MATH 247 Calculus 3, Exercises for Chapter 2

1: Let $0 \neq u, v, w \in \mathbf{R}^{n}$.
(a) (Trigonometric Ratios) Show that if $(v-u) \cdot u=0$ then $\cos \theta(u, v)=\frac{|u|}{|v|}$ and $\sin \theta(u, v)=\frac{|v-u|}{|v|}$
(b) (Angle Addition) Show that if $0 \neq w=s u+t v$ for some $s, t \geq 0$ then we have $\theta(u, v)=\theta(u, w)+\theta(w, v)$.

2: (a) Let $A=\left\{(x, y) \in \mathbf{R}^{2} \mid 0<x, 0<y\right.$ and $\left.x y<1\right\}$. Show, from the definition of an open set, that A is open in \mathbf{R}^{2}.
(b) Let $B=\left\{\left.\left(\frac{2 t}{t^{2}+1}, \frac{t^{2}-1}{t^{2}+1}\right) \in \mathbf{R}^{2} \right\rvert\, t \in \mathbf{R}\right\}$. Show that B is not closed in \mathbf{R}^{2}.

3: Let $A \subseteq \mathbf{R}^{n}$.
(a) Show that A^{\prime} is closed in \mathbf{R}^{n}.
(b) Show that $\partial A=\bar{A} \backslash A^{o}$.

4: (a) Let $A, B \subseteq \mathbf{R}^{n}$ show that if A is connected and $A \subseteq B \subseteq \bar{A}$ then B is connected.
(b) Let S be a nonempty set and let $A_{j} \subseteq \mathbf{R}^{n}$ for each $j \in S$. Suppose that A_{j} is connected for all $j \in S$ and that $A_{k} \cap A_{\ell} \neq \emptyset$ for all $k, \ell \in S$. Show that $\bigcup_{j \in S} A_{j}$ is connected.
5: Let $A \subseteq P \subseteq \mathbf{R}^{n}$. Define the interior of A in P to be the union of all sets $E \subseteq P$ such that E is open in P and $E \subseteq A$. Define the closure of A in P to be the intersection of all sets $F \subseteq \bar{P}$ such that F is closed in P and $A \subseteq F$. Denote the interior of A in \mathbf{R}^{n} and the closure of A in \mathbf{R}^{n} by A^{o} and \bar{A} (as usual). Denote the interior of A in P and the closure of A in P by $\operatorname{Int}_{P}(A)$ and $\mathrm{Cl}_{P}(A)$.
(a) Show that $\mathrm{Cl}_{P}(A)=\bar{A} \cap P$.
(b) Show that $\operatorname{Int}_{P}(A)=\left(A \cup P^{c}\right)^{o} \cap P$, where $P^{c}=\mathbf{R}^{n} \backslash P$.

