Chapter 8. Jordan Content and Integration

8.1 Definition: A (closed, n-dimensional) rectangle in \mathbb{R}^{n} is a set of the form

$$
R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right]=\left\{x \in \mathbb{R}^{n} \mid a_{j} \leq x_{j} \leq b_{j} \text { for each index } j\right\}
$$

where each $a_{j}, b_{j} \in \mathbb{R}$ with $a_{j}<b_{j}$. The size of the above rectangle R is

$$
|R|=\prod_{j=1}^{n}\left(b_{j}-a_{j}\right)
$$

A partition X of the above rectangle R consists of a partition $X_{j}=\left\{x_{j, 0}, x_{j, 1}, \cdots, x_{j, \ell_{j}}\right\}$ with

$$
a_{j}=x_{j, 0}<x_{j, 1}<\cdots<x_{j, \ell_{k}}=b_{j}
$$

for each index j. The above partition X divides the rectangle R into sub-rectangles R_{k}, where $k=\left(k_{1}, k_{2}, \cdots, k_{n}\right) \in \mathbb{R}^{n}$ with $1 \leq k_{j} \leq \ell_{j}$ for each index j, and where

$$
R_{k}=\left[x_{1, k_{1}-1}, x_{1, k_{1}}\right] \times\left[x_{2, k_{2}-1}, x_{2, k_{2}}\right] \times \cdots \times\left[x_{n, k_{n}-1}, x_{n, k_{n}}\right] .
$$

If Y is another partition, given by $Y_{j}=\left\{y_{j, 0}, \cdots, y_{j, m_{j}}\right\}$, then we say that Y is finer than X (or that X is coarser than Y) when $X_{j} \subseteq Y_{j}$ for each index j.
8.2 Example: Note that a 1-dimensional rectangle in \mathbb{R}^{1} is a line segment and its size is its length, a 2-dimensional rectangle in \mathbb{R}^{2} is a rectangle and its size is its area, and a 3 -dimensional rectangle in \mathbb{R}^{3} is a rectangular box and its size is its volume.
8.3 Note: When R is a rectangle in \mathbb{R}^{n} and X and Y are any two partitions of R, the partition Z given by $Z_{j}=X_{j} \cup Y_{j}$ is finer that both X and Y.
8.4 Note: When R is a rectangle in \mathbb{R}^{n} and X is a partition given by $X_{j}=\left\{x_{j, 0}, \cdots, x_{j, \ell_{j}}\right\}$, then letting $K=K(X)=\left\{k \in \mathbb{Z}^{n} \mid 1 \leq k_{j} \leq \ell_{j}\right.$ for all $\left.j\right\}$, we have

$$
\begin{aligned}
\sum_{k \in K}\left|R_{k}\right| & =\sum_{1 \leq k_{1} \leq \ell_{1}} \sum_{1 \leq k_{2} \leq \ell_{2}} \cdots \sum_{1 \leq k_{n} \leq \ell_{n}} \prod_{j=1}^{n}\left(x_{j, k_{j}}-x_{j, k_{j}-1}\right) \\
& =\prod_{j=1}^{n} \sum_{1 \leq k_{j} \leq \ell_{j}}\left(x_{j, k_{j}}-x_{j, k_{j}-1}\right)=\prod_{j=1}^{n}\left(x_{j, \ell_{j}}-x_{j, 0}\right) \\
& =\prod_{j=1}^{n}\left(b_{j}-a_{j}\right)=|R| .
\end{aligned}
$$

8.5 Definition: Let $A \subseteq \mathbb{R}^{n}$ be bounded. For a partition X of a rectangle R with $A \subseteq R$, we define the upper (or outer) volume estimate of A with respect to X, and the lower (or inner) volume estimate of A with respect to X, to be

$$
U(A, X)=\sum_{R_{k} \cap \bar{A} \neq \emptyset}\left|R_{k}\right|=\sum_{k \in I}\left|R_{k}\right| \quad \text { and } \quad L(A, X)=\sum_{R_{k} \subseteq A^{\circ}}\left|R_{k}\right|=\sum_{k \in J}\left|R_{k}\right|
$$

where $I=I(A, X)=\left\{k \in K \mid R_{k} \cap \bar{A} \neq \emptyset\right\}$ and $J=J(A, X)=\left\{k \in K \mid R_{k} \subseteq A^{o}\right\}$ with $K=K(X)=\left\{k \in \mathbb{Z}^{n} \mid 1 \leq k_{j} \leq \ell_{j}\right.$ for each $\left.j\right\}$.
8.6 Theorem: (Basic Properties of Upper and Lower Volume Estimates) Let $A \subseteq \mathbb{R}^{n}$ be bounded, let R be a rectangle in \mathbb{R}^{n} with $A \subseteq R$, and let X and Y be partitions of R.
(1) If Y is finer than X then $0 \leq L(A, X) \leq L(A, Y) \leq U(A, Y) \leq U(A, X) \leq|R|$.
(2) $0 \leq L(A, X) \leq U(A, Y) \leq|R|$.
(3) $U(A, X)-L(A, X)=U(\partial A, X)$.

Proof: To prove Part 1, suppose that Y is finer than X. Note that each of the subrectangles R_{k} for the partition X is itself further partitioned into smaller sub-rectangles which are sub-rectangles for the partition Y, and denote these smaller sub-rectangles by $S_{k, 1}, \cdots, S_{k, m_{k}}$. Then we have

$$
U(A, X)=\sum_{k \in I}\left|R_{k}\right| \text { and } U(A, Y)=\sum_{k \in I} \sum_{j \in J_{k}}\left|S_{k, j}\right|
$$

where I is the set of $k \in K(X)$ such that $R_{k} \cap \bar{A} \neq \emptyset$ and J_{k} is the set of $j \in\left\{1,2, \cdots, m_{j}\right\}$ such that $S_{k, j} \cap \bar{A} \neq \emptyset$. By Note 8.4 , we have $\sum_{j=1}^{m_{k}}\left|S_{k, j}\right|=\left|R_{k}\right|$, and so

$$
U(A, Y)=\sum_{k \in I} \sum_{j \in J_{k}}\left|S_{k, j}\right| \leq \sum_{k \in I} \sum_{j=1}^{m_{j}}\left|S_{k, j}\right|=\sum_{k \in I}\left|R_{k}\right|=U(A, X) .
$$

and also $U(A, X)=\sum_{k \in I}\left|R_{k}\right| \leq \sum_{k \in K(X)}\left|R_{k}\right|=|R|$. Thus we have $U(A, Y) \leq U(A, X) \leq|R|$. The proof that $L(A, X) \leq L(A, Y)$ is similar, and it is clear that $0 \leq L(A, X)$ and easy to see that $L(A, Y) \leq U(A, Y)$.

Note that Part 2 follows from Part 1 because, given any partitions X and Y for R, we can choose a partition Z which is finer than both X and Y, and then we have

$$
0 \leq L(A, X) \leq L(A, Z) \leq U(A, Z) \leq U(A, Y) \leq|R|
$$

Finally, to prove Part 3, note that

$$
U(A, X)-L(A, X)=\sum_{k \in L}\left|R_{k}\right| \text { and } U(\partial A, X)=\sum_{k \in M}\left|R_{k}\right|
$$

where L is the set of indices $k \in K(X)$ such that $R_{k} \cap \bar{A} \neq \emptyset$ and $R_{k} \nsubseteq A^{o}$, and M is the set of indices $k \in K(X)$ such that $R_{k} \cap \partial A \neq \emptyset($ since ∂A is closed so that $\overline{\partial A}=\partial A)$. We shall show that $K=M$. When $A=\emptyset$ we have $K=M=\emptyset$, so suppose $A \neq \emptyset$. If $k \in L$, that is if $R_{k} \cap \bar{A} \neq \emptyset$ and $R_{k} \nsubseteq A^{o}$ then we must have $R_{k} \cap \partial A \neq \emptyset$ because R_{k} is connected (indeed, if we had $R_{k} \cap \partial A=\emptyset$ then R_{k} would be separated by the disjoint nonempty open sets A^{o} and \bar{A}^{c} : note that we have $A^{o} \neq \emptyset$ because $R_{k} \cap \bar{A} \neq \emptyset$, and we have $\bar{A}^{c} \neq \emptyset$ because $R_{k} \nsubseteq A^{o}$) and hence $L \subseteq M$. If $k \in M$, that is if $R_{k} \cap \partial A \neq \emptyset$ then, since $\partial A \subseteq \bar{A}$ we have $R_{k} \cap \bar{A} \neq \emptyset$, and since A^{o} and ∂A are disjoint we have $R_{k} \nsubseteq A^{o}$, and hence $k \in M$. Thus $K=M$, as required.
8.7 Definition: Let $A \subseteq \mathbb{R}^{n}$ be bounded. We define the upper (or outer) volume (or Jordan content), and the lower (or inner) volume (or Jordan content), of A to be
$U(A)=\inf \{U(A, X) \mid X$ is a partition of some rectangle R with $A \subseteq R\}$
$L(A)=\sup \{L(A, X) \mid X$ is a partition of some rectangle R with $A \subseteq R\}$.
8.8 Theorem: (Basic Properties of Upper and Lower Volumes) Let $A \subseteq \mathbb{R}^{n}$ be bounded.
(1) If R is any rectangle with $A \subseteq R$ then $U(A)=\inf \{U(A, X) \mid X$ is a partition of $R\}$.
(2) $U(A)-L(A)=U(\partial A)$.

Proof: Given a rectangle R with $A \subseteq R$, let $U_{R}(A)=\inf \{U(A, X) \mid X$ is a partition of $R\}$. To prove Part 1, it suffices to show that for any two rectangles R, S in \mathbb{R}^{n} which contain A, we have $U_{R}(A)=U_{S}(A)$. Let R and S be rectangles in \mathbb{R}^{n} which contain A, say $R=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ and $S=\left[c_{1}, d_{1}\right] \times \cdots \times\left[c_{n}, d_{n}\right]$.

Suppose first that $R \subseteq S$ with $c_{j}<a_{j}$ and $b_{j}<d_{j}$. Given any partition Y of S, we can extend Y to a finer partition Z of S by adding the endpoints of R, that is by letting $Z_{j}=Y_{j} \cup\left\{a_{j}, b_{j}\right\}$, and then we can restrict Z to a partition X of R as follows: if, for a fixed index j, we have $Z_{j}=\left\{z_{0}, \cdots, z_{k}, \cdots, z_{\ell}, \cdots, z_{m}\right\}$ with $z_{0}=c_{j}, z_{k}=a_{j}, z_{\ell}=b_{j}$ and $z_{m}=d_{j}$, then we take $X_{j}=\left\{z_{k}, \cdots, z_{\ell}\right\}$. Then we have $U(A, X) \leq U(A, Z) \leq U(A, Y)$. Since for every partition Y of S there exists a corresponding partition X of R for which $U(A, X) \leq U(A, Y)$, it follows that
$\inf \{U(A, X) \mid X$ is a partition of $R\} \leq \inf \{U(A, Y) \mid Y$ is a partition of $S\}$,
that is $U_{R}(A) \leq U_{S}(A)$. Now let $\epsilon>0$ and suppose that we are given a partition X of R. Choose s_{j} and t_{j} with $c_{j}<s_{j}<a_{j}$ and $b_{j}<t_{j}<b_{j}$ so that for the rectangle $T=\left[s_{1}, t_{1}\right] \times \cdots \times\left[s_{n}, t_{n}\right]$ we have $|T|-|R| \leq \epsilon$. Extend the partition X of R to the partition Y of S by adding the endpoints of S and T, that is by letting $Y_{j}=X_{j} \cup\left\{c_{j}, s_{j}, t_{j}, d_{j}\right\}$. Note that the sub-rectangles of S which intersect with \bar{A} include all of the sub-rectangles of R which intersect with \bar{A} together with some of the sub-rectangles which lie in T but not R, and so we have $U(A, Y) \leq U(A, X)+|T|-|R| \leq U(A, X)+\epsilon$. Since for each partition X of R there is a corresponding partition Y of S for which $U(A, Y) \leq U(A, X)+\epsilon$, it follows that
$\inf \{U(A, Y) \mid Y$ is a partition of $S\} \leq \inf \{U(A, X) \mid X$ is a partition of $R\}+\epsilon$,
that is $U_{S}(A) \leq U_{R}(A)+\epsilon$, and since $\epsilon>0$ was arbitrary, it follows that $U_{S}(A) \leq U_{R}(A)$. Thus we have proven that $U_{R}(A)=U_{S}(A)$ in the case that $R \subseteq S$ with $c_{j}<a_{j}<b_{j}<d_{j}$.

In the general case that $R=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ and $S=\left[c_{1}, d_{1}\right] \times \cdots \times\left[c_{n}, d_{n}\right]$ are any rectangles which both contain A, we can choose a rectangle $T=\left[s_{1}, t_{1}\right] \times \cdots \times\left[s_{n}, t_{n}\right]$ with $s_{j}<\min \left\{a_{j}, c_{j}\right\}$ and $t_{j}>\max \left\{b_{j}, d_{j}\right\}$, and then we can apply the result of the above paragraph to obtain $U_{R}(A)=U_{T}(A)=U_{S}(A)$, as required, proving Part 1 .

Let us prove Part 2. Given any partition X of any rectangle R containing A, we have $U(A)-L(A) \leq U(A, X)-L(A, X)=U(\partial A, X)$, and hence (by taking the infemum on both sides) $U(A)-L(A) \leq U(\partial A)$. It remains to show that $U(A)-L(A) \geq U(\partial A)$. Let $\epsilon>0$. Choose a rectangle R containing A, and choose a partition X of R such that $L(A)-\epsilon<L(A, X) \leq L(A)$. By Part 1, we can choose a partition Y of the same rectangle R such that $U(A) \leq U(A, Y)<U(A)+\epsilon$. Let Z be a partition of R which is finer than both X and Y. Then we have $L(A)-\epsilon<L(A, X) \leq L(A, Z)$ and $U(A, Z) \leq U(A, Y)<U(A)+\epsilon$ and hence $U(\partial A) \leq U(\partial A, Z)=U(A, Z)-L(A, Z)<U(A)-L(A)+2 \epsilon$. Since $\epsilon>0$ was arbitrary, we have $U(\partial A) \leq U(A)-L(A)$, as required.
8.9 Theorem: For bounded sets $A, B \subseteq \mathbb{R}^{n}$, we have $U(A \cup B) \leq U(A)+U(B)$.

Proof: First we note that for any sets $A, B \subseteq \mathbb{R}^{n}$ we have $\overline{A \cup B}=\bar{A} \cup \bar{B}$: Indeed, since $A \subseteq A \cup B$ and $B \subseteq A \cup B$ we have $\bar{A} \subseteq \overline{A \cup B}$ and $\bar{B} \subseteq \overline{A \cup B}$ so that $\bar{A} \cup \bar{B} \subseteq \overline{A \cup B}$. On the other hand, since $A \subseteq \bar{A}$ and $B \subseteq \bar{B}$, we have $A \cup B \subseteq \bar{A} \cup \bar{B}$ and so, since $\bar{A} \cup \bar{B}$ is closed, and contains $A \cup B$, it follows that $\overline{A \cup B} \subseteq \bar{A} \cup \bar{B}$.

Let $A, B \subseteq \mathbb{R}^{n}$ be bounded. Let R be a rectangle which contains $A \cup B$. Let $\epsilon>0$. Choose a partition X of R so that $U(A) \leq U(A, X)+\frac{\epsilon}{2}$ and $U(B) \leq U(B, X) \leq \frac{\epsilon}{2}$ (we can do this by Part 1 of Theorems 8.8 and 8.6: let Y be a partition of R such that $U(A) \leq U(A, Y)+\frac{\epsilon}{2}$ let Z be a partition of R such that $U(B) \leq U(B, Z)+\frac{\epsilon}{2}$, then let X be a partition finer than both Y and $Z)$. Let $K=K(X)$, let $I(A \cup B)=I(A \cup B, X)$, $I(A)=I(A, X)$ and $I(B)=I(B, X)$, as in Definition 8.5. Since $\overline{A \cup B}=\bar{A} \cup \bar{B}$, for each index $k \in K$ we have
$k \in I(A \cup B) \Longleftrightarrow R_{k} \cap \overline{A \cup B} \neq \emptyset \Longleftrightarrow\left(R_{k} \cap \bar{A}\right) \cup\left(R_{k} \cap \bar{B}\right) \neq \emptyset \Longleftrightarrow(k \in I(A)$ or $k \in I(B))$,
$U(A \cup B, X)=\sum_{k \in I(A \cup B)}\left|R_{k}\right| \leq \sum_{k \in I(A)}\left|R_{k}\right|+\sum_{k \in I(B)}\left|R_{k}\right|=U(A, X)+U(B, X) \leq U(A)+U(B)+\epsilon$.
Since $U(A \cup B, X) \leq U(A)+U(B)+\epsilon$ for all partitions X of R, it follows (from Part 1 of Theorem 8.8) that $U(A \cup B) \leq U(A)+U(B)+\epsilon$, and since $\epsilon>0$ was arbitrary, it follows that $U(A \cup B) \leq U(A)+U(B)$, as required.
8.10 Definition: Let $A \subseteq \mathbb{R}^{n}$ be bounded. We say that A has well-defined volume (or Jordan content), or that A is Jordan measurable, or that A is a Jordan region, when $U(A)=L(A)$, or equivalently (by Part 2 of Theorem 8.8) when $U(\partial A)=0$. In this case, we define the (n-dimensional) volume of A (or the Jordan content) of A to be

$$
\operatorname{Vol}(A)=U(A)=L(A)
$$

8.11 Theorem: Every rectangle R in \mathbb{R}^{n} is Jordan measurable with $\operatorname{Vol}(R)=|R|$.

Proof: Let $R=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ be a ractangle in \mathbb{R}^{n}. By Note 8.4 , we have $U(R, X)=|R|$ for every partition X of R, so by Part 1 of Theorem 8.8, it follows that $U(R)=|R|$. By Part 2 of Theorem 8.8, we have $U(R)-L(R)=U(\partial R) \geq 0$ so that $L(R) \leq U(R)$. Let $\epsilon>0$. Choose a rectangle S of the form $S=\left[c_{1}, d_{1}\right] \times \cdots \times\left[c_{n}, d_{n}\right]$ with $a_{1}<c_{1}$ and $d_{1}<b_{1}$ (so that $S \subseteq R^{o}$) such that $|R|-|S|<\epsilon$. Let X be the partition of R given by $X_{j}=\left\{a_{j}, c_{j}, d_{j}, b_{j}\right\}$. Since S is a sub-rectangle for this partition with $S \subseteq R^{o}$ we have $L(R, X) \geq|S|$, and so $L(R) \geq L(R, X) \geq|S|>|R|-\epsilon$. Since $\epsilon>0$ was arbitrary, it follows that $L(R) \geq|R|$. Thus we have $L(R)=|R|=U(R)$.
8.12 Theorem: (Properties of Jordan Content) Let $A, B \subseteq \mathbb{R}^{n}$ be Jordan measurable.
(1) If $A \subseteq B$ then $\operatorname{Vol}(A) \leq \operatorname{Vol}(B)$.
(2) A^{o} and \bar{A} are Jordan measurable with $\operatorname{Vol}\left(A^{o}\right)=\operatorname{Vol}(A)=\operatorname{Vol}(\bar{A})$.
(3) $A \cup B, A \cap B$ and $A \backslash B$ are Jordan measurable with $\operatorname{Vol}(A \backslash B)=\operatorname{Vol}(A)-\operatorname{Vol}(A \cap B)$ and $\operatorname{Vol}(A \cup B)=\operatorname{Vol}(A)+\operatorname{Vol}(B)-\operatorname{Vol}(A \cap B)$. If $A \cap B=\emptyset$ then $\operatorname{Vol}(A \cup B)=\operatorname{Vol}(A)+\operatorname{Vol}(B)$.

Proof: To prove Part 1, suppose that $A \subseteq B$. Let R be a rectangle containing B and let X be a partition of R into the sub-rectangles R_{k} with $k \in K(X)$. Since $A \subseteq B$, we have $\bar{A} \subseteq \bar{B}$, so for $k \in K(X)$, if $R_{k} \cap \bar{A} \neq \emptyset$ then $R_{k} \cap \bar{B} \neq \emptyset$. This shows that $I(A, X) \subseteq I(B, X)$ and hence $U(A, X)=\sum_{k \in I(A, X)}\left|R_{k}\right| \leq \sum_{k \in I(B, X)}\left|R_{k}\right|=U(B, X)$. Since $U(A, X) \leq U(B, X)$ for every partition X of R, we have $U(A) \leq U(B)$ (by Part 1 of Theorem 8.8). Since A and B are measurable, this means that $\operatorname{Vol}(A) \leq \operatorname{Vol}(B)$, as required.

Let us prove Part 2. Since A^{o} is open we have $\left(A^{o}\right)^{o}=A^{o}$, and since $A^{o} \subseteq A$ we have $\overline{A^{o}} \subseteq \bar{A}$, and hence $\partial\left(A^{o}\right)=\overline{A^{o}} \backslash\left(A^{o}\right)^{o}=\overline{A^{o}} \backslash A^{o} \subseteq \bar{A} \backslash A^{o}=\partial A$. Since $\partial A^{o} \subseteq \partial A$ we have $U\left(\partial A^{o}\right) \leq U(\partial A)$ (by Part 1), and since A is measurable we have $U(\partial A)=0$. Thus $U\left(\partial A^{o}\right)=0$ so that A^{o} is Jordan measurable. Similarly, we have $\overline{\bar{A}}=\bar{A}$ and $A^{o} \subseteq \bar{A}^{o}$ so that $\partial \bar{A}=\overline{\bar{A}} \backslash \bar{A}^{o}=\bar{A} \backslash \bar{A}^{0} \subseteq \bar{A} \backslash A^{o}=\partial A$ and hence $U(\partial \bar{A}) \leq U(\partial A)=0$ so that \bar{A} is Jordan measurable. Now let R be a rectangle containing A and let X be a partition of R. From the definition of $U(A, X)$ it is immediate that $U(A, X)=U(\bar{A}, X)$, and from the definition of $L(A, X)$ it is immediate that $L(A, X)=L\left(A^{o}, X\right)$. Since this holds for all partitions X of R, we have $U(A)=U(\bar{A})$ and $L(A)=L\left(A^{o}\right)$. Since A is measurable, this gives $L\left(A^{o}\right)=L(A)=U(A)=U(\bar{A})$, and since A^{o} and \bar{A} are measurable, this gives $\operatorname{Vol}\left(A^{o}\right)=\operatorname{Vol}(A)=\operatorname{Vol}(\bar{A})$, as required.

We move on to the proof of Part 3. To prove that $A \cup B$ is Jordan measurable, we note that $\partial(A \cup B) \subseteq \partial A \cup \partial B$: indeed, recall (as shown in the proof of Theorem 8.9) that $\overline{A \cup B}=\bar{A} \cup \bar{B}$. Also note that since $A \subseteq A \cup B$ and $B \subseteq A \cup B$ we have $A^{o} \subseteq(A \cup B)^{o}$ and $B^{o} \subseteq(A \cup B)^{o}$ so that $A^{o} \cup B^{o} \subseteq(A \cup B)^{o}$. Thus

$$
\begin{aligned}
x \in \partial(A \cup B) & \Longrightarrow x \in \overline{A \cup B} \text { and } x \notin(A \cup B)^{o} \\
& \Longrightarrow x \in \bar{A} \cup \bar{B} \text { and } x \notin A^{o} \cup B^{o} \\
& \Longrightarrow\left(x \in \bar{A} \text { and } x \notin A^{o}\right) \text { and }\left(x \in \bar{B} \text { and } x \notin B^{o}\right) \\
& \Longrightarrow x \in \partial A \cup \partial B .
\end{aligned}
$$

Since $\partial(A \cup B) \subseteq \partial A+\partial B$, Theorem 8.9 gives $U(\partial(A \cup B)) \leq U(\partial A)+U(\partial B)$. Since A and B are Jordan measurable so that $U(\partial A)=0$ and $U(\partial B)=0$, we also have $U(\partial(A \cup B))=0$ so that $A \cup B$ is Jordan measurable. We can prove that $A \cap B$ and $A \backslash B$ are measuable in the same way, by showing that $\partial(A \cap B) \subseteq \partial A \cup \partial B$ and $\partial(A \backslash B) \subseteq \partial A \cup \partial B$, and we leave this as an exercise.

It remains to prove the various volume formulas. First, suppose that $A \cap B=\emptyset$. We know, from Theorem 8.9 that $U(A \cap B) \leq U(A)+U(B)$. Let R be a rectangle which contains $A \cup B$, and let X be a partition of R such that $L(A, X) \geq L(A)-\frac{\epsilon}{2}$ and $L(B, X) \geq L(B)-\frac{\epsilon}{2}$. Since $A^{o} \subseteq A \subseteq A \cup B \subseteq \overline{A \cup B}$, it follows that if $k \in J\left(A^{o}, X\right)$, that is if $R_{k} \subseteq A^{0}$, then we have $R_{k} \subseteq \overline{A \cup B}$ so that $R_{k} \cap \overline{A \cup B} \neq \emptyset$, that is $k \in I(A \cap B, X)$, so we have $J(A, X) \subseteq I(A \cup B, X)$. Similarly, since $B^{o} \subseteq \overline{A \cup B}$, we have $J(B, X) \subseteq I(A \cup B, X)$. Also note that since $A \cap B=\emptyset$, we also have $A^{o} \cap B^{o}=\emptyset$, so it is not possible to have both $R_{k} \subseteq A^{o}$ and $R_{k} \subseteq B^{o}$, and it follows that $J(A, X) \cap J(B, X)=\emptyset$. Thus

$$
U(A \cup B, X)=\sum_{k \in I(A \cap B, X)}\left|R_{k}\right| \geq \sum_{k \in J(A, X)}\left|R_{k}\right|+\sum_{k \in J(B, X)}\left|R_{k}\right|=L(A, X)+L(B, X) \geq L(A)+L(B)-\epsilon
$$

Since $U(A \cup B, X) \geq L(A)+L(B)-\epsilon$ for all partitions X of R, and since $\epsilon>0$ was arbitrary, we have $U(A \cup B) \geq L(A)+L(B)$. Together with Theorem 8.9, this gives

$$
L(A)+L(B) \leq U(A \cup B) \leq U(A)+U(B)
$$

Since $L(A)=U(A)=\operatorname{Vol}(A)$ and $L(B)=U(B)=\operatorname{Vol}(B)$ and $U(A \cup B)=\operatorname{Vol}(A \cup B)$, we have proven that, if $A \cap B=\emptyset$ then $\operatorname{Vol}(A \cup B)=\operatorname{Vol}(A)+\operatorname{Vol}(B)$.

Finally, we note that the other two formulas (which apply whether or not A and B are disjoint), follow from the special case of disjoint sets: Indeed, the set A is the disjoint union $A=(A \backslash B) \cup(A \cap B)$, so we have $\operatorname{Vol}(A)=\operatorname{Vol}(A \backslash B)+\operatorname{Vol}(A \cap B)$, and $A \cup B$ is the disjoint union $A \cup B=(A \backslash B) \cup(B \backslash A) \cup(A \cap H)$ so that $\operatorname{Vol}(A \cup B)=$ $\operatorname{Vol}(A \backslash B)+\operatorname{Vol}(B \backslash A)+\operatorname{Vol}(A \cap B)=\operatorname{Vol}(A)+\operatorname{Vol}(B)-\operatorname{Vol}(A \cap B)$.
8.13 Definition: A cube in \mathbb{R}^{n} is a rectangle $Q=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ in \mathbb{R}^{n} with equal side lengths, that is with $b_{k}-a_{k}=b_{\ell}-a_{\ell}$ for all $k \neq \ell$.
8.14 Theorem: (Alternate Characterizations of Outer Jordan Content) Let $A \subseteq \mathbb{R}^{n}$ be bounded. Then

$$
\begin{aligned}
U(A) & =\inf \left\{\sum_{j=1}^{m}\left|R_{j}\right| \mid R_{1}, R_{2}, \cdots, R_{m} \text { are rectangles } A \subseteq \bigcup_{j=1}^{m} R_{j}\right\} \\
& =\inf \left\{\sum_{j=1}^{m}\left|Q_{j}\right| \mid Q_{1}, Q_{2}, \cdots, Q_{m} \text { are cubes of equal size with } A \subseteq \bigcup_{j=1}^{m} Q_{j}\right\} .
\end{aligned}
$$

Proof: Let

$$
\begin{aligned}
& \mathcal{R}=\left\{\sum_{R_{k} \cap \bar{A} \neq \emptyset}^{m}\left|R_{k}\right| \mid X \text { is a partition of some rectangle } R \text { with } A \subseteq R\right\}, \\
& \mathcal{S}=\left\{\sum_{j=1}^{m}\left|R_{j}\right| \mid R_{1}, R_{2}, \cdots, R_{m} \text { are rectangles with } A \subseteq \bigcup_{j=1}^{m} R_{j}\right\}, \text { and } \\
& \mathcal{T}=\left\{\sum_{j=1}^{m}\left|Q_{j}\right| \mid Q_{1}, Q_{2}, \cdots, Q_{m} \text { are squares of equal size with } A \subseteq \bigcup_{j=1}^{m} Q_{j}\right\} .
\end{aligned}
$$

and note that $U(A)=\inf \mathcal{R}$. We leave the proof that $U(A)=\inf \mathcal{S}$ as an exercise, and we prove that $U(A)=\inf \mathcal{T}$. When Q_{1}, \cdots, Q_{m} are cubes of equal size with $A \subseteq \bigcup_{k=1}^{m} Q_{k}$, we know that $U(A) \leq \sum_{k=1}^{m}\left|Q_{k}\right|$ by Theorem 8.9, and hence $U(A) \leq \inf \mathcal{S}$. It remains to show that $\inf \mathcal{S} \leq U(A)$.

Let $\epsilon>0$. Choose a rectangle R with $A \subseteq R$, and choose a partition X of R into sub-rectangles R_{k} such that $U(A, X) \leq U(A)+\frac{\epsilon}{2}$. Let k_{1}, \cdots, k_{m} be the values of k for which $R_{k} \cap \bar{A} \neq \emptyset$, so we have $\bar{A} \subseteq \bigcup_{i=1}^{m} R_{k_{i}}$ and $\sum_{i=1}^{m}\left|R_{k_{i}}\right|=U(A, X) \leq U(A)+\frac{\epsilon}{2}$. For each index i, choose a rectangle S_{i} with $R_{k_{i}} \subseteq S_{i}$ such that the endpoints of all the component intervals of all the rectangles S_{i} are rational and $\sum_{i=1}^{m}\left|S_{i}\right| \leq \sum_{i=1}^{m}\left|R_{k_{i}}\right|+\frac{\epsilon}{2}$. Let d be a common denominator of all the endpoints of all the rectangles S_{i}, and partition each rectangle S_{i} into cubes $Q_{i, 1}, Q_{i, 2}, \cdots, Q_{i, \ell_{i}}$ all with sides of length $\frac{1}{d}$. Then we have $A \subseteq \bigcup_{i=1}^{m} S_{i}=\bigcup_{i=1}^{m} \bigcup_{j=1}^{\ell_{i}} Q_{i, j}$ and

$$
\sum_{i=1}^{m} \sum_{j=1}^{\ell_{i}}\left|Q_{i, j}\right|=\sum_{i=1}^{m}\left|S_{i}\right| \leq \sum_{i=1}^{m}\left|R_{k_{i}}\right|+\frac{\epsilon}{2} \leq U(A)+\epsilon
$$

Thus $\inf \mathcal{S} \leq U(A)+\epsilon$. Since $\epsilon>0$ was arbitrary, we have $\inf \mathcal{S} \leq U(a)$, as required.
8.15 Definition: For a map $g: A \subseteq \mathbb{R}^{n} \rightarrow B \subseteq \mathbb{R}^{m}$, we say that g is Lipschitz continuous on A when there is a constant $c \geq 0$ such that $|g(x)-g(y)| \leq c|x-y|$ for all $x, y \in A$, and we say that g is open when $g(U)$ is open in B for every open set U in A.
8.16 Theorem: Let $A \subseteq \mathbb{R}^{n}$ be bounded and let $g: A \rightarrow \mathbb{R}^{n}$ be Lipschitz continuous.
(1) If $U(A)=0$ and g is Lipschitz continuous then $U(g(A))=0$.
(2) If A is Jordan measurable and g is open then $g(A)$ is Jordan measurable.

Proof: The proof is left as an exercise.
8.17 Definition: Let $A \subseteq \mathbb{R}^{n}$ be a Jordan region and let $f: A \rightarrow \mathbb{R}$ be a bounded function. Let X be a partition of a rectangle R in \mathbb{R}^{n} which contains A, and let $R_{k}, k \in K$ be the sub-rectangles. Extend f to a function $g: R \rightarrow \mathbb{R}$ by defining $g(x)=f(x)$ when $x \in A$ and $g(x)=0$ when $x \in R \backslash A$. The upper Riemann sum of f on A for the partition X and the lower Riemann sum of f on A for X are given by

$$
U(f, X)=\sum_{k \in K} M_{k}\left|R_{k}\right| \text { and } L(f, X)=\sum_{k \in K} m_{k}\left|R_{k}\right|
$$

where $M_{k}=\sup \left\{g(x) \mid x \in R_{k}\right\}$ and $m_{k}=\inf \left\{f(x) \mid x \in R_{k}\right\}$. The upper integral of f on A and the lower integral of f on A are given by

$$
\begin{aligned}
U(f) & =\inf \{U(f, X) \mid X \text { is a partition of some rectangle } R \text { with } A \subseteq R\} \\
L(f) & =\sup \{L(f, X) \mid X \text { is a partition of some rectangle } R \text { with } A \subseteq R\} .
\end{aligned}
$$

We say that f is (Riemann) integrable on A when $U(f)=L(f)$ and, in this case, we define the (Riemann) integral of f on A to be

$$
\int_{A} f=\int_{A} f(x) d V=\int_{A} f\left(x_{1}, \cdots, x_{n}\right) d x_{1} d x_{2} \cdots d x_{n}=U(f)=L(f) .
$$

8.18 Theorem: (Properties of Upper and Lower Riemann Sums) Let $A \subseteq \mathbb{R}^{n}$ be a Jordan region, let $f: A \rightarrow \mathbb{R}$ be a bounded function, let R be a rectangle which contains A, and let X and Y be two partitions of R.
(1) If Y is finer than X then $L(f, X) \leq L(f, Y) \leq U(f, Y) \leq U(f, X)$.
(2) We have $L(f, X) \leq U(f, Y)$.

Proof: Let $g: R \rightarrow \mathbb{R}$ be the extension of f by zero. When $M_{k}=\sup \left\{g(x) \mid x \in R_{k}\right\}$ and $m_{k}=\inf \left\{g(x) \mid x \in R_{k}\right\}$, we have $m_{k} \leq M_{k}$ for all $k \in K=K(X)$ so that

$$
L(f, X)=\sum_{k \in K} m_{k}\left|R_{k}\right| \leq \sum_{k \in K} M_{k}\left|R_{k}\right|=U(f, X) .
$$

Similarly, we have $L(f, Y) \leq U(f, Y)$.
Suppose that Y is finer than X. Note that each of the sub-rectangles R_{k} for the partition X is itself further partitioned into smaller sub-rectangles which are sub-rectangles for the partition Y, and denote these smaller sub-rectangles by $S_{k, 1}, \cdots, S_{k, m_{k}}$. Note that $\left|R_{k}\right|=\sum_{j=1}^{m_{k}}\left|S_{k, j}\right|$ by Note 8.4. Let $M_{k}=\sup \left\{g(x) \mid x \in R_{k}\right\}$ and $N_{k, j}=\sup \left\{g(x) \mid x \in S_{k, j}\right\}$. Since $R_{k}=\bigcup_{j=1}^{m_{k}} S_{k, j}$, we have $M_{k}=\max \left\{N_{k, j} \mid 1 \leq j \leq m_{k}\right\}$ and hence

$$
U(f, X)=\sum_{k \in K} M_{k}\left|R_{k}\right|=\sum_{k \in K} \sum_{j=1}^{m_{k}} M_{k}\left|S_{k, j}\right| \geq \sum_{k \in K} \sum_{j=1}^{m_{k}} N_{k, j}\left|S_{k, j}\right|=U(f, Y) .
$$

A similar argument shows that $L(f, X) \leq L(f, Y)$. This completes the proof of Part 1.
Part 2 follows from Part 1. Indeed, given any partitions X and Y of R, we can choose a partition Z which is finer than both X and Y, and then we have

$$
L(f, X) \leq L(f, Z) \leq U(f, Z) \leq U(f, Y)
$$

8.19 Theorem: (Properties of Upper and Lower Integrals) Let $A \subseteq \mathbb{R}^{n}$ be a Jordan region, and let $f: A \rightarrow \mathbb{R}$ be a bounded function.
(1) If R is any rectangle with $A \subseteq \mathbb{R}^{n}$ then $U(f)=\inf \{U(f, X) \mid X$ is a partition of $R\}$ and $L(f)=\sup \{L(f, X) \mid X$ is a partition of $R\}$.
(2) We have $L(f) \leq U(f)$.

Proof: To prove Part 1, imitate the proof of Part 1 of Theorem 8.8. Part 2 follows from Part 1 of this theorem together with Part 2 of the previous theorem.
8.20 Theorem: (Characterization of Integrability) Let $A \subseteq \mathbb{R}^{n}$ be a Jordan region, and let $f: A \rightarrow \mathbb{R}$ be a bounded function. Then f is integrable on A if and only if for every $\epsilon>0$ there exits a partition X of a rectangle R with $A \subseteq R$ such that $U(f, X)-L(f, X)<\epsilon$.

Proof: Suppose that f is integrable on A, so we have $U(f)=L(f)$. Let R be a rectangle with $A \subseteq R$. By Part 1 of Theorem 8.19, we can choose a partition Y of R such that $U(f, Y)<U(f)+\frac{\epsilon}{2}$, and we can choose a partition Z of R such that $L(f, Z)>L(f)-\frac{\epsilon}{2}$. Let X be a partition of R which is finer than both Y and Z. By Part 1 of Theorem 8.18, we have $U(f, X) \leq U(f, Y)$ and $L(f, X) \geq L(f, Z)$, and hence
$U(f, X)-L(f, X) \leq U(f, Y)-L(f, Z)<\left(U(f)+\frac{\epsilon}{2}\right)-\left(L(f)-\frac{\epsilon}{2}\right)=U(f)-L(f)+\epsilon=\epsilon$.
Suppose, conversely, that for every $\epsilon>0$ there exists a partition X of a rectangle R with $A \subseteq R$ such that $U(f, X)-L(f, X)<\epsilon$. Let $\epsilon>0$. Choose R and X so that $U(f, X)-L(f, X)<\epsilon$. By the definition of $U(f)$ and $L(f)$, we have $U(f) \leq U(f, X)$ and $L(f) \geq L(f, X)$, and so $U(f)-L(f) \leq U(f, X)-L(f, X)<\epsilon$. Since $U(f)-L(f)<\epsilon$ for every $\epsilon>0$, it follows that $U(f) \leq L(f)$. On the other hand, we have $U(f) \geq L(f)$ by Part 2 of Theorem 8.19. Thus $U(f)=L(f)$ so that f is integrable.
8.21 Theorem: (Continuity and Integrability) Let $A \subseteq \mathbb{R}^{n}$ be a Jordan region, and let $f: A \rightarrow \mathbb{R}$ be a bounded function. If f is uniformly continuous on A, then f is integrable.

Proof: Suppose that f is bounded and uniformly continuous on A. Choose a rectangle R with $A \subseteq R$ and $|R|>0$. Let $\epsilon>0$. Since f is bounded, we can choose $M>0$ so that $|f(x)| \leq M$ for all $x \in A$. Since f is uniformly continuous on A, we can choose $\delta>0$ such that for all $x, y \in A$, if $|x-y|<\delta$ then $|f(x)-f(y)|<\frac{\epsilon}{2|R|}$. Choose a partition X of R, into sub-rectangles R_{k}, which is fine enough so that firstly, we have $x, y \in R_{k} \Longrightarrow|x-y|<\delta$ and, secondly, we have $U(\partial A, X)=\sum_{R_{k} \cap \partial A \neq \emptyset}\left|R_{k}\right|<\frac{\epsilon}{2 M}$ (we can do this since $U(\partial A)=0$). Since \bar{A} is the disjoint union $\bar{A}=A^{o} \cup \partial A$, the rectangles R_{k} come in three varieties: $R_{k} \cap \bar{A}=\emptyset, R_{k} \cap \partial A \neq \emptyset$ or $R_{k} \subseteq A^{o}$. Let g be the extension of f by zero to R, and write $M_{k}=\sup \left\{g(x) \mid x \in R_{k}\right\}$ and $m_{k}=\inf \left\{g(x) \mid x \in R_{k}\right\}$. When $R_{k} \cap \bar{A}=\emptyset$, we have $g(x)=0$ for all $x \in R_{k}$, and so

$$
\sum_{R_{k} \cap \bar{A}=\emptyset}\left(M_{k}-m_{k}\right)\left|R_{k}\right|=0 .
$$

When $R_{k} \cap \partial A \neq \emptyset$ we have $|g(x)| \leq M$ for all $x \in R_{k}$ so that

$$
\sum_{R_{k} \cap \partial A \neq \emptyset}\left(M_{k}-m_{k}\right)\left|R_{k}\right| \leq 2 M \sum_{R_{k} \cap \partial A \neq \emptyset}\left|R_{k}\right|<\frac{\epsilon}{2} .
$$

When $R_{k} \subseteq A^{o}$, for all $x, y \in R_{k}$ we have $x, y \in A$ with $|x-y|<\delta$ so that $|g(x)-g(y)|=$ $|f(x)-f(y)|<\frac{\epsilon}{2|R|}$, and hence $M_{k}-m_{k} \leq \frac{\epsilon}{2|R|}$ so that

$$
\sum_{R_{k} \subseteq A^{\circ}}\left(M_{k}-m_{k}\right)\left|R_{k}\right| \leq \frac{\epsilon}{2|R|} \sum_{R_{k} \subseteq A^{\circ}}\left|R_{k}\right| \leq \frac{\epsilon}{2} .
$$

Thus

$$
U(f, X)-L(f, X)=\sum_{R_{k} \cap \bar{A}=\emptyset}\left(M_{k}-m_{k}\right)\left|R_{k}\right|+\sum_{R_{k} \cap \partial A \neq \emptyset}\left(M_{k}-m_{k}\right)\left|R_{k}\right|+\sum_{R_{k} \subseteq A^{\circ}}\left(M_{k}-m_{k}\right)\left|R_{k}\right|<\epsilon .
$$

Thus f is integrable, by Theorem 8.20.
8.22 Theorem: (Integration and Volume) If $A \subseteq \mathbb{R}^{n}$ is a Jordan region then

$$
\operatorname{Vol}(A)=\int_{A} 1 d V
$$

Proof: Suppose that A is Jordan measurable, so we have $U(A)=L(A)=\operatorname{Vol}(A)$. Let R be a rectangle with $A \subseteq R$. Let $f: A \rightarrow \mathbb{R}$ be the constant function $f(x)=1$, and let $g: R \rightarrow \mathbb{R}$ be the extension of f by zero. Choose a partition X of R, with sub-rectangles R_{k}, such that $U(A, X) \leq U(A)-\epsilon=\operatorname{Vol}(A)-\epsilon$ and $L(A, X) \geq L(A)-\epsilon=\operatorname{Vol}(A)-\epsilon$. Let $M_{k}=\sup \left\{g(x) \mid x \in R_{k}\right\}$ and $m_{k}=\inf \left\{g(x) \mid x \in R_{k}\right\}$. When $R_{k} \cap \bar{A}=\emptyset$ we have $g(x)=0$ for all $x \in R_{k}$ so that $M_{k}=0$, and for all k we have $M_{k} \leq 1$, and so

$$
U(f) \leq U(f, X)=\sum_{R_{k} \cap \bar{A} \neq \emptyset} M_{k}\left|R_{k}\right| \leq \sum_{R_{k} \cap \bar{A} \neq \emptyset}\left|R_{k}\right|=U(A, X) \leq \operatorname{Vol}(A)+\epsilon .
$$

When $R_{k} \subseteq A^{o}$ we have $g(x)=1$ for all $x \in R_{k}$ so that $m_{k}=1$, and for all k we have $m_{k} \geq 0$, and so

$$
L(f) \geq L(f, X) \geq \sum_{R_{k} \subseteq A^{o}} m_{k}\left|R_{k}\right|=\sum_{R_{k} \subseteq A^{o}}\left|R_{k}\right|=L(A, X) \geq \operatorname{Vol}(A)-\epsilon .
$$

Since $\operatorname{Vol}(A)-\epsilon \leq L(f) \leq U(f) \leq \operatorname{Vol}(A)+\epsilon$ for every $\epsilon>0$, we have $U(f)=L(f)=$ $\operatorname{Vol}(A)$, which means that f is integrable on A with $\int_{A} 1=\int_{A} f=\operatorname{Vol}(A)$, as required.
8.23 Theorem: (Linearity) Let $A \subseteq \mathbb{R}^{n}$ be a Jordan region and let $f, g: A \rightarrow \mathbb{R}$ be integrable. Then $f+g$ is integrable, and $c f$ is integrable for every $c \in \mathbb{R}$, and we have

$$
\int_{A}(f+g)=\int_{A} f+\int_{A} g \text { and } \int_{A} c f=c \int_{A} f
$$

Proof: The proof is left as an exercise.
8.24 Theorem: (Decomposition) Let A and B be Jordan regions in \mathbb{R}^{n} with $\operatorname{Vol}(A \cap B)=$ 0 , and let $f: A \cup B \rightarrow \mathbb{R}$ be bounded. Let $g: A \rightarrow \mathbb{R}$ be the restrictions of f to A and let $h: B \rightarrow \mathbb{R}$ be the restriction of f to B. Then f is integrable on $A \cup B$ if and only if g is integrable on A and h is integrable on B and, in this case, we have

$$
\int_{A \cup B} f=\int_{A} g+\int_{B} h .
$$

Proof: The proof is left as an exercise.
8.25 Theorem: (Comparison) Let A be a Jordan region in \mathbb{R}^{n} and let $f, g: A \rightarrow \mathbb{R}$ be integrable. If $f(x) \leq g(x)$ for all $x \in A$ then $\int_{A} f \leq \int_{A} d$.
Proof: The proof is left as an exercise.
8.26 Theorem: (Absolute Value) Let A be a Jordan region in \mathbb{R}^{n} and let $f: A \rightarrow \mathbb{R}$ be integrable. Then the function $|f|$ is integrable and $\left|\int_{A} f\right| \leq \int_{A}|f|$.
Proof: The proof is left as an exercise.

