MATH 247 Calculus 3, Solutions to the Exercises for Chapter 4

1: (a) Find an implicit and an explicit equation for the tangent line to the parametric curve $(x, y)=(\cos t, \sin 2 t)$ at the point where $t=\frac{\pi}{3}$.
Solution: Let $f(t)=(\cos t, \sin 2 t)$ and note that $f^{\prime}(t)=(-\sin t, 2 \cos 2 t)$. The required tangent line is the line through the point $f\left(\frac{\pi}{3}\right)=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ in the direction of the vector $f^{\prime}\left(\frac{\pi}{3}\right)=\left(-\frac{\sqrt{3}}{2},-1\right)$, so the line is given parametrically by $(x, y)=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)+t\left(\frac{\sqrt{3}}{2}, 1\right)$. A normal vector is given by $\left(1,-\frac{\sqrt{3}}{2}\right)$, so the equation can be written as $x-\frac{\sqrt{3}}{2} y=c$. Put in the point $(x, y)=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ to get $c=\frac{1}{2}-\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}=-\frac{1}{4}$. Thus the line has equation $x-\frac{\sqrt{3}}{2} y=-\frac{1}{4}$, so it is given explicitly by the equation $x=-\frac{1}{4}+\frac{\sqrt{3}}{2} y$ or by the equation $y=\frac{2}{\sqrt{3}} x+\frac{1}{2 \sqrt{3}}$.
(b) The position of a fly at time t is given by $(x, y, z)=\left(t, t^{2}, 1+t^{3}\right)$. A light shines down on the fly from the point $(0,0,3)$ and casts a shadow on the $x y$-plane. Find the position and the velocity of the shadow of the fly at time $t=1$.
Solution: When the fly is at the point (x, y, z) with $z<3$, let us find a formula for the position $(u, v, 0)$ of the shadow. The line from the light at $(0,0,3)$ to the fly at (x, y, z) has parametric equation

$$
(u, v, w)=(0,0,3)+s((x, y, z)-(0,0,3))=(s x, s y, 3+s(z-3))
$$

The shadow is at the point where this line touches the $x y$-plane, that is the point where $w=0$. To get $w=0$, we need $3+s(z-3)=0$, and so $s=\frac{3}{3-z}$, and then $u=s x=\frac{3 x}{3-z}$ and $v=s t=\frac{3 y}{3-z}$. This shows that when the fly is at the point $(x, y, z)=\left(t, t^{2}, 1+t^{3}\right)$, the shadow is at the point

$$
(u, v)=(u(t), v(t))=\left(\frac{3 x}{3-z}, \frac{3 y}{3-z}\right)=\left(\frac{3 t}{2-t^{3}}, \frac{3 t^{2}}{2-t^{3}}\right)
$$

and its velocity is

$$
\left(u^{\prime}(t), v^{\prime}(t)\right)=\left(\frac{(3)\left(2-t^{3}\right)-(3 t)\left(-3 t^{2}\right)}{\left(2-t^{3}\right)^{2}}, \frac{(6 t)\left(2-t^{3}\right)-\left(3 t^{2}\right)\left(-3 t^{2}\right)}{\left(2-t^{3}\right)^{2}}\right)=\left(\frac{6+6 t^{3}}{\left(2-t^{3}\right)^{2}}, \frac{12 t+3 t^{4}}{\left(2-t^{3}\right)^{2}}\right)
$$

In particular, we have $(u(1), v(1))=(3,3)$ and $\left(u^{\prime}(1), v^{\prime}(1)\right)=(12,15)$.

2: Let S be the parametric surface $(x, y, z)=f(s, t)=\left(\frac{s}{t}, \sqrt{s+t}, s t\right)$.
(a) Find the derivative matrix $D f(s, t)$.

Solution: The derivative matrix is

$$
D f(s, t)=\left(\begin{array}{cc}
\frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\
\frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \\
\frac{\partial z}{\partial s} & \frac{\partial z}{\partial t}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{t} & -\frac{s}{t^{2}} \\
\frac{1}{2 \sqrt{s+t}} & \frac{1}{2 \sqrt{s+t}} \\
t & s
\end{array}\right)
$$

(b) Find a parametric equation for the tangent plane to S at the point where $(s, t)=(2,2)$.

Solution: The tangent plane is given parametrically by

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=L(s, t)=f(2,2)+D f(2,2)\binom{s-2}{t-2}=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)+\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{4} & \frac{1}{4} \\
2 & 2
\end{array}\right)\binom{s-2}{t-2}
$$

that is by

$$
(x, y, z)=(1,2,4)+\left(\frac{1}{2}, \frac{1}{4}, 2\right)(s-2)+\left(-\frac{1}{2}, \frac{1}{4}, 2\right)(t-2) .
$$

Alternatively, by introducing new parameters u and v with $s-2=4 u$ and $t-2=4 v$, we have

$$
(x, y, z)=(1,2,4)+(2,1,8) u+(-2,1,8) v
$$

(c) Find an implicit equation for the tangent plane to S at the point where $(s, t)=(2,2)$.

Solution: The plane has normal vector $(2,1,8) \times(-2,1,8)=(0,-32,4)$. We can multiply this vector by $-\frac{1}{4}$ to get the simpler normal vector $(0,8,-1)$, so the equation of the plane is of the form $0 x+8 y-1 z=c$ for some constant c. Put in the point $(x, y, z)=(1,2,4)$ to get $c=12$. Thus the tangent plane is given implicitly by $8 y-z=12$ (or explicitly $z=8 y-12$).

3: Let C be the curve of intersection of the two surfaces $z=x^{2}-2 y$ and $z=2 x^{2}+y^{2}$. Find a parametric equation for the tangent line L to the curve C at the point $(-1,-1,3)$ using each of the following two methods.
(a) Find the equation of the tangent plane to each of the two surfaces at $(-1,-1,3)$, then solve the two equations to obtain a parametric equation for L.
Solution: Note that the first surface is given explicitly by $z=f(x, y)=x^{2}-2 y$. We have $\frac{\partial f}{\partial x}(x, y)=2 x$ and $\frac{\partial f}{\partial y}(x, y)=-2$. The equation of the tangent plane is

$$
z=f(-1,-1)+\frac{\partial f}{\partial x}(-1,-1)(x+1)+\frac{\partial f}{\partial y}(-1,-1)(y+1)=3-2(x+1)-2(y+1)=-2 x-2 y-1
$$

The second surface is given explicitly by $z=g(x, y)=2 x^{2}+y^{2}$. We have $\frac{\partial g}{\partial x}=4 x$ and $\frac{\partial g}{\partial y}=2 y$ so the equation of the tangent plane is

$$
z=g(-1,-1)+\frac{\partial g}{\partial x}(-1,-1)(x+1)+\frac{\partial g}{\partial y}(-1,-1)(y+1)=3-4(x+1)-2(y+1)=-4 x-2 y-3
$$

The equations of the two planes can be written as $2 x+2 y+z=-1$ and $4 x+2 y+z=-3$. We solve these two equations using Gauss-Jordan elimination. We have

$$
\left(\begin{array}{ccc|c}
2 & 2 & 1 & -1 \\
4 & 2 & 1 & -3
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & \frac{1}{2} & -\frac{1}{2} \\
0 & 2 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 0 & 0 & -1 \\
0 & 1 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

so the solution is

$$
(x, y, z)=\left(-1, \frac{1}{2}, 0\right)+\left(0,-\frac{1}{2}, 1\right) t
$$

(b) Find a parametric equation for C, then use this parametric equation to find a parametric equation for the tangent line L.
Solution: For any point (x, y, z) which lies in the intersection, we must have $z=x^{2}-2 y$ and $z=2 x^{2}+y^{2}$, and so $x^{2}-2 y=2 x^{2}+y^{2}$, that is $x^{2}+y^{2}+2 y=0$. Complete the square to rewrite this as $x^{2}+(y+1)^{2}=1$, and we see that (x, y) lies on the circle centered at $(0,-1)$ of radius 1 . This circle is given parametrically by $(x, y)=(\cos t, \sin t-1)$. Put $x=\cos t$ and $y=\sin t-1$ back into the equation $z=x^{2}-2 y$ to get $z=$ $\cos ^{2} t-2 \sin t+2$. Thus the curve of intersection is given parametrically by

$$
(x, y, z)=\left(\cos t, \sin t-1, \cos ^{2} t-2 \sin t+2\right)
$$

The tangent vector at each point is given by $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=(-\sin t, \cos t,-2 \sin t \cos t-2 \cos t)$. Notice that when $t=\pi$ we have $(x, y, z)=(-1,-1,3)$ and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=(0,-1,2)$, so the tangent line at the point $(x, y, z)=$ $(-1,-1,3)$ is given parametrically by

$$
(x, y, z)=(-1,-1,3)+(0,-1,2) t
$$

4: (a) Let P be the tangent plane to the surface given by $z=4 x^{2}-8 x y+5 y^{2}$ at the point where $(x, y)=(2,1)$. Find the line of intersection of P with the $x y$-plane.
Solution: The surface is given explicitly by $z=f(x, y)=4 x^{2}-8 x y+5 y^{2}$. We have $\frac{\partial f}{\partial x}=8 x-8 y$ and $\frac{\partial f}{\partial y}=-8 x+10 y$, so the equation of the tangent plane P is

$$
z=f(2,1)+\frac{\partial f}{\partial x}(2,1)(x-2)+\frac{\partial f}{\partial y}(2,1)(y-1)=5+8(x-2)-6(y-1)=8 x-6 y-5
$$

To find the intersection of this plane with the $x y$-plane, put in $z=0$ to get $8 x-6 y=5$.
(b) Find the equation of the tangent plane to the surface given by $e^{x+z}=\sqrt{x^{2} y+z}$ at the point $(1,2,-1)$.

Solution: The surface is given implicitly by $g(x, y, z)=0$ where $g(x, y, z)=e^{x+z}-\sqrt{x^{2} y+z}$. We have

$$
\frac{\partial g}{\partial x}=e^{x+z}-\frac{x y}{\sqrt{x^{2} y+z}}, \frac{\partial g}{\partial y}=-\frac{x^{2}}{2 \sqrt{x^{2} y+z}} \text { and } \frac{\partial g}{\partial z}=e^{x+z}-\frac{1}{2 \sqrt{x^{2} y+z}}
$$

so that

$$
\frac{\partial g}{\partial x}(1,2,-1)=e^{0}-\frac{2}{\sqrt{1}}=-1, \frac{\partial g}{\partial y}(1,2,-1)=-\frac{1}{2 \sqrt{1}}=-\frac{1}{2} \quad \text { and } \quad \frac{\partial g}{\partial z}(1,2,-1)=e^{0}-\frac{1}{2 \sqrt{1}}=\frac{1}{2}
$$

Thus the equation of the tangent plane is

$$
0=\frac{\partial g}{\partial x}(1,2,-1)(x-1)+\frac{\partial g}{\partial y}(1,2,-1)(y-2)+\frac{\partial g}{\partial z}(1,2,-1)(z+1)=-(x-1)-\frac{1}{2}(y-2)+\frac{1}{2}(z+1)
$$

Multiply both sides by -2 to get $0=2(x-1)+(y-2)+(z+1)=2 x+y-z-5$. Thus the tangent plane is given implicitly by $2 x+y-z=5$ (or explicitly by $z=2 x+y-5$).

5: Let S be the surface $2 y z=x^{2}+y^{2}$.
(a) Sketch the level sets $z=-2,-1,0,1,2$ for the surface S (in other words, sketch the curve of intersection of S with the each of the planes $z=-2,-1,0,1,2)$.
Solution: The level set $z=-2$ is the curve $x^{2}+y^{2}=-4 y$, that is $x^{2}+y^{2}+4 y=0$ or, by completing the square, $x^{2}+(y+2)^{2}=4$, so it is the circle centered at $(0,-2)$ of radius 2 . In general, the level curve $z=c$ is the curve $x^{2}+y^{2}-2 c y=0$ or $x^{2}+(y-c)^{2}=c^{2}$, which is the circle centered at $(0, c)$ of radius $|c|$. When $c=0$, the level set consists only of the origin. The level sets are shown below.

(b) Sketch the surface S.

Solution: To sketch the surface, we draw each of the level sets $z=c$ at height c. It also helps to find the level sets $x=0$ and $y=0$. When $x=0$ (that is in the $y z$-plane) we get the curve $2 y z=y^{2}$, that is $y^{2}-2 y z=0$ or $y(y-2 z)=0$, which is the union of the two lines $y=0$ and $y=2 z$ in the $y z$-plane. When $y=0$ (that is in the $x z$-plane) we get $x^{2}=0$, that is the line $x=0$ in the $x z$-plane.

(c) Find the equation of the tangent plane to S at the point $(3,1,5)$.

Solution: Note that S is given implicitly by $g(x, y, z)=0$ where $g(x, y, z)=x^{2}+y^{2}-2 y z$ and that we have $g(3,1,5)=0$. We have $D g=\left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right)=(2 x, 2 y-2 z,-2 y)$ so that $D g(3,1,5)=(6,-4,-2)$. The equation of the tangent plane is

$$
0=D g(3,1,5)\left(\begin{array}{l}
x-3 \\
y-1 \\
z-5
\end{array}\right)=6(x-3)-4(y-1)-2(z-5)=6 x-4 y-2 z-4
$$

We can also write the equation explicitly as $z=3 x-2 y-2$.

