MATH 247 Calculus 3, Exercises for Chapter 3

1: (a) Show, from the definition of compactness, that the set $A=\mathbf{Q} \cap[0,1]$ is not compact.
(b) Show, from the definition of compactness, that the set $B=\left\{\left.\frac{n|n|}{1+n^{2}} \right\rvert\, n \in \mathbf{Z}\right\} \cup\{1,-1\}$ is compact.
(c) Show that the set $O_{n}(\mathbf{R})=\left\{A \in M_{n}(\mathbf{R}) \mid A^{T} A=I\right\}$ is compact. Here, we are identifying $M_{n}(\mathbf{R})$ with $\mathbf{R}^{n^{2}}$, so that the dot product of two matrices is given by $A \cdot B=\sum_{k, \ell} A_{k, \ell} B_{k, \ell}=\operatorname{trace}\left(B^{T} A\right)$.

2: For each of the following functions $f: \mathbf{R}^{2} \backslash\{0\} \rightarrow \mathbf{R}$, find $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ or show that the limit does not exist.
(a) $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
(b) $f(x, y)=\frac{x^{2} y^{3}}{x^{4}+y^{6}}$
(c) $f(x, y)=\frac{x^{4} y^{5}}{x^{8}+y^{6}}$

3: Let $f: A \subseteq \mathbf{R}^{n} \rightarrow B \subseteq \mathbf{R}^{m}$.
(a) Show that f is continuous if and only if $f^{-1}(F)$ is closed in A for every closed set F in B.
(b) Let E and F be closed sets in A with $E \cup F=A$. Let g be the restriction of f to E, and let h be the restriction of f to F. Show that f is continuous if and only if both g and h are continuous.
(c) Show that f is continuous if and only if for every $E \subseteq A$ we have $f(\bar{E}) \subseteq \overline{f(E)}$.

4: (a) Let $f: A \subseteq \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. Show that if A is compact and f is continuous then f is uniformly continuous.
(b) Let $f: A \subseteq \mathbf{R}^{n} \rightarrow B \subseteq \mathbf{R}^{m}$. Show that if A is compact and f is continuous and bijective then f^{-1} is continuous.
(c) Let $\emptyset \neq A, B \subseteq \mathbf{R}^{n}$. Define the distance between A and B to be

$$
d(A, B)=\inf \{|x-y| \mid x \in A, y \in B\} .
$$

Show that if A is compact and B is closed and $A \cap B=\emptyset$ then $d(A, B)>0$.
5: Let $A \subseteq \mathbf{R}^{n}$.
(a) For $a, b \in A$, write $a \sim b$ when there exists a continuous path in A from a to b. Show that \sim is an equivalence relation on A (this means that for all $a, b, c \in A$ we have $a \sim a$, and if $a \sim b$ then $b \sim a$, and if $a \sim b$ and $b \sim c$ then $a \sim c$).
(b) Suppose that A is open and connected. Show that A is path connected.

