1: Let $0 \neq u, v, w \in \mathbf{R}^n$.

- (a) (Trigonometric Ratios) Show that if $(v-u) \cdot u = 0$ then $\cos \theta(u,v) = \frac{|u|}{|v|}$ and $\sin \theta(u,v) = \frac{|v-u|}{|v|}$
- (b) (Angle Addition) Show that if $0 \neq w = su + tv$ for some $s, t \ge 0$ then we have $\theta(u, v) = \theta(u, w) + \theta(w, v)$.
- 2: (a) Let $A = \{(x, y) \in \mathbb{R}^2 \mid 0 < x, 0 < y \text{ and } xy < 1\}$. Show, from the definition of an open set, that A is open in \mathbb{R}^2 . (b) Let $B = \left\{ \left(\frac{2t}{t^2+1}, \frac{t^2-1}{t^2+1} \right) \in \mathbb{R}^2 \mid t \in \mathbb{R} \right\}$. Show that B is not closed in \mathbb{R}^2 .

3: Let $A \subseteq \mathbf{R}^n$.

- (a) Show that A' is closed in \mathbb{R}^n .
- (b) Show that $\partial A = \overline{A} \setminus A^o$.
- **4:** (a) Let $A, B \subseteq \mathbf{R}^n$ show that if A is connected and $A \subseteq B \subseteq \overline{A}$ then B is connected.

(b) Let S be a nonempty set and let $A_j \subseteq \mathbf{R}^n$ for each $j \in S$. Suppose that A_j is connected for all $j \in S$ and that $A_k \cap A_\ell \neq \emptyset$ for all $k, \ell \in S$. Show that $\bigcup_{j \in S} A_j$ is connected.

- 5: Let $A \subseteq P \subseteq \mathbb{R}^n$. Define the interior of A in P to be the union of all sets $E \subseteq P$ such that E is open in P and $E \subseteq A$. Define the closure of A in P to be the intersection of all sets $F \subseteq P$ such that F is closed in P and $A \subseteq F$. Denote the interior of A in \mathbb{R}^n and the closure of A in \mathbb{R}^n and the closure of A in \mathbb{R}^n by A^o and \overline{A} (as usual). Denote the interior of A in P by $\mathrm{Int}_P(A)$ and $\mathrm{Cl}_P(A)$.
 - (a) Show that $\operatorname{Cl}_P(A) = \overline{A} \cap P$.
 - (b) Show that $\operatorname{Int}_P(A) = (A \cup P^c)^o \cap P$, where $P^c = \mathbb{R}^n \setminus P$.