MATH 247 Calculus 3, Solutions to the Exercises for Chapter 2

1: Let $0 \neq u, v, w \in \mathbf{R}^{n}$.
(a) (Trigonometric Ratios) Show that if $(v-u) \cdot u=0$ then $\cos \theta(u, v)=\frac{|u|}{|v|}$ and $\sin \theta(u, v)=\frac{|v-u|}{|v|}$

Solution: Suppose that $(v-u) \cdot u=0$ and let $\theta=\theta(u, v)$. We have $0=(v-u) \cdot u=v \cdot u-u \cdot u=v \cdot u-|u|^{2}$ so that $u \cdot v=|u|^{2}$ and hence

$$
\cos \theta=\frac{u \cdot v}{|u||v|}=\frac{|u|^{2}}{|u||v|}=\frac{|u|}{|v|}
$$

Also, we have $|v-u|^{2}=(v-u) \cdot(v-u)=|v|^{2}-2(u \cdot v)+|u|^{2}=|v|^{2}-2|u|^{2}+|u|^{2}=|v|^{2}-|u|^{2}$ and so

$$
\sin ^{2} \theta=1-\cos ^{2} \theta=1-\frac{|u|^{2}}{|v|^{2}}=\frac{|v|^{2}-|u|^{2}}{|v|^{2}}=\frac{|v-u|^{2}}{|v|^{2}}
$$

Since $\theta \in[0, \pi]$ we have $\sin \theta \geq 0$, and so taking the square root on both sides gives

$$
\sin \theta=\frac{|v-u|}{|v|}
$$

(b) (Angle Addition) Show that if $0 \neq w=s u+t v$ for some $s, t \geq 0$ then we have $\theta(u, v)=\theta(u, w)+\theta(w, v)$.

Solution: First we note that when $t>0$ we have

$$
\theta(t u, v)=\cos ^{-1} \frac{(t u) \cdot v}{|t u||v|}=\cos ^{-1} \frac{t(u \cdot v)}{t|u||v|}=\cos ^{-1} \frac{u \cdot v}{|u||v|}=\theta(u, v)
$$

and similarly $\theta(u, t v)=\theta(u, v)$. It follows that for $\hat{u}=\frac{u}{|u|}$ and $\hat{v}=\frac{v}{|v|}$ we have $\theta(u, v)=\theta(\hat{u}, \hat{v})$. Also note that if $0 \neq w=s u+t v$ with $s, t \geq 0$ then for $\hat{w}=\frac{w}{|w|}$ we have $\hat{w}=\frac{s|u|}{|w|} \hat{u}+\frac{t|v|}{|w|} \hat{v}$. It follows that it suffices to consider the case that u, v and w are unit vectors (since, if necessary, we can replace them by \hat{u}, \hat{v} and \hat{w}).

Suppose that u, v and w are unit vectors. Then

$$
1=|w|^{2}=(s u+t v) \cdot(s u+t v)=s^{2}+2 s t(u \cdot v)+t^{2}
$$

We have

$$
\begin{aligned}
\cos \theta(u, w) & =u \cdot w=u \cdot(s u+t v)=s+t(u \cdot v) \\
\sin \theta(u, w) & =\sqrt{1-\cos ^{2} \theta(u, w)}=\sqrt{1-(s+t(u \cdot v))^{2}} \\
& =\sqrt{\left(s^{2}+2 s t(u \cdot v)+t^{2}\right)-\left(s^{2}+2 s t(u \cdot v)+t^{2}(u \cdot v)^{2}\right.} \\
& =\sqrt{t^{2}-t^{2}(u \cdot v)^{2}}=t \sqrt{1-(u \cdot v)^{2}}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\cos \theta(v, w) & =t+s(u \cdot v) \\
\sin \theta(v, w) & =s \sqrt{1-(u \cdot v)^{2}}
\end{aligned}
$$

and so

$$
\begin{aligned}
\cos (\theta(u, w)+\theta(v, w)) & =(s+t(u \cdot v))(t+s(u \cdot v))-t \sqrt{1-(u \cdot v)^{2}} \cdot s \sqrt{1-(u \cdot v)^{2}} \\
& =\left(s t+s^{2}(u \cdot v)+t^{2}(u \cdot v)+s t(u \cdot v)^{2}\right)-s t\left(1-(u \cdot v)^{2}\right) \\
& =s^{2}(u \cdot v)+t^{2}(u \cdot v)+2 s t(u \cdot v)^{2} \\
& =\left(s^{2}+t^{2}+2 s t(u \cdot v)\right)(u \cdot v) \\
& =u \cdot v=\cos \theta(u, v), \text { and } \\
\sin (\theta(u, w)+\theta(v, w)) & =\sin \theta(u, w) \cos \theta(v, w)+\cos \theta(u, w) \sin \theta(v, w) \\
& =t \sqrt{1-(u \cdot v)^{2}}(t+s(u \cdot v))+(s+t(u \cdot v)) \cdot s \sqrt{1-(u \cdot v)^{2}} \\
& =\left(t^{2}+s t(u \cdot v)+s^{2}+s t(u \cdot v)\right) \sqrt{1-(u \cdot v)^{2}} \\
& =\sqrt{1-(u \cdot v)^{2}}=\sin \theta(u, v) .
\end{aligned}
$$

2: (a) Let $A=\left\{(x, y) \in \mathbf{R}^{2} \mid 0<x, 0<y\right.$ and $\left.x y<1\right\}$. Show, from the definition of an open set, that A is open in \mathbf{R}^{2}.
Solution: Before beginning our proof, let us discuss our strategy. Suppose that $(a, b) \in A$, so we have $a>0$, $b>0$ and $a b<1$. We want to choose $r>0$ so that the disc $B_{r}=B((a, b), r)$ is contained in A. Note that the open square Q_{r} given by $|x-a|<r$ and $|y-b|<r$ contains the disc B_{r}, so it suffices to ensure that Q_{r} is contained in A. Note that if $r<a$ then $|x-a|<r \Longrightarrow|x-a|<a \Longrightarrow 0<x<2 a \Longrightarrow x>0$. Similarly, if $r<b$ then $|y-b|<r \Longrightarrow y>0$. Note that if $r<a$ and $r<b$ then $r<a+b$ and so $(a+r)(b+r)=a b+r(a+b)+r^{2}<a b+r(a+b)+r(a+b)=a b+2 r(a+b)$ and we can obtain $(a+r)(b+r)<1$ by choosing $r<\frac{1-a b}{2(a+b)}$.

Now we begin the proof. Let $(a, b) \in A$, so we have $a>0, b>0$ and $a b<1$. Choose $r=\min \left\{a, b, \frac{1-a b}{2(a+b)}\right\}$. Let $(x, y) \in B_{r}=B((a, b), r)$. Then $|x-a|=\sqrt{|x-a|^{2}} \leq \sqrt{|x-a|^{2}+|y-b|^{2}}=|(x, y)-(a, b)|<r$ and similarly $|y-b|<r$. Since $|x-a|<r \leq a$ we have $0 \leq a-r<x<a+r$ and since $|y-b|<r \leq b$ we have $0 \leq b-r<y<b+r$. Since $0<x<a+r$ and $0<y<a+r$ and $r<a+b$ and $r<\frac{1-a b}{2(a+b)}$ we have $x y<(a+r)(b+r)=a b+r(a+b)+r^{2}<a b+2 r(a+b)<a b+(1-a b)=1$. Since $x>0$ and $y>0$ and $x y<1$ we have $(x, y) \in A$. Thus $B_{r} \subseteq A$, as required, and so A is open.
(b) Let $B=\left\{\left.\left(\frac{2 t}{t^{2}+1}, \frac{t^{2}-1}{t^{2}+1}\right) \in \mathbf{R}^{2} \right\rvert\, t \in \mathbf{R}\right\}$. Show that B is not closed in \mathbf{R}^{2}.

Solution: To solve this problem, you might find it helpful to draw a picture of the set B by choosing various values of t and plotting points. You should find that B looks like the unit circle centred at $(0,0)$ with the point $(0,1)$ removed. If you wish, you can show, algebraically, that this is indeed the case.

Let $a=(0,1)$. Let $x(t)=\frac{2 t}{t^{2}+1}$ and $y(t)=\frac{t^{2}-1}{t^{2}+1}$ and $f(t)=(x(t), y(t))$ so that $B=\{f(t) \mid t \in \mathbf{R}\}$. We claim that $a \in B^{\prime}$ (that is a is a limit point of B) but $a \notin B$. It is clear that $a \notin B$ because to get $f(t)=a$ we need $x(t)=0$ and $y(t)=1$, but to get $x(t)=\frac{2 t}{t^{2}+1}=0$ we must choose $t=0$, and then $y(t)=\frac{t^{2}-1}{t^{2}+1}=-1 \neq 1$. To show that $a \in B^{\prime}$, we shall show that for all $r>0$ we have $B(a, r) \cap B \neq \emptyset$. Let $r>0$. Since $\lim _{t \rightarrow \infty} x(t)=0$ and $\lim _{t \rightarrow \infty} y(t)=1$ we can choose $t \in \mathbf{R}$ so that $|x(t)-0|<\frac{r}{2}$ and $|y(t)-1|<\frac{r}{2}$. Then we have

$$
|f(t)-a|=|(x(t), y(t))-(0,1)|=|(x(t), y(t)-1)| \leq|x(t)|+|y(t)-1|<\frac{r}{2}+\frac{r}{2}=r
$$

and so $f(t) \in B(a, r) \cap B$. This shows that for all $r>0$ we have $B(a, r) \cap B \neq \emptyset$, and so $a \in B^{\prime}$. Since $a \in B^{\prime}$ and $a \notin B$ we do not have $B^{\prime} \subseteq B$ and so B is not closed (by Part (2) of Theorem 2.19).

3: Let $A \subseteq \mathbf{R}^{n}$.
(a) Show that A^{\prime} is closed in \mathbf{R}^{n}.

Solution: By Part (2) of Theorem 2.19, we know that A^{\prime} is closed if and only if $\left(A^{\prime}\right)^{\prime} \subseteq A^{\prime}$. Let $a \in\left(A^{\prime}\right)^{\prime}$, that is let a be a limit point of A^{\prime}. Let $r>0$. Since a is a limit point of A^{\prime}, we know that $B^{*}(a, r) \cap A^{\prime} \neq \emptyset$. Choose $b \in B^{*}(a, r) \cap A^{\prime}$. Note that $0<|a-b|<r$. Let $s=\min (|a-b|, r-|a-b|)>0$. Since $b \in A^{\prime}$ we know that $B^{*}(b, s) \cap A \neq \emptyset$. Choose $c \in B^{*}(b, s) \cap A$. We claim that $c \in B^{*}(a, r) \cap A$. By the Triangle Inequality we have $|a-c| \leq|a-b|+|b-c|<|a-b|+s \leq|a-b|+r-|a-b|=r$, and by the Triangle Inequality again, we have $|a-b| \leq|a-c|+|c-b|$ and so $|a-c| \geq|a-b|-|b-c|>|a-b|-s \geq|a-b|-|a-b|=0$. Thus $0<|a-c|<r$ and so $c \in B^{*}(a, r) \cap A$, as claimed. Since $c \in B^{*}(a, r) \cap A$, we see that $B^{*}(a, r) \cap A \neq \emptyset$. We have shown that for every $r>0$ we have $B^{*}(a, r) \cap A \neq \emptyset$, and so $a \in A^{\prime}$. This proves that $\left(A^{\prime}\right)^{\prime} \subseteq A^{\prime}$, and so A^{\prime} is closed.
(b) Show that $\partial A=\bar{A} \backslash A^{\circ}$.

Solution: Let $a \in \partial A$. We claim first that $a \in \bar{A}$. Since $\bar{A}=A \cup A^{\prime}$ it suffices to show that either $a \in A$ or $a \in A^{\prime}$. Suppose that $a \notin A$. Let $r>0$ be arbitrary. Since $a \in \partial A$ we have $B(a, r) \cap A \neq \emptyset$. Since $a \notin A$ we have $B^{*}(a, r) \cap A=B(a, r) \cap A$ and so $\left.B^{*}(a, r) \cap A\right) \neq \emptyset$. Since $r>0$ was arbitrary, we have $a \in A^{\prime}$, as required.

Next we claim that $a \notin A^{0}$. Suppose, for a contradiction, that $a \in A^{0}$. By Part (b), a is an interior point of A so we can choose $r>0$ so that $B(a, r) \subseteq A$. Since $B(a, r) \subseteq A$ we have $B(a, r) \cap A^{c}=\emptyset$. But since $a \in \partial A$ we have $B(a, r) \cap A^{c} \neq \emptyset$, so we have obtained the desired contradiction. Thus $a \notin A^{0}$, as claimed. This completes the proof that $\partial A \subseteq \bar{A} \backslash A^{0}$.

Now let $a \in \bar{A} \backslash A^{0}$, that is let $a \in \bar{A}$ with $a \notin A^{0}$. Let $r>0$ be arbitrary. Case 1: suppose that $a \in A$. Let $r>0$ be arbitrary. Since $a \in A$ and $a \in B(a, r)$ we have $B(a, r) \cap A \neq \emptyset$. Since $a \notin A^{0}$ we have $B(a, r) \nsubseteq A$ and so $B(a, r) \cap A^{c} \neq \emptyset$. Thus $a \in \partial A$. Case 2: suppose that $a \notin A$. Let $r>0$ be arbitrary. Since $a \notin A$ and $a \in B(a, r)$ we have $B(a, r) \cap A^{c} \neq \emptyset$. Since $a \in \bar{A}=A \cup A^{\prime}$ and $a \notin A$ we have $a \in A^{\prime}$ and so $B^{*}(a, r) \cap A \neq \emptyset$ hence $B(a, r) \cap A \neq \emptyset$. Thus $a \in \partial A$. In either case we find that $a \in \partial A$. This completes the proof that $\bar{A} \backslash A^{0} \subseteq \partial A$.

4: (a) Let $A, B \subseteq \mathbf{R}^{n}$ show that if A is connected and $A \subseteq B \subseteq \bar{A}$ then B is connected.
Solution: Suppose that A is connected and that $A \subseteq B \subseteq \bar{A}$. Suppose, for a contradiction, that B is disconnected. Choose open sets $U, V \subseteq \mathbf{R}^{n}$ which separate B, so we have $U \cap B \neq \emptyset, V \cap B \neq \emptyset, U \cap B=\emptyset$ and $B \subseteq U \cup V$. We claim that U and V also separate A (contradicting the fact that A is connected). Since $A \subseteq B \subseteq U \cup V$, it suffices to prove that $U \cap A \neq \emptyset$ and $U \cap B \neq \emptyset$. We claim that $U \cap A \neq \emptyset$. Since $U \cap B \neq \emptyset$ we can choose $b \in U \cap B$. Then we have $b \in B \subseteq \bar{A}=A \cup A^{\prime}$, and so either $b \in A$ or $b \in A^{\prime}$. If $b \in A$ then we have $b \in U \cap A$ so that $U \cap A \neq \emptyset$. Suppose that $b \in A^{\prime}$. Since $b \in U$ and U is open, we can choose $r>0$ such that $B(b, r) \subseteq U$. Since $b \in A^{\prime}$ we have $B(b, r) \cap A \neq \emptyset$ so we can choose $c \in B(b, r) \cap A$. Then we have $c \in B(b, r) \subseteq U$ and $c \in A$, hence $c \in U \cap A$, and so $U \cap A \neq \emptyset$. This proves that $U \cap A \neq \emptyset$, as claimed. The proof that $V \cap A \neq \emptyset$ is similar, and so U and V separate A giving the desired contradiction.
(b) Let S be a nonempty set and let $A_{j} \subseteq \mathbf{R}^{n}$ for each $j \in S$. Suppose that A_{j} is connected for all $j \in S$ and that $A_{k} \cap A_{\ell} \neq \emptyset$ for all $k, \ell \in S$. Show that $\bigcup_{j \in S} A_{j}$ is connected.
Solution: Let $B=\bigcup_{j \in S} A_{j}$. Suppose, for a contradiction, that B is disconnected. Choose open sets $U, V \subseteq \mathbf{R}^{n}$ which separate B, that is $B \cap U \neq \emptyset, B \cap V \neq \emptyset, U \cap V=\emptyset$ and $B \subseteq U \cup V$. Choose $a \in B \cap U$ and $b \in B \cap V$. Since $a \in B=\bigcup_{j \in S} A_{j}$, we can choose $k \in S$ such that $a \in A_{k}$. Similarly we can choose $\ell \in S$ such that $b \in A_{\ell}$. Then we have $a \in A_{k} \cap U$ and $b \in A_{\ell} \cap V$. Since A_{k} is connected, and $a \in A_{k} \cap U$ so that $A_{k} \cap U \neq \emptyset$, and $A_{k} \subseteq \bigcup_{j \in S} A_{j}=B \subseteq U \cup V$, it follows that we must have $A_{k} \subseteq U$ because otherwise we would have $A_{k} \cap V \neq \emptyset$ and so U and V would separate A_{k}. Similarly, we must have $A_{\ell} \subseteq V$. Since $A_{k} \subseteq U$ and $A_{\ell} \subseteq V$ we have $A_{k} \cap A_{\ell} \subseteq U \cap V=\emptyset$. This contradicts our assumption that $A_{k} \cap A_{\ell} \neq \emptyset$, and so B is connected, as required.

5: Let $A \subseteq P \subseteq \mathbf{R}^{n}$. Define the interior of A in P to be the union of all sets $E \subseteq P$ such that E is open in P and $E \subseteq A$. Define the closure of A in P to be the intersection of all sets $F \subseteq P$ such that F is closed in P and $A \subseteq F$. Denote the interior of A in \mathbf{R}^{n} and the closure of A in \mathbf{R}^{n} by A^{o} and \bar{A} (as usual). Denote the interior of A in P and the closure of A in P by $\operatorname{Int}_{P}(A)$ and $\mathrm{Cl}_{P}(A)$.
(a) Show that $\mathrm{Cl}_{P}(A)=\bar{A} \cap P$.

Solution: Since \bar{A} is closed in \mathbf{R}^{n} it follows that $\bar{A} \cap P$ is closed in P. Since $A \subseteq \bar{A}$ and $A \subseteq P$ we have $A \subseteq \bar{A} \cap P$. Since $\bar{A} \cap P$ is closed in P and $A \subseteq \bar{A} \cap P$, it follows from the definition of $\mathrm{Cl}_{P}(A)$ that $\mathrm{Cl}_{P}(A) \subseteq \bar{A} \cap P$.

Let F be any closed set in P with $A \subseteq F$. Choose a closed set K in \mathbf{R}^{n} such that $F=K \cap P$. Since K is closed in \mathbf{R}^{n} and $A \subseteq K$ we have $\bar{A} \subseteq K$. Thus $\bar{A} \cap P \subseteq K \cap P=F$. Since $\bar{A} \cap P \subseteq F$ for every closed set F in P which contains A, it follows, from the definition of $\mathrm{Cl}_{P}(A)$, that $\bar{A} \cap P \subseteq \mathrm{Cl}_{P}(A)$.
(b) Show that $\operatorname{Int}_{P}(A)=\left(A \cup P^{c}\right)^{o} \cap P$, where $P^{c}=\mathbf{R}^{n} \backslash P$.

Solution: Let $F=\left(A \cup P^{c}\right)^{o} \cap P$. Since $\left(A \cup P^{c}\right)^{o}$ is open in \mathbf{R}^{n} it follows that $F=\left(A \cup P^{c}\right)^{o} \cap P$ is open in P. Also note that we have $F=\left(A \cup P^{c}\right)^{o} \cap P \subseteq\left(A \cup P^{c}\right) \cap P=(A \cap P) \cup\left(P^{c} \cap P\right)=(A \cap P) \cup \emptyset=A \cap P=A$, since $A \subseteq P$. Since F is open in P and $F \subseteq A$ it follows, from the definition of $\operatorname{Int}_{P}(A)$, that $F \subseteq \operatorname{Int}_{P}(A)$.

Let E be any open set in P with $E \subseteq A$. Choose an open set U in \mathbf{R}^{n} such that $U \cap P=E$. Then we have $U=U \cap \mathbf{R}^{n}=U \cap\left(P \cup P^{c}\right)=(U \cap P) \cup\left(U \cap P^{c}\right)=E \cup\left(U \cap P^{c}\right) \subseteq A \cup P^{c}$, since $E \subseteq A$ and $U \cap P^{c} \subseteq P^{c}$. Since U is open in \mathbf{R}^{n} and $U \subseteq A \cup P^{c}$ it follows that $U \subseteq\left(A \cup P^{c}\right)^{o}$. Since $E=U \cap P \subseteq U \subseteq\left(A \cup P^{c}\right)^{o}$ and $E \subseteq A \subseteq P$ we have $E \subseteq\left(A \cup P^{c}\right)^{o} \cap P=F$. Since $E \subseteq F$ for every open set E in P with $E \subseteq A$ it follows, from the definition of $\operatorname{Int}_{P}(A)$, that $\operatorname{Int}_{P}(A) \subseteq F$.

