MATH 247 Calculus 3, Exercises for Chapter 4

1: (a) Find an implicit and an explicit equation for the tangent line to the parametric curve $(x, y)=(\cos t, \sin 2 t)$ at the point where $t=\frac{\pi}{3}$.
(b) The position of a fly at time t is given by $(x, y, z)=\left(t, t^{2}, 1+t^{3}\right)$. A light shines down on the fly from the point $(0,0,3)$ and casts a shadow on the $x y$-plane. Find the position and the velocity of the shadow of the fly at time $t=1$.

2: Let S be the parametric surface $(x, y, z)=f(s, t)=\left(\frac{s}{t}, \sqrt{s+t}, s t\right)$.
(a) Find the derivative matrix $D f(s, t)$.
(b) Find a parametric equation for the tangent plane to S at the point where $(s, t)=(2,2)$.
(c) Find an implicit equation for the tangent plane to S at the point where $(s, t)=(2,2)$.

3: Let C be the curve of intersection of the two surfaces $z=x^{2}-2 y$ and $z=2 x^{2}+y^{2}$. Find a parametric equation for the tangent line L to the curve C at the point $(-1,-1,3)$ using each of the following two methods.
(a) Find the equation of the tangent plane to each of the two surfaces at $(-1,-1,3)$, then solve the two equations to obtain a parametric equation for L.
(b) Find a parametric equation for C, then use this parametric equation to find a parametric equation for the tangent line L.

4: (a) Let P be the tangent plane to the surface given by $z=4 x^{2}-8 x y+5 y^{2}$ at the point where $(x, y)=(2,1)$. Find the line of intersection of P with the $x y$-plane.
(b) Find the equation of the tangent plane to the surface given by $e^{x+z}=\sqrt{x^{2} y+z}$ at the point $(1,2,-1)$.

5: Let S be the surface $2 y z=x^{2}+y^{2}$.
(a) Sketch the level sets $z=-2,-1,0,1,2$ for the surface S (in other words, sketch the curve of intersection of S with the each of the planes $z=-2,-1,0,1,2)$.
(b) Sketch the surface S.
(c) Find the equation of the tangent plane to S at the point $(3,1,5)$.

