- 1: Let A = Range(f) where $f : \mathbf{R} \to \mathbf{R}^2$ is given by $f(t) = (\cos t, \sin 2t)$ and let B = Null(g) where $g : \mathbf{R}^2 \to \mathbf{R}$ is given by $g(x, y) = y^2 + 4x^2(x^2 1)$. Show (algebraically) that A = B, and then sketch the set $A \subseteq \mathbf{R}^2$ (it is a curve in \mathbf{R}^2).
- 2: A light, represented by the point (0,0,5), lies above the ground, which is represented by the xy-plane. The position of a fly at time $t \ge 0$ is given by $(x, y, z) = (t, t^2, t^3)$. Find the position of the shadow of the fly at time t (you are finding a parametric equation for the curve in the xy-plane traced by the shadow of the fly).
- **3:** Let $f(x, y) = 2^{y-x^2}$. Sketch the level sets $z = \frac{1}{4}, \frac{1}{2}, 1, 2, 4$ and the level sets x = 0 and y = 0, and then sketch the surface z = f(x, y) (the graph of f).
- 4: Let $f(x, y, z) = 4x^2 + y^2 yz$. Sketch the level sets $z = 0, \pm 1, \pm 2, \pm 3, \pm 4$ and the level sets x = 0 and y = 0, and then sketch the surface f(x, y, z) = 0 (the null set of f).
- 5: Let $f(x,y) = x^2 + 2y^2$ and $g(x,y) = 4x y^2$. Find a parametric equation for the curve of intersection of the two surfaces z = f(x,y) and z = g(x,y).