MATH 247 Calculus 3, Exercises for Chapter 1

1: Let $A=$ Range (f) where $f: \mathbf{R} \rightarrow \mathbf{R}^{2}$ is given by $f(t)=(\cos t, \sin 2 t)$ and let $B=\operatorname{Null}(g)$ where $g: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is given by $g(x, y)=y^{2}+4 x^{2}\left(x^{2}-1\right)$. Show (algebraically) that $A=B$, and then sketch the set $A \subseteq \mathbf{R}^{2}$ (it is a curve in \mathbf{R}^{2}).

2: A light, represented by the point $(0,0,5)$, lies above the ground, which is represented by the $x y$-plane. The position of a fly at time $t \geq 0$ is given by $(x, y, z)=\left(t, t^{2}, t^{3}\right)$. Find the position of the shadow of the fly at time t (you are finding a parametric equation for the curve in the $x y$-plane traced by the shadow of the fly).

3: Let $f(x, y)=2^{y-x^{2}}$. Sketch the level sets $z=\frac{1}{4}, \frac{1}{2}, 1,2,4$ and the level sets $x=0$ and $y=0$, and then sketch the surface $z=f(x, y)$ (the graph of f).

4: Let $f(x, y, z)=4 x^{2}+y^{2}-y z$. Sketch the level sets $z=0, \pm 1, \pm 2, \pm 3, \pm 4$ and the level sets $x=0$ and $y=0$, and then sketch the surface $f(x, y, z)=0$ (the null set of f).

5: Let $f(x, y)=x^{2}+2 y^{2}$ and $g(x, y)=4 x-y^{2}$. Find a parametric equation for the curve of intersection of the two surfaces $z=f(x, y)$ and $z=g(x, y)$.

