2}{3}, \frac{\pi}{3}\right)$.

3: Let $u=f(x, y, z)=x^{2}+x y+y^{2}+3 y z^{2}+6 z^{2}$. Find and classify all the critical points of $f(x, y, z)$, then find the maximum and minimum values of u with $-1 \leq x \leq 3,-4 \leq y \leq 0$ and $z=1$.
Solution: We have

$$
D f(x, y)=\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)=\left(2 x+y, x+2 y+3 z^{2}, 6 y z+12 z\right)
$$

and so $D f=0$ when

$$
\begin{equation*}
2 x+y=0 \quad(1), x+2 y+3 z^{2}=0 \quad(2), \quad \text { and } \quad 6 z(y+2)=0 \tag{3}
\end{equation*}
$$

From (3) we have $z=0$ or $y=-2$. When $z=0$, equation (2) becomes $x+2 y=0$, and this, together with equation (1), implies $(x, y)=(0,0)$. When $y=-2$, equation (1) gives $x=1$, and then equation (2) becomes $1-4+3 z^{2}=0$, so $z= \pm 1$. Thus the critical points are $(0,0,0),(1,-2,1)$ and $(1,-2,-1)$.

The Hessian matrix is

$$
H f=\left(\begin{array}{ccc}
\frac{\partial^{2} u}{\partial x^{2}} & \frac{\partial^{2} u}{\partial x \partial y} & \frac{\partial^{2} u}{\partial x \partial z} \\
\frac{\partial^{2} u}{\partial y \partial x} & \frac{\partial^{2} u}{\partial y^{2}} & \frac{\partial^{2} u}{\partial y \partial z} \\
\frac{\partial^{2} u}{\partial z \partial x} & \frac{\partial^{2} u}{\partial z \partial y} & \frac{\partial^{2} u}{\partial z^{2}}
\end{array}\right)=\left(\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 6 z \\
0 & 6 z & 12
\end{array}\right) .
$$

At $(0,0,0)$ we have

$$
H f=\left(\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 12
\end{array}\right)
$$

and $\operatorname{det}(H f-\lambda I)=\left((2-\lambda)^{2}-1\right)(12-\lambda)=(12-\lambda)\left(\lambda^{2}-4 \lambda+3\right)=-(\lambda-12)(\lambda-3)(\lambda-1)$ so $H f$ has eigenvalues 1,3 and 12 , and so u has a local minimum at $(0,0,0)$. At $(1,-2, \pm 1)$, we have

$$
H f=\left(\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & \pm 6 \\
0 & \pm 6 & 12
\end{array}\right)
$$

and $\operatorname{det}(H f-\lambda I)=(2-\lambda)^{2}(12-\lambda)-72-12=-\lambda^{3}+16 \lambda^{2}-52 \lambda-36=g(\lambda)$, say. Note that $\lim _{\lambda \rightarrow-\infty} g(\lambda)=\infty>0$, $g(0)=-36<0, g(10)=414>0$ and $\lim _{\lambda \rightarrow \infty} g(\lambda)=-\infty<0$, so by the Intermediate Value Theorem, $g(\lambda)=0$ has a solution in each of the intervals $(-\infty, 0),(0,10)$, and $(10, \infty)$. Thus $H f$ has one negative eigenvalue and two positive eigenvalues, so u has a saddle point at $(1,-2, \pm 1)$.

When $z=1$ we have $u=x^{2}+x y+y^{2}+3 y+6=h(x, y)$, say. We have $D h(x, y)=(2 x+y, x+2 y+3)$, so $D h(x, y)=0$ when $2 x+y=0$ and $x+2 y+3=0$, that is when $(x, y)=(1,-2)$. The Hessian matrix for h is

$$
H h=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

and $\operatorname{det}(H h-\lambda I)=(2-\lambda)^{2}-1=\lambda^{2}-4 \lambda+3=(\lambda-1)(\lambda-3)$, so $H h$ has eigenvalues 1 and 3 , and so u has a local minimum at $(x, y)=(1,-2)$ with $u(1,-2,1)=h(1,-2)=1-2+4-6+6=3$.

On the edges of the boundary, when $x=-1$ we have

$$
u=1-y+y^{2}+3 y+6=y^{2}+2 y+7=(y+1)^{2}+6
$$

which is a parabola with a minimum of 6 when $y=-1$, and when $x=3$ we have

$$
u=9+3 y+y^{2}+3 y+6=y^{2}+6 y+15=(y+3)^{2}+6
$$

which is a parabola with a minimum of 6 when $y=-3$, and when $y=-4$ we have

$$
u=x^{2}-4 x+16-12+6=x^{2}-4 x+10=(x-2)^{2}+6
$$

which is a parabola with a minimum of 6 at $x=2$, and when $y=0$, we have $u=x^{2}+6$ which is a parabola with a minimum of 6 at $x=0$.

At the corner points of the boundary, we have $u(-1,-4,1)=15, u(-1,0,1)=7, u(3,-4,1)=7$ and $u(3,0,1)=15$. Thus the maximum value of u is 15 , which occurs at the corners $(-1,0,1)$ and at $(3,0,1)$, and the minimum value is 3 , which occurs at the interior point $(1,-2,1)$.

