MATH 247 Calculus 3, Solutions to the Exercises for Chapter 1

1: Let $A=\operatorname{Range}(f)$ where $f: \mathbf{R} \rightarrow \mathbf{R}^{2}$ is given by $f(t)=(\cos t, \sin 2 t)$ and let $B=\operatorname{Null}(g)$ where $g: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is given by $g(x, y)=y^{2}+4 x^{2}\left(x^{2}-1\right)$. Show (algebraically) that $A=B$, and then sketch the set $A \subseteq \mathbf{R}^{2}$ (it is a curve in \mathbf{R}^{2}).
Solution: Note that $A=\operatorname{Range}(f)=\{(\cos t, \sin 2 t) \mid t \in \mathbf{R}\}$ and $B=\operatorname{Null}(g)=\left\{(x, y) \mid y^{2}+4 x^{2}\left(x^{2}-1\right)=0\right\}$. Let $(x, y) \in A$. Choose $t \in \mathbf{R}$ such that $x=\cos t$ and $y=\sin 2 t$. Then $x^{2}=\cos ^{2} t$ and

$$
y^{2}=4 \sin ^{2} t \cos ^{2} t=4 \cos ^{2} t\left(1-\cos ^{2} t\right)=4 x^{2}\left(1-x^{2}\right)
$$

so we have $y^{2}+4 x^{2}\left(x^{2}-1\right)=0$ and so $(x, y) \in B$. Thus $A \subseteq B$.
Conversely, suppose that $(x, y) \in B$ so we have $y^{2}=4 x^{2}\left(1-x^{2}\right)$. Then $y= \pm 2 x \sqrt{1-x^{2}}$ with $-1 \leq x \leq 1$. If $y=2 x \sqrt{1-x^{2}}$ then we can let $t=\cos ^{-1} x \in[0, \pi]$, and then $\cos t=x$ and, since $\sin t \geq 0$,

$$
\sin 2 t=2 \sin t \cos t=2 \cos t \sqrt{\sin ^{2} t}=2 \cos t \sqrt{1-\cos ^{2} t}=2 x \sqrt{1-x^{2}}=y
$$

If $y=-2 x \sqrt{1-x^{2}}$ then we can let $t=-\cos ^{-1} x \in[-\pi, 0]$, and then $\cos t=x$ and, since $\sin t \leq 0$,

$$
\sin 2 t=2 \sin t \cos t=-2 \cos t \sqrt{\sin ^{2} t}=-2 \cos t \sqrt{1-\cos ^{2} t}=-2 x \sqrt{1-x^{2}}=y
$$

In either case, we can choose $t \in \mathbf{R}$ such that $(x, y)=(\cos t, \sin 2 t)$ and so $(x, y) \in A$. Thus $B \subseteq A$.
To sketch the set A, we make a table of values and plot points.

t	x	y
0	1	0
$\pi / 6$	$\sqrt{3} / 2$	$\sqrt{3} / 2$
$\pi / 4$	$\sqrt{2} / 2$	1
$\pi / 3$	$1 / 2$	$\sqrt{3} / 2$
$\pi / 2$	0	0
$2 \pi / 3$	$-1 / 2$	$-\sqrt{3} / 2$
$3 \pi / 4$	$-\sqrt{2} / 2$	-1
$5 \pi / 6$	$-\sqrt{3} / 2$	$-\sqrt{3} / 2$
π	-1	0
etc		

2: A light, represented by the point $(0,0,5)$, lies above the ground, which is represented by the $x y$-plane. The position of a fly at time $t \geq 0$ is given by $(x, y, z)=\left(t, t^{2}, t^{3}\right)$. Find the position of the shadow of the fly at time t (you are finding a parametric equation for the curve in the $x y$-plane traced by the shadow of the fly).
Solution: When the fly is at the point (x, y, z), with $z<5$, the line from the light at $(0,0,5)$ to the fly at (x, y, z) has parametric equation

$$
(u, v, w)=(0,0,5)+s((x, y, z)-(0,0,5))=(s x, s y, 5+s(z-5))
$$

To get $w=0$, we need $5+s(z-5)=0$, and so $s=\frac{5}{5-z}$, and then $u=s x=\frac{5 x}{5-z}$ and $v=s t=\frac{5 y}{5-z}$. This shows that when the fly is at the point $(x, y, z)=\left(t, t^{2}, t^{3}\right)$, the shadow is at the point

$$
(u(t), v(t))=\left(\frac{5 x}{5-z}, \frac{5 y}{5-z}\right)=\left(\frac{5 t}{5-t^{3}}, \frac{5 t^{2}}{5-t^{3}}\right) .
$$

3: Let $f(x, y)=2^{y-x^{2}}$. Sketch the level sets $z=\frac{1}{4}, \frac{1}{2}, 1,2,4$ and the level sets $x=0$ and $y=0$, and then sketch the surface $z=f(x, y)$ (the graph of f).
Solution: The level curve $z=\frac{1}{4}$ is the curve $2^{y-x^{2}}=\frac{1}{4}=2^{-2}$, or equivalently $y-x^{2}=-2$, that is $y=x^{2}-2$. Similarly, the level curves $z=\frac{1}{2}, 1,2,4$ are the parabolas $y=x^{2}-1, y=x^{2}, y=x^{2}+1$ and $y=x^{2}+2$, respectively. Also, to find the curve of intersection of the surface with the $y z$-plane, put in $x=0$ to get the level curve $z=2^{y}$ (this is shown below in yellow), and to find the curve of intersection with the $x z$-plane, put in $y=0$ to get the curve $z=2^{-x^{2}}$ (this is shown below in red).

4: Let $f(x, y, z)=4 x^{2}+y^{2}-y z$. Sketch the level sets $z=0, \pm 1, \pm 2, \pm 3, \pm 4$ and the level sets $x=0$ and $y=0$, and then sketch the surface $f(x, y, z)=0$ (the null set of f).

Solution: When $z=0$, the level set has equation $4 x^{2}+y^{2}=0$; it consists of the single point $(0,0)$. When $z=c \neq 0$, the level set has equation $4 x^{2}+y^{2}-c y=0$ which we can write as $4 x^{2}+\left(y-\frac{1}{2} c\right)^{2}=\frac{1}{4} c^{2}$, or equivalently as $\frac{x^{2}}{(c / 4)^{2}}+\frac{(y-c / 2)^{2}}{(c / 2)^{2}}=1$, so the level sets are ellipses. The level set $x=0$ has equation $y^{2}-y z=0$, that is $y(y-z)=0$. It consists of the two lines $y=0$ and $z=y$ in the $y z$-plane. The level set $y=0$ has equation $4 x^{2}=0$; it is the line $x=0$ in the $x z$-plane (which is the same as the line $u=0$ in the $u \%-$ nlane)

5: Let $f(x, y)=x^{2}+2 y^{2}$ and $g(x, y)=4 x-y^{2}$. Find a parametric equation for the curve of intersection of the two surfaces $z=f(x, y)$ and $z=g(x, y)$.
Solution: Set $f(x, y)=g(x, y)$ to get $x^{2}+2 y^{2}=4 x-y^{2}$, which we can write as $(x-2)^{2}+3 y^{2}=4$. This is an ellipse, which we can parametrize as $(x, y)=\left(2+2 \cos t, \frac{2}{\sqrt{3}} \sin t\right)$. We also need to have $z=4 x-y^{2}=8+8 \cos t-\frac{4}{3} \sin ^{2} t$, so a parametric equation for the curve of intersection is

$$
(x, y, z)=\alpha(t)=\left(2+2 \cos t, \frac{2}{\sqrt{3}} \sin t, 8+8 \cos t-\frac{4}{3} \sin ^{2} t\right)
$$

To be rigorous, let us verify that $\operatorname{Range}(\alpha)=\operatorname{Graph}(f) \cap \operatorname{Graph}(g)$. Let $(x, y, z) \in \operatorname{Range}(\alpha)$. Choose $t \in \mathbf{R}$ such that $(x, y, z)=\alpha(t)$, so we have $x=2+2 \cos t, y=\frac{2}{\sqrt{3}} \sin t$ and $z=8+8 \cos t-\frac{4}{3} \sin ^{2} t$. Then we have

$$
f(x, y)=x^{2}+2 y^{2}=(2+2 \cos t)^{2}+2\left(\frac{2}{\sqrt{3}} \sin t\right)^{2}=4+8 \cos t+4 \cos ^{2} t+\frac{8}{3} \sin ^{2} t=8+8 \cos t-\frac{4}{3} \sin ^{2} t=z
$$

so that $(x, y, z) \in \operatorname{Graph}(f)$, and we have

$$
g(x, y)=4 x-y^{2}=4(2+2 \cos t)-\left(\frac{2}{\sqrt{3}} \sin t\right)^{2}=8+8 \cos t-\frac{4}{3} \sin ^{2} t=z
$$

so that $(x, y, z) \in \operatorname{Graph}(g)$. Thus Range $(\alpha) \subseteq \operatorname{Graph}(f) \cap \operatorname{Graph}(g)$.
Let $(x, y, z) \in \operatorname{Graph}(f) \cap \operatorname{Graph}(g)$. Since $(x, y, z) \in \operatorname{Graph}(f)$ we have $z=f(x, y)=x^{2}+2 y^{2}$, and since $(x, y, z) \in \operatorname{Graph}(g)$ we have $z=g(x, y)=4 x-y^{2}$. It follows that $x^{2}+2 y^{2}=4 x-y^{2}$, that is $(x-2)^{2}+3 y^{2}=4$. Since $(x-2)^{2}=4-3 y^{2} \leq 4$ we have $\left|\frac{x-2}{2}\right| \leq 1$. Since $3 y^{2}=4-(x-2)^{2} \leq 4$, we have $\left|\frac{\sqrt{3}}{2} y\right| \leq 1$. Let $t \in[0,2 \pi)$ be the (unique) angle with $\sin t=\frac{\sqrt{3}}{2} y$ and $\cos t=\frac{x-2}{2}$. Then we have $x=2+2 \cos t, y=\frac{2}{\sqrt{3}} \sin t$ and $z=$ $g(x, y)=4 x-y^{2}=8+8 \cos t-\frac{4}{3} \sin ^{t}$ and so $(x, y, z)=\alpha(t) \in \operatorname{Range}(\alpha)$. Thus Graph$(f) \cap \operatorname{Graph}(g) \subseteq \operatorname{Range}(\alpha)$.

