MATH 247 Calculus 3, Solutions to the Exercises for Chapter 5

1: (a) Let $(u, v)=f(t)=(\cos t+2,2 \sin t-1)$ and let $(x, y)=g(u, v)=\left(\frac{u}{v}, \frac{v}{u}\right)$. Use the Chain Rule to find the tangent vector to the curve $r(t)=g(f(t))$ at the point where $t=\frac{\pi}{2}$.
Solution: We express the solution in two ways; with and without matrix notation. First we express the solution without matrix notation. We use the Chain Rule in the form

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{\partial x}{\partial u} \frac{d u}{d t}+\frac{\partial x}{\partial v} \frac{d v}{d t} \\
\frac{d y}{d t} & =\frac{\partial y}{\partial u} \frac{d u}{d t}+\frac{\partial y}{\partial v} \frac{d v}{d t}
\end{aligned}
$$

We have

$$
\frac{\partial x}{\partial u}=\frac{1}{v}, \frac{\partial x}{\partial v}=-\frac{u}{v^{2}}, \frac{\partial y}{\partial u}=-\frac{v}{u^{2}}, \frac{\partial y}{\partial v}=\frac{1}{u}, \frac{d u}{d t}=-\sin t, \text { and } \frac{d v}{d t}=2 \cos t
$$

When $t=\frac{\pi}{2}$ we have $u=\cos t+2=2$ and $v=2 \sin t-1=1$, and so

$$
\frac{\partial x}{\partial u}=1, \frac{\partial x}{\partial v}=-2, \frac{\partial y}{\partial u}=-\frac{1}{4}, \frac{\partial y}{\partial v}=\frac{1}{2}, \frac{d u}{d t}=-1, \text { and } \frac{d v}{d t}=0
$$

Put all these values into the two formulas given by the Chain Rule to get

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{\partial x}{\partial u} \frac{d u}{d t}+\frac{\partial x}{\partial v} \frac{d v}{d t}=(1)(-1)+(-2)(0)=-1 \\
& \frac{d y}{d t}=\frac{\partial y}{\partial u} \frac{d u}{d t}+\frac{\partial y}{\partial v} \frac{d v}{d t}=\left(-\frac{1}{4}\right)(-1)+\left(\frac{1}{2}\right)(0)=\frac{1}{4}
\end{aligned}
$$

Thus the tangent vector is $r^{\prime}\left(\frac{\pi}{4}\right)=\left(x^{\prime}\left(\frac{\pi}{4}\right), y^{\prime}\left(\frac{\pi}{4}\right)\right)=\left(-1, \frac{1}{4}\right)$.
Here is the same solution in matrix notation. By the Chain Rule, we have $r^{\prime}(t)=D g(f(t)) f^{\prime}(t)$, where

$$
r^{\prime}(t)=\binom{\frac{d x}{d t}}{\frac{d y}{d t}}, f^{\prime}(t)=\binom{\frac{d u}{d t}}{\frac{d v}{d t}}=\binom{-\sin t}{2 \cos t}, \text { and } D g(u, v)=\left(\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{v} & -\frac{u}{v^{2}} \\
-\frac{v}{u^{2}} & \frac{1}{u}
\end{array}\right)
$$

When $t=\frac{\pi}{2}$ we have $(u, v)=f\left(\frac{\pi}{2}\right)=(2,1)$, and $f^{\prime}\left(\frac{\pi}{2}\right)=\binom{-1}{0}$ and $D g(2,1)=\left(\begin{array}{rr}1 & -2 \\ -\frac{1}{4} & \frac{1}{2}\end{array}\right)$ so the tangent vector at $t=\frac{\pi}{2}$ is

$$
r^{\prime}\left(\frac{\pi}{2}\right)=D g(2,1) f^{\prime}\left(\frac{\pi}{2}\right)=\left(\begin{array}{rr}
1 & -2 \\
-\frac{1}{4} & \frac{1}{2}
\end{array}\right)\binom{-1}{0}=\binom{-1}{\frac{1}{4}}
$$

(b) Let $u=f(x, y, z)=4 x \tan ^{-1}\left(\frac{y}{z}\right)$ where $(x, y, z)=g(s, t)=\left(s^{3}+t, \sqrt{s} t, \frac{t}{s}\right)$. Use the Chain Rule to find $\frac{\partial u}{\partial s}$ and $\frac{\partial u}{\partial t}$ when $(s, t)=(1,-2)$.
Solution: First we give a solution which does not use matrix notation. Note that when $(s, t)=(1,-2)$ we have $(x, y, z)=(-1,-2,-2)$, and at this point we have

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=4 \tan ^{-1} \frac{y}{z}=\pi, \frac{\partial u}{\partial y}=\frac{4 x}{1+(y / z)^{2}} \cdot \frac{1}{z}=1, \frac{\partial u}{\partial z}=\frac{4 x}{1+\left(\frac{y}{z}\right)^{2}}\left(-\frac{y}{z^{2}}\right)=-1 \\
& \frac{\partial x}{\partial s}=3 s^{2}=3, \frac{\partial x}{\partial t}=1, \frac{\partial y}{\partial s}=\frac{t}{2 \sqrt{s}}=-1, \frac{\partial y}{\partial t}=\sqrt{s}=1, \frac{\partial z}{\partial s}=-\frac{t}{s^{2}}=2, \frac{\partial z}{\partial t}=\frac{1}{s}=1
\end{aligned}
$$

and so

$$
\begin{aligned}
\frac{\partial u}{\partial s} & =\frac{\partial u}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial s}=(\pi)(3)+(1)(-1)+(-1)(2)=3 \pi-3, \text { and } \\
\frac{\partial u}{\partial t} & =\frac{\partial u}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial t}=(\pi)(1)+(1)(1)+(-1)(1)=\pi
\end{aligned}
$$

Here is the same solution, using matrix notation. Write $u=h(s, t)=f(g(s, t))$. By the Chain Rule, we have $D h(s, t)=D f(g(s, t)) D g(s, t)$. When $(s, t)=(1,-2)$ we have $(x, y, z)=h(s, t)=(-1,-2,-2)$, and at this point

$$
\begin{aligned}
\left(\begin{array}{ll}
\frac{\partial u}{\partial s} & \frac{\partial u}{\partial t}
\end{array}\right) & =D h(s, t)=D f(x, y, z) \cdot D g(s, t)=\left(\begin{array}{lll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z}
\end{array}\right)\left(\begin{array}{cc}
\frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\
\frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \\
\frac{\partial z}{\partial s} & \frac{\partial z}{\partial t}
\end{array}\right) \\
& =\left(4 \tan ^{-1} \frac{y}{z}, \frac{4 x(1 / z)}{1+(y / z)^{2}}, \frac{4 x\left(-y / z^{2}\right)}{1+(y / z)^{2}}\right)\left(\begin{array}{cc}
3 s^{2} & 1 \\
\frac{1}{2 \sqrt{t}} & \frac{1}{2 \sqrt{s}} \\
-\frac{t}{s^{2}} & \frac{1}{s}
\end{array}\right) \\
& =(\pi, 1,-1)\left(\begin{array}{cc}
3 & 1 \\
-1 & 1 \\
2 & 1
\end{array}\right)=(3 \pi-3, \pi) .
\end{aligned}
$$

2: (a) Let $u=f(x, y, z)=(x+y) e^{y^{2}+z}$. Find $\nabla f(1,2,-4)$, then find the equation of the tangent plane at $(1,2,-4)$ to the surface $f(x, y, z)=3$, and find the directional derivative $D_{u} f(1,2,-4)$ where $u=\frac{1}{7}(2,-3,6)$.
Solution: We have $\nabla f(x, y, z)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)=e^{y^{2}+z}(1,1+(x+y)(2 y),(x+y))$, so $\nabla f(1,2,-4)=(1,13,3)$. The gradient $(1,13,3)$ is a normal vector, so the equation is of the form $x+13 y+3 z=c$, and by putting in $(x, y, z)=(1,2,-4)$, we find that $c=15$. Thus the equation is $x+13 y+3 z=15$. Finally, the directional derivative is $D_{u} f(1,2,-4)=\nabla f(1,2,-4) \cdot u=\frac{1}{7}(1,13,3) \cdot(2,-3,6)=-\frac{19}{7}$.
(b) Let $f(x, y)=x^{2} y-y^{3}$. Find $\nabla f(3,-1)$, then for each of the values $m=0,6,6 \sqrt{2}$ and 10 , find a unit vector u, if one exists, such that $D_{u} f(3,-1)=m$.
Solution: $\nabla f(x, y)=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)=\left(2 x y, x^{2}-3 y^{2}\right)$ and so $\nabla f(3,-1)=(6,6)$. For each value of m, we need to find a vector $u=(a, b)$ with $a^{2}+b^{2}=1$ such that $m=D_{u} f(3,-1)=\nabla f(3,-1) \cdot u=(6,6) \cdot(a, b)=6 a+6 b$, thus we need to solve the two equations $a^{2}+b^{2}=1$ (1) and $a+b=\frac{1}{6} m$ (2).

When $m=0$, equation (2) becomes $a+b=0$ so that we have $b=-a$. Put $b=-a$ into equation (1) to get $a^{2}+(-a)^{2}=1 \Longrightarrow 2 a^{2}=1 \Longrightarrow a^{2}=\frac{1}{2} \Longrightarrow a= \pm \frac{\sqrt{2}}{2}$. Since $b=-a$, we obtain $(a, b)= \pm\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$.

When $m=6$, equation (2) becomes $a+b=1$ so that we have $b=1-a$. Put this into equation (1) to get $a^{2}+(1-a)^{2}=1 \Longrightarrow a^{2}+1-2 a+a^{2}=1 \Longrightarrow 2 a^{2}-2 a=0 \Longrightarrow 2 a(a-1)=0 \Longrightarrow a=0$ or $a=1$. Since $b=1-a$, we obtain $(a, b)=(0,1)$ or $(1,0)$.

When $m=6 \sqrt{2}$, equation (2) becomes $a+b=\sqrt{2}$ so that $b=\sqrt{2}-a$. Put this into equation (1) to get $a^{2}+(\sqrt{2}-a)^{2}=1 \Longrightarrow a^{2}+2-2 \sqrt{2} a+a^{2}=1 \Longrightarrow 2 a^{2}-2 \sqrt{2} a+1=0 \Longrightarrow 2\left(a-\frac{1}{\sqrt{2}}\right)^{2}=0 \Longrightarrow a=\frac{1}{\sqrt{2}}$. Since $b=\sqrt{2}-a$, we obtain $(a, b)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

Finally, note that since the vector $(a, b)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ is in the direction of the gradient vector $(6,6)$, it gives the maximum possible value for the directional derivative. So the maximum possible value for $D_{u} f(3,-1)$ is equal to $6 \sqrt{2}$; there is no unit vector such that $D_{u} f(3,-1)=10$.

3: A boy is standing at the point $(5,10,2)$ on a hill in the shape of the surface

$$
z=\frac{600}{100+4 x^{2}+y^{2}}
$$

(where x, y and z are in meters).
(a) Sketch the surface.

Solution: The level set $z=c$ is the ellipse $100+4 x^{2}+y^{2}=\frac{600}{c}$, the level set $x=0$ is the curve $z=\frac{600}{100+y^{2}}$ and the level set $y=0$ is the curve $z=\frac{600}{100+4 x^{2}}$. The surface is sketched below.

(b) At the point where the boy is standing, in which direction is the slope steepest?

Solution: Write $z=f(x, y)=\frac{600}{100+4 x^{2}+y^{2}}$ and $a=(5,10)$. Then $\nabla f=\left(\frac{-4800 x}{\left(100+4 x^{2}+y^{2}\right)^{2}}, \frac{-1200 y}{\left(100+4 x^{2}+y^{2}\right)^{2}}\right)$ and so $\nabla f(a)=\left(-\frac{24,000}{90,000},-\frac{12,000}{90,000}\right)=\left(-\frac{4}{15},-\frac{2}{15}\right)=\frac{2}{15}(-2,-1)$. Thus the slope is the steepest in the direction of the unit vector $\frac{1}{\sqrt{5}}(-2,-1)$.
(c) If the boy walks southeast, then will he be ascending or descending?

Solution: The southeasterly direction is in the direction of the unit vector $v=\frac{1}{\sqrt{2}}(1,-1)$, and the directional derivative in that direction is $D_{v} f(a)=\frac{2}{15 \sqrt{2}}(-2,-1) \cdot(1,-1)=-\frac{\sqrt{2}}{15}<0$, so the boy would be descending.
(d) If the boy walks in the direction of steepest slope, then at what angle (from the horizontal) will he be climbing?

Solution: If the boy walks in the direction of the unit vector $u=\frac{1}{|\nabla f(a)|} \nabla f(a)$, then the slope in that direction is $D_{u} f(a)=|\nabla f|=\frac{2}{15}|(-2,-1)|=\frac{2 \sqrt{5}}{15}$, so the angle of ascent is $\theta=\tan ^{-1} \frac{2 \sqrt{5}}{15} \cong 16.6^{\circ}$.

4: For each of the following functions $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$, determine where f is continuous and where f is differentiable.
(a) $f(x, y)=\left(x^{2} y^{2}\right)^{1 / 3}$.

Solution: Note that f is continuous in \mathbf{R}^{2} because it is an elementary function, and f is differentiable at all points in the open set $U=\left\{(x, y) \in \mathbf{R}^{2} \mid x y \neq 0\right\}$ because the restriction $f: U \rightarrow \mathbf{R}$ is an open domain elementary function, given by $f=r \circ(s \circ(p \cdot q))$ where p, q, r and s are the differentiable functions given by $p(x, y)=x$, $q(x, y)=y, s(u)=u^{2}$ and $r(v)=v^{1 / 3}$ for $v>0$. It remains to determine whether f is differentiable at points (a, b) with $a b=0$. We claim that f is differentiable at $(0,0)$ but f is not differentiable at points $(a, b) \neq(0,0)$ with $a b=0$. Let $0 \neq a \in \mathbf{R}$. If f was differentiable at $(a, 0)$ then $\frac{\partial f}{\partial y}(a, 0)$ would exist with $\frac{\partial f}{\partial y}(a, 0)=g^{\prime}(0)$ where $g(t)=f(a, t)=\left(a^{2} t^{2}\right)^{1 / 3}=a^{2 / 3} t^{2 / 3}$, but when $g(t)=a^{2 / 3} t^{2 / 3}$ the derivative $g^{\prime}(0)$ does not exist. Thus f is not differentiable at $(a, 0)$ when $a \neq 0$. Similarly, f is not differentiable at $(0, b)$ when $b \neq 0$ because $\frac{\partial f}{\partial x}(0, b)$ does not exist. We claim that f is differentiable at $(0,0)$ with $D f(0,0)=(0,0)$. Note that $|(x, y)-(0,0)|=\sqrt{x^{2}+y^{2}}$ and recall that for $u, v \in \mathbf{R}$ we have $|u v| \leq \frac{1}{2}\left(u^{2}+v^{2}\right) \leq\left(u^{2}+v^{2}\right)$. Let $\epsilon>0$ and choose $\delta=\epsilon^{3}$. When $|(x, y)-(0,0)| \leq \delta$, that is when $\sqrt{x^{2}+y^{2}} \leq \delta$, we have

$$
\begin{aligned}
\left|f(x, y)-f(0,0)-(0,0)\binom{x-0}{y-0}\right| & =\left|\left(x^{2} y^{2}\right)^{1 / 3}-0-0\right|=|x y|^{2 / 3} \leq\left(x^{2}+y^{2}\right)^{2 / 3}=\left(x^{2}+y^{2}\right)^{1 / 6}\left(x^{2}+y^{2}\right)^{1 / 2} \\
& =\left(\sqrt{x^{2}+y^{2}}\right)^{1 / 3} \sqrt{x^{2}+y^{2}} \leq \delta^{1 / 3} \sqrt{x^{2}+y^{2}}=\epsilon|(x, y)-(0,0)|
\end{aligned}
$$

and so f is differentiable at $(0,0)$ with $D f(0,0)=(0,0)$, as claimed.
(b) $f(x, y)=\left\{\begin{array}{cl}\frac{x^{2} y^{2}}{x^{2}+y^{4}}, & \text { if }(x, y) \neq(0,0) \\ 0 & , \text { if }(x, y)=(0,0)\end{array}\right.$

Solution: Note that f is differentiable at all points $(x, y) \neq(0,0)$ because the restriction of f to $\mathbf{R}^{2} \backslash\{(0,0)\}$ is an open-domain elementary function. We claim that f is also differentiable at $(0,0)$ with $D f(0,0)=(0,0)$. Let $\epsilon>0$ and choose $\delta=\epsilon$. For $(x, y) \in \mathbf{R}^{2}$ with $0<|(x, y)-(0,0)| \leq \delta$, that is with $0<\sqrt{x^{2}+y^{2}} \leq \delta$, we have

$$
\begin{aligned}
\mid f(x, y)-f(0,0) & -(0,0)\binom{x-0}{y-0} \left\lvert\,=\frac{x^{2} y^{2}}{x^{2}+y^{4}} \leq \frac{\left(x^{2}+y^{4}\right) y^{2}}{x^{2}+y^{4}}=y^{2} \leq x^{2}+y^{2}\right. \\
& =\sqrt{x^{2}+y^{2}} \sqrt{x^{2}+y^{2}} \leq \delta \sqrt{x^{2}+y^{2}}=\epsilon|(x, y)-(0,0)|
\end{aligned}
$$

so f is indeed differentiable at $(0,0)$. Thus f is differentiable (hence also continuous) at every point $(x, y) \in \mathbf{R}^{2}$.
(c) $f(x, y)=\left\{\begin{array}{cl}\frac{x y^{3}}{x^{2}+y^{4}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{array}\right.$

Solution: The function f is continuous and differentiable at all points $(x, y) \neq(0,0)$ because it is equal to an open-domain elementary function on $\mathbf{R}^{2} \backslash\{(0,0)\}$. Note that f is continuous at $(0,0)$ because for $(x, y) \neq(0,0)$ we have

$$
|f(x, y)-f(0,0)|=\frac{\left|x y^{2}\right||y|}{x^{2}+y^{4}} \leq \frac{\frac{1}{2}\left(x^{2}+y^{4}\right)|y|}{x^{2}+y^{4}}=\frac{1}{2}|y| \leq \frac{1}{2} \sqrt{x^{2}+y^{2}}=\frac{1}{2}|(x, y)-(0,0)|
$$

We claim that f is not differentiable at $(0,0)$. For $g_{1}(t)=f(t, 0)$ we have $g_{1}(t)=0$ for all t (including $t=0$) so $\frac{\partial f}{\partial x}(0,0)=g_{1}^{\prime}(0)=0$. For $g_{2}(t)=f(0, t)$ we have $g_{2}(t)=0$ for all t so $\frac{\partial f}{\partial y}(0,0)=g_{2}^{\prime}(0)=0$. Thus we have $D f(0,0)=(0,0)$. Let $\alpha(t)=\left(t^{2}, t\right)$ and note that $\alpha^{\prime}(t)=(2 t, 1)$ so we have $\alpha(0)=(0,0)$ and $\alpha^{\prime}(0)=(0,1)$. Let $g(t)=f(\alpha(t))=f\left(t^{2}, t\right)$ and note that $g(t)=\frac{1}{2} t$ for all t (including $t=0$) so we have $g^{\prime}(t)=\frac{1}{2}$ for all t so, in particular, $g^{\prime}(0)=\frac{1}{2}$. But if f was differentiable at $(0,0)$ then, by the Chin Rule, we would have $g^{\prime}(0)=D f(\alpha(0)) \alpha^{\prime}(0)=D f(0,0)(0,1)^{T}=(0,0)(0,1)^{T}=0$ 。

5: (a) For $x \in \mathbf{R}^{3}, y \in \mathbf{R}^{2}$ and $z \in \mathbf{R}^{2}$, define $f: \mathbf{R}^{5} \rightarrow \mathbf{R}^{2}$, written as $z=f(x, y)$, by

$$
\binom{z_{1}}{z_{2}}=\binom{f_{1}(x, y)}{f_{2}(x, y)}=\binom{x_{1} y_{2}-4 x_{2}+2 e^{y_{1}}+3}{2 x_{1}-x_{3}+y_{2} \cos y_{1}-6 y_{1}} .
$$

Note that for $a=(3,2,7)$ and $b=(0,1)$ we have $f(a, b)=(0,0)$. Find $D f(a, b)$, explain why near the point (a, b) the null set $\operatorname{Null}(f)$ is locally equal to the graph of a smooth function $g: U \subseteq \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ with $g(a)=b$, and calculate $D g(a)$.
Solution: We have

$$
D f(x, y)=\left(\begin{array}{cc}
\frac{\partial z}{\partial z} & \frac{\partial z}{\partial y}
\end{array}\right)=\left(\begin{array}{ccccc}
\frac{\partial z_{1}}{\partial x_{1}} & \frac{\partial z_{1}}{\partial x_{2}} & \frac{\partial z_{1}}{\partial x_{3}} & \frac{\partial z_{1}}{\partial y_{1}} & \frac{\partial z_{1}}{\partial y_{2}} \\
\frac{\partial z_{2}}{\partial x_{1}} & \frac{\partial z_{2}}{\partial x_{2}} & \frac{\partial z_{2}}{\partial x_{3}} & \frac{\partial z_{2}}{\partial y_{1}} & \frac{\partial z_{2}}{\partial y_{2}}
\end{array}\right)=\left(\begin{array}{ccccc}
y_{2} & -4 & 0 & 2 e^{y_{1}} & x_{1} \\
2 & 0 & -1 & -y_{2} \sin y_{1}-6 & \cos y_{1}
\end{array}\right)
$$

and so

$$
D f(a, b)=\left(\frac{\partial z}{\partial x}(a, b) \quad \frac{\partial z}{\partial y}(a, b)\right)=\left(\begin{array}{rrrrr}
1 & -4 & 0 & 2 & 3 \\
2 & 0 & -1 & -6 & 1
\end{array}\right)
$$

Since the matrix $\frac{\partial z}{\partial y}(a, b)=\left(\begin{array}{rr}2 & 3 \\ -6 & 1\end{array}\right)$ is invertible, the Implicit Function Theorem shows that near the point (a, b), the null set $\operatorname{Null}(f)$ is locally equal to the graph of a smooth function $g: U \subseteq \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$. We have

$$
D g(a)=-\left(\frac{\partial z}{\partial y}(a, b)\right)^{-1}\left(\frac{\partial z}{\partial x}(a, b)\right)=-\frac{1}{20}\left(\begin{array}{cc}
1 & -3 \\
6 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & -4 & 0 \\
2 & 0 & -1
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{4} & \frac{1}{5} & -\frac{3}{20} \\
-\frac{1}{2} & \frac{6}{5} & \frac{1}{10}
\end{array}\right) .
$$

(b) Let X be the set of all $(a, b, c) \in \mathbf{R}^{3}$ such that the polynomial $f(t)=t^{3}+a t^{2}+b t+c$ has a triple root and let Y be the set of $(a, b, c) \in \mathbf{R}^{3}$ such that $f(t)=t^{3}+a t^{2}+b t+c$ has a multiple root (that is a double or triple root). Find a parametric equation for X and a parametric equation for Y and show that near every point $(a, b, c) \in Y \backslash X$, the set Y is locally equal to the graph of a smooth function $z=z(x, y)$. As an optional additional exercise, use a computer to sketch the sets X and Y.
Solution: The monic polynomial with a triple root at $t=u$ is $f(t)=(t-u)^{3}=t^{3}-3 u t^{2}+3 u^{2} t^{2}-u^{3}$, so X is given parametrically by

$$
(x, y, z)=\alpha(u)=\left(-3 u, 3 u^{2},-u^{3}\right)
$$

The monic polynomial with double root u and additional root v (possibly with $u=v$) is the polynomial $f(t)=$ $(t-u)^{2}(t-v)=\left(t^{2}-2 u t+u^{2}\right)(t-v)=t^{3}-(2 u+v) t^{2}+\left(2 u v+u^{2}\right)-u^{2} v$, so Y is given parametrically by

$$
(x, y, z)=\sigma(u, v)=\left(-2 u-v, 2 u v+u^{2},-u^{2} v\right) .
$$

By the Parametric Function Theorem, we know that $\operatorname{Range}(\sigma)$ is locally equal to the graph of a smooth function $z=z(x, y)$ when the top 2×2 submatrix $\left(\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right)$ of $D \sigma$ is invertible. We have

$$
\operatorname{det}\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
-2 & -1 \\
2 v+2 u & 2 u
\end{array}\right)=-4 u+2 v+2 u=2(v-u)
$$

so the matrix is invertible as long as $u \neq v$. But notice that $u=v$ precisely when $\sigma(u, v)=\alpha(u)$, that is when $\sigma(u, v)$ lies on X.

Let us calculate the function $z=z(x, y)$ explicitly. From $x=-2 u-v$ we get $v=-(x+2 u)$ then from $y=2 u v+u^{2}$ we get $y=-2 u(x+2 u)+u^{2}=-3 u^{2}-2 x u$ so that $3 u^{2}+2 x u+y=0$. The Quadratic Formula gives $u=\frac{-2 x \pm \sqrt{4 x-12 y}}{6}=\frac{-x \pm \sqrt{x^{2}-3 y}}{3}$ hence $v=-(x+2 u)=-x+\frac{2 x \mp 2 \sqrt{x^{2}-3 y}}{3}=\frac{-x \mp 2 \sqrt{x^{2}-3 y}}{3}$ (when we use the plus sign for u we must use the minus sign for v and vice versa). Thus the surface is given by

$$
\begin{aligned}
z & =-u^{2} v=-\left(\frac{-x \pm \sqrt{x^{2}-3 y}}{3}\right)^{2}\left(\frac{-x \mp 2 \sqrt{x^{2}-3 y}}{3}\right)=\left(\frac{\left(2 x^{2}-3 y\right) \mp 2 x \sqrt{x^{2}-3 y}}{9}\right)\left(\frac{x \pm 2 \sqrt{x^{2}-3 y}}{3}\right) \\
& =\frac{\left(2 x^{3}-3 x y\right) \pm\left(4 x^{2}-6 y-2 x^{2}\right) \sqrt{x^{2}-3 y}-4 x\left(x^{2}-3 y\right)}{27} \\
& =\frac{1}{27}\left(\left(9 x y-2 x^{3}\right) \pm\left(2 x^{2}-6 y\right) \sqrt{x^{2}-3 y}\right)
\end{aligned}
$$

Here is a plot which shows that Y is a surface which has a cusp along the twisted cubic curve X.

