
MATH 247 Calculus 3, Solutions to the Exercises for Chapter 2

1: Let 0 6= u, v, w ∈ Rn.

(a) (Trigonometric Ratios) Show that if (v − u) .u = 0 then cos θ(u, v) =
|u|
|v| and sin θ(u, v) =

|v−u|
|v|

Solution: Suppose that (v − u) .u = 0 and let θ = θ(u, v). We have 0 = (v − u) .u = v .u − u .u = v .u − |u|2
so that u . v = |u|2 and hence

cos θ =
u . v
|u| |v|

=
|u|2

|u| |v|
=
|u|
|v|

.

Also, we have |v − u|2 = (v − u) . (v − u) = |v|2 − 2(u . v) + |u|2 = |v|2 − 2|u|2 + |u|2 = |v|2 − |u|2 and so

sin2 θ = 1− cos2 θ = 1− |u|
2

|v|2
=
|v|2 − |u|2

|v|2
=
|v − u|2

|v|2
.

Since θ ∈ [0, π] we have sin θ ≥ 0, and so taking the square root on both sides gives

sin θ =
|v − u|
|v|

.

(b) (Angle Addition) Show that if 0 6= w = su+ tv for some s, t ≥ 0 then we have θ(u, v) = θ(u,w) + θ(w, v).

Solution: First we note that when t > 0 we have

θ(tu, v) = cos−1
(tu) . v
|tu| |v|

= cos−1
t(u . v)

t|u| |v|
= cos−1

u . v
|u| |v|

= θ(u, v)

and similarly θ(u, tv) = θ(u, v). It follows that for û = u
|u| and v̂ = v

|v| we have θ(u, v) = θ(û, v̂). Also note that

if 0 6= w = su+ tv with s, t ≥ 0 then for ŵ = w
|w| we have ŵ = s|u|

|w| û+ t|v|
|w| v̂. It follows that it suffices to consider

the case that u, v and w are unit vectors (since, if necessary, we can replace them by û, v̂ and ŵ).

Suppose that u, v and w are unit vectors. Then

1 = |w|2 = (su+ tv) . (su+ tv) = s2 + 2st(u . v) + t2.

We have
cos θ(u,w) = u .w = u . (su+ tv) = s+ t(u . v)

sin θ(u,w) =
√

1− cos2 θ(u,w) =
√

1− (s+ t(u . v))2

=
√

(s2 + 2st(u . v) + t2)− (s2 + 2st(u . v) + t2(u . v)2

=
√
t2 − t2(u . v)2 = t

√
1− (u . v)2

and similarly
cos θ(v, w) = t+ s(u . v)

sin θ(v, w) = s
√

1− (u . v)2

and so
cos
(
θ(u,w) + θ(v, w)

)
= (s+ t(u . v))(t+ s(u . v))− t

√
1− (u . v)2 · s

√
1− (u . v)2

=
(
st+ s2(u . v) + t2(u . v) + st(u . v)2

)
− st

(
1− (u . v)2

)
= s2(u . v) + t2(u . v) + 2st(u . v)2

=
(
s2 + t2 + 2st(u . v)

)
(u . v)

= u . v = cos θ(u, v) , and

sin
(
θ(u,w) + θ(v, w)

)
= sin θ(u,w) cos θ(v, w) + cos θ(u,w) sin θ(v, w)

= t
√

1− (u . v)2
(
t+ s(u . v)

)
+
(
s+ t(u . v)

)
· s
√

1− (u . v)2

=
(
t2 + st(u . v) + s2 + st(u . v)

)√
1− (u . v)2

=
√

1− (u . v)2 = sin θ(u, v).



2: (a) Let A=
{

(x, y)∈R2
∣∣ 0<x, 0<y and xy<1

}
. Show, from the definition of an open set, that A is open in R2.

Solution: Before beginning our proof, let us discuss our strategy. Suppose that (a, b) ∈ A, so we have a > 0,
b > 0 and ab < 1. We want to choose r > 0 so that the disc Br = B

(
(a, b), r

)
is contained in A. Note that

the open square Qr given by |x − a| < r and |y − b| < r contains the disc Br, so it suffices to ensure that
Qr is contained in A. Note that if r < a then |x − a| < r =⇒ |x − a| < a =⇒ 0 < x < 2a =⇒ x > 0.
Similarly, if r < b then |y − b| < r =⇒ y > 0. Note that if r < a and r < b then r < a + b and so
(a+ r)(b+ r) = ab+ r(a+ b) + r2 < ab+ r(a+ b) + r(a+ b) = ab+ 2r(a+ b) and we can obtain (a+ r)(b+ r) < 1
by choosing r < 1−ab

2(a+b) .

Now we begin the proof. Let (a, b) ∈ A, so we have a > 0, b > 0 and ab < 1. Choose r = min
{
a, b, 1−ab

2(a+b)

}
.

Let (x, y) ∈ Br = B
(
(a, b), r

)
. Then |x − a| =

√
|x− a|2 ≤

√
|x− a|2 + |y − b|2 =

∣∣(x, y) − (a, b)
∣∣ < r and

similarly |y − b| < r. Since |x − a| < r ≤ a we have 0 ≤ a−r < x < a+r and since |y − b| < r ≤ b we
have 0 ≤ b−r < y < b+r. Since 0 < x < a+r and 0 < y < a+r and r < a+b and r < 1−ab

2(a+b) we have

xy < (a+ r)(b+ r) = ab+ r(a+ b) + r2 < ab+ 2r(a+ b) < ab+ (1− ab) = 1. Since x > 0 and y > 0 and xy < 1
we have (x, y) ∈ A. Thus Br ⊆ A, as required, and so A is open.

(b) Let B=
{(

2t

t2+1
,
t2−1
t2+1

)
∈R2

∣∣∣ t ∈ R
}

. Show that B is not closed in R2.

Solution: To solve this problem, you might find it helpful to draw a picture of the set B by choosing various
values of t and plotting points. You should find that B looks like the unit circle centred at (0, 0) with the point
(0, 1) removed. If you wish, you can show, algebraically, that this is indeed the case.

Let a = (0, 1). Let x(t) = 2t
t2+1 and y(t) = t2−1

t2+1 and f(t) =
(
x(t), y(t)

)
so that B =

{
f(t)

∣∣t ∈ R
}

. We claim
that a ∈ B′ (that is a is a limit point of B) but a /∈ B. It is clear that a /∈ B because to get f(t) = a we need

x(t) = 0 and y(t) = 1, but to get x(t) = 2t
t2+1 = 0 we must choose t = 0, and then y(t) = t2−1

t2+1 = −1 6= 1. To
show that a ∈ B′, we shall show that for all r > 0 we have B(a, r) ∩ B 6= ∅. Let r > 0. Since lim

t→∞
x(t) = 0 and

lim
t→∞

y(t) = 1 we can choose t ∈ R so that
∣∣x(t)− 0

∣∣ < r
2 and

∣∣y(t)− 1
∣∣ < r

2 . Then we have∣∣f(t)− a
∣∣ =

∣∣(x(t), y(t))− (0, 1)
∣∣ =

∣∣(x(t) , y(t)− 1
)∣∣ ≤ |x(t)|+ |y(t)− 1| < r

2 + r
2 = r

and so f(t) ∈ B(a, r) ∩ B. This shows that for all r > 0 we have B(a, r) ∩ B 6= ∅, and so a ∈ B′. Since a ∈ B′
and a /∈ B we do not have B′ ⊆ B and so B is not closed (by Part (2) of Theorem 2.19).

3: Let A ⊆ Rn.

(a) Show that A′ is closed in Rn.

Solution: By Part (2) of Theorem 2.19, we know that A′ is closed if and only if (A′)′ ⊆ A′. Let a ∈ (A′)′, that
is let a be a limit point of A′. Let r > 0. Since a is a limit point of A′, we know that B∗(a, r) ∩ A′ 6= ∅. Choose
b ∈ B∗(a, r) ∩ A′. Note that 0 < |a − b| < r. Let s = min

(
|a − b| , r − |a − b|

)
> 0. Since b ∈ A′ we know that

B∗(b, s) ∩ A 6= ∅. Choose c ∈ B∗(b, s) ∩ A. We claim that c ∈ B∗(a, r) ∩ A. By the Triangle Inequality we have
|a− c| ≤ |a− b|+ |b− c| < |a− b|+ s ≤ |a− b|+ r − |a− b| = r, and by the Triangle Inequality again, we have
|a− b| ≤ |a− c|+ |c− b| and so |a− c| ≥ |a− b| − |b− c| > |a− b| − s ≥ |a− b| − |a− b| = 0. Thus 0 < |a− c| < r
and so c ∈ B∗(a, r) ∩ A, as claimed. Since c ∈ B∗(a, r) ∩ A, we see that B∗(a, r) ∩ A 6= ∅. We have shown that
for every r > 0 we have B∗(a, r) ∩A 6= ∅, and so a ∈ A′. This proves that (A′)′ ⊆ A′, and so A′ is closed.

(b) Show that ∂A = A \Ao.

Solution: Let a ∈ ∂A. We claim first that a ∈ A. Since A = A ∪ A′ it suffices to show that either a ∈ A or
a ∈ A′. Suppose that a /∈ A. Let r > 0 be arbitrary. Since a ∈ ∂A we have B(a, r) ∩A 6= ∅. Since a /∈ A we have
B∗(a, r) ∩A = B(a, r) ∩A and so B∗(a, r) ∩A) 6= ∅. Since r > 0 was arbitrary, we have a ∈ A′, as required.

Next we claim that a /∈ A0. Suppose, for a contradiction, that a ∈ A0. By Part (b), a is an interior point of
A so we can choose r > 0 so that B(a, r) ⊆ A. Since B(a, r) ⊆ A we have B(a, r)∩Ac = ∅. But since a ∈ ∂A we
have B(a, r) ∩ Ac 6= ∅, so we have obtained the desired contradiction. Thus a /∈ A0, as claimed. This completes
the proof that ∂A ⊆ A \A0.

Now let a ∈ A \ A0, that is let a ∈ A with a /∈ A0. Let r > 0 be arbitrary. Case 1: suppose that a ∈ A. Let
r > 0 be arbitrary. Since a ∈ A and a ∈ B(a, r) we have B(a, r)∩A 6= ∅. Since a /∈ A0 we have B(a, r) 6⊆ A and so
B(a, r)∩Ac 6= ∅. Thus a ∈ ∂A. Case 2: suppose that a /∈ A. Let r > 0 be arbitrary. Since a /∈ A and a ∈ B(a, r)
we have B(a, r) ∩ Ac 6= ∅. Since a ∈ A = A ∪ A′ and a /∈ A we have a ∈ A′ and so B∗(a, r) ∩ A 6= ∅ hence
B(a, r) ∩A 6= ∅. Thus a ∈ ∂A. In either case we find that a ∈ ∂A. This completes the proof that A \A0 ⊆ ∂A.



4: (a) Let A,B ⊆ Rn show that if A is connected and A ⊆ B ⊆ A then B is connected.

Solution: Suppose that A is connected and that A ⊆ B ⊆ A. Suppose, for a contradiction, that B is disconnected.
Choose open sets U, V ⊆ Rn which separate B, so we have U ∩ B 6= ∅, V ∩ B 6= ∅, U ∩ B = ∅ and B ⊆ U ∪ V .
We claim that U and V also separate A (contradicting the fact that A is connected). Since A ⊆ B ⊆ U ∪ V , it
suffices to prove that U ∩ A 6= ∅ and U ∩ B 6= ∅. We claim that U ∩ A 6= ∅. Since U ∩ B 6= ∅ we can choose
b ∈ U ∩ B. Then we have b ∈ B ⊆ A = A ∪ A′, and so either b ∈ A or b ∈ A′. If b ∈ A then we have b ∈ U ∩ A
so that U ∩A 6= ∅. Suppose that b ∈ A′. Since b ∈ U and U is open, we can choose r > 0 such that B(b, r) ⊆ U .
Since b ∈ A′ we have B(b, r) ∩A 6= ∅ so we can choose c ∈ B(b, r) ∩A. Then we have c ∈ B(b, r) ⊆ U and c ∈ A,
hence c ∈ U ∩A, and so U ∩A 6= ∅. This proves that U ∩A 6= ∅, as claimed. The proof that V ∩A 6= ∅ is similar,
and so U and V separate A giving the desired contradiction.

(b) Let S be a nonempty set and let Aj ⊆ Rn for each j ∈ S. Suppose that Aj is connected for all j ∈ S and
that Ak ∩A` 6= ∅ for all k, ` ∈ S. Show that

⋃
j∈S

Aj is connected.

Solution: Let B =
⋃
j∈S

Aj . Suppose, for a contradiction, that B is disconnected. Choose open sets U, V ⊆ Rn

which separate B, that is B ∩ U 6= ∅, B ∩ V 6= ∅, U ∩ V = ∅ and B ⊆ U ∪ V . Choose a ∈ B ∩ U and b ∈ B ∩ V .
Since a ∈ B =

⋃
j∈S

Aj , we can choose k ∈ S such that a ∈ Ak. Similarly we can choose ` ∈ S such that b ∈ A`.

Then we have a ∈ Ak ∩ U and b ∈ A` ∩ V . Since Ak is connected, and a ∈ Ak ∩ U so that Ak ∩ U 6= ∅, and
Ak ⊆

⋃
j∈S

Aj = B ⊆ U ∪ V , it follows that we must have Ak ⊆ U because otherwise we would have Ak ∩ V 6= ∅

and so U and V would separate Ak. Similarly, we must have A` ⊆ V . Since Ak ⊆ U and A` ⊆ V we have
Ak ∩A` ⊆ U ∩ V = ∅. This contradicts our assumption that Ak ∩A` 6= ∅, and so B is connected, as required.

5: Let A ⊆ P ⊆ Rn. Define the interior of A in P to be the union of all sets E ⊆ P such that E is open in P and
E ⊆ A. Define the closure of A in P to be the intersection of all sets F ⊆ P such that F is closed in P and
A ⊆ F . Denote the interior of A in Rn and the closure of A in Rn by Ao and A (as usual). Denote the interior
of A in P and the closure of A in P by IntP (A) and ClP (A).

(a) Show that ClP (A) = A ∩ P .

Solution: Since A is closed in Rn it follows that A∩P is closed in P . Since A ⊆ A and A ⊆ P we have A ⊆ A∩P .
Since A ∩ P is closed in P and A ⊆ A ∩ P , it follows from the definition of ClP (A) that ClP (A) ⊆ A ∩ P .

Let F be any closed set in P with A ⊆ F . Choose a closed set K in Rn such that F = K ∩ P . Since K is
closed in Rn and A ⊆ K we have A ⊆ K. Thus A ∩ P ⊆ K ∩ P = F . Since A ∩ P ⊆ F for every closed set F in
P which contains A, it follows, from the definition of ClP (A), that A ∩ P ⊆ ClP (A).

(b) Show that IntP (A) = (A ∪ P c)o ∩ P , where P c = Rn \ P .

Solution: Let F = (A ∪ P c)o ∩ P . Since (A ∪ P c)o is open in Rn it follows that F = (A ∪ P c)o ∩ P is open in P .
Also note that we have F = (A ∪ P c)o ∩ P ⊆ (A ∪ P c) ∩ P = (A ∩ P ) ∪ (P c ∩ P ) = (A ∩ P ) ∪ ∅ = A ∩ P = A,
since A ⊆ P . Since F is open in P and F ⊆ A it follows, from the definition of IntP (A), that F ⊆ IntP (A).

Let E be any open set in P with E ⊆ A. Choose an open set U in Rn such that U ∩ P = E. Then we have
U = U ∩Rn = U ∩ (P ∪ P c) = (U ∩ P ) ∪ (U ∩ P c) = E ∪ (U ∩ P c) ⊆ A ∪ P c, since E ⊆ A and U ∩ P c ⊆ P c.
Since U is open in Rn and U ⊆ A ∪ P c it follows that U ⊆ (A ∪ P c)o. Since E = U ∩ P ⊆ U ⊆ (A ∪ P c)o and
E ⊆ A ⊆ P we have E ⊆ (A∪P c)o ∩P = F . Since E ⊆ F for every open set E in P with E ⊆ A it follows, from
the definition of IntP (A), that IntP (A) ⊆ F .


