MATH 247 Calculus 3, Exercises for Chapter 6

1: (a) A function $f(x, y)$ is called harmonic if it is a solution to Laplace's equation, which is the partial differential equation $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$. Determine which of the following two functions are harmonic.
(i) $f(x, y)=\ln \sqrt{x^{2}+y^{2}} \quad$ (ii) $f(x, y)=\tan ^{-1} \frac{y}{x}$.
(b) Find the Taylor polynomial of degree 2, centred at $(-2,1)$, for $f(x, y)=(2-x) e^{x+2 y}$.

2: (a) Let $z=f(x, y)=x^{2} y+2 x^{2}+y^{2}$. Find and classify all the critical points of $f(x, y)$, then find the maximum and minimum values of $z=f(x, y)$ in $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 8\right\}$.
(b) Find the maximum possible area for a quadrilateral with vertices at $(0,0),(1-r, 0),(1-r+r \cos \theta, r \sin \theta)$ and $(0, r \sin \theta)$, with $0 \leq r \leq 1$ and $0 \leq \theta \leq \frac{\pi}{2}$.

3: Let $u=f(x, y, z)=x^{2}+x y+y^{2}+3 y z^{2}+6 z^{2}$. Find and classify all the critical points of $f(x, y, z)$, then find the maximum and minimum values of u with $-1 \leq x \leq 3,-4 \leq y \leq 0$ and $z=1$.

