Chapter 6. Higher Order Derivatives

6.1 Theorem: (Iterated Limits) Let I and J be open intervals in \mathbb{R} with $a \in I$ and $b \in J$, let $U = (I \times J) \setminus \{(a, b)\}$, and let $f : U \to \mathbb{R}$. Suppose that $\lim_{y \to b} f(x, y)$ exists for every $x \in I$ and that $\lim_{(x,y)\to(a,b)} f(x,y) = u \in \mathbb{R}$. Then $\lim_{x\to a} \lim_{t\to b} f(x,y) = u$.

Proof: Define $g: I \to \mathbb{R}$ by $g(x) = \lim_{y \to b} f(x, y)$. Let $\epsilon > 0$. Since $\lim_{(x,y)\to(a,b)} f(x,y) = u$ we can choose $\delta > 0$ such that for all $(x,y) \in U$ with $0 < |(x,y) - (a,b)| \le 2\delta$ we have $|f(x,y) - u| \le \epsilon$. Let $x \in I$ with $0 < |x - a| \le \delta$. For all $y \in J$ with $0 < |y - b| \le \delta$ we have $0 < |(x,y) - (a,b)| \le |x - a| + |y - b| \le 2\delta$ and so $|f(x,y) - u| \le \epsilon$ and hence

$$|g(x) - u| \le |g(x) - f(x, y)| + |f(x, y) - u| \le |g(x) - f(x, y)| + \epsilon.$$

Take the limit as $y \to b$ on both sides to get $|g(x) - u| \le \epsilon$. Thus $\lim_{x \to a} g(x) = u$, as required.

6.2 Theorem: (Mixed Partials Commute) Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ where U is open in \mathbb{R}^n with $a \in U$, and let $k, \ell \in \{1, \dots, n\}$. Suppose $\frac{\partial^2 f}{\partial x_k \partial x_\ell}(x)$ exists in U and is continuous at a, $\frac{\partial f}{\partial x_k}(x)$ exists and is continuous in U, and $\frac{\partial^2 f}{\partial x_\ell \partial x_k}(a)$ exists. Then $\frac{\partial^2 f}{\partial x_\ell \partial x_k}(a) = \frac{\partial^2 f}{\partial x_k \partial x_\ell}(a)$.

Proof: When $k = \ell$ there is nothing to prove, so suppose that $k \neq \ell$. Choose r > 0 so that $B(a, 2r) \subseteq U$. For |x| < r and |y| < r note that the points $a, a + xe_k, a + ye_\ell$ and $a + xe_k + ye_\ell$ all lie in B(a, 2r). For |X| < r and |y| < r, define

$$g(x,y) = f(a + xe_k + ye_\ell) - f(a + xe_k) - f(a + ye_\ell) + f(a).$$

By the Mean Value Theorem, applied to the function $f(a + xe_k + ye_\ell) - f(a + ye_\ell)$ as a function of y, we can choose t between 0 and y such that

$$y\left(\frac{\partial f}{\partial x_{\ell}}(a+xe_{k}+te_{\ell})-\frac{\partial f}{\partial x_{\ell}}(a+te_{\ell})\right)=g(x,y).$$

By the Mean Value Theorem, applied to the function $\frac{\partial f}{\partial x_{\ell}}(a + xe_k + te_{\ell})$ as a function of x, we can choose s between 0 and x such that

$$x \frac{\partial^2 f}{\partial x_k \partial x_\ell} (a + se_k + te_\ell) = \frac{\partial f}{\partial x_\ell} (a + xe_k + te_\ell) - \frac{\partial f}{\partial x_\ell} (a + te_\ell).$$

Also by the Mean Value Theorem, applied to the function $f(a + xe_k + ye_\ell) - f(a + xe_k)$ as a function of x, we can choose r between 0 and x such that

$$x\left(\frac{\partial f}{\partial x_k}(a+re_k+ye_\ell)-\frac{\partial f}{\partial x_k}(a+re_\ell)\right)=g(x,y).$$

Then for |x| < r and 0 < |y| < r we have

$$\frac{\frac{\partial f}{\partial x_k}(a+re_k+ye_\ell)-\frac{\partial f}{\partial x_k}(a+re_k)}{y} = \frac{\partial^2 f}{\partial x_k \partial x_\ell}(a+se_k+te_\ell).$$

Since $\frac{\partial^2 f}{\partial x_k \partial x_\ell}$ is continuous, the limit on the right as $(x, y) \to (0, 0)$ is equal to $\frac{\partial^2 f}{\partial x_k \partial x_\ell}(a)$, and since $\frac{\partial f}{\partial x_k}$ is continuous, the limit as $y \to 0$ of the limit as $x \to 0$ on the left is equal to $\frac{\partial^2 f}{\partial x_\ell \partial x_k}(a)$, so the desired result follows from the above lemma.

6.3 Corollary: If $U \subseteq \mathbb{R}^n$ is open and $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$ is \mathcal{C}^2 in U then we have $\frac{\partial^2 f}{\partial x_\ell \partial x_k}(x) = \frac{\partial^2 f}{\partial x_k \partial x_\ell}(x)$ for all $x \in U$ and for all k, ℓ .

6.4 Exercise: Verify that for $f(x,y) = \frac{x^2}{x^2+y^2}$ we have $\lim_{x\to 0} \lim_{y\to 0} f(x,y) \neq \lim_{y\to 0} \lim_{x\to 0} f(x,y)$.

6.5 Exercise: Let $f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, \text{ if } (x,y) \neq (0,0) \\ 0, \text{ if } (x,y) = (0,0) \end{cases}$. Verify that the mixed

partial derivatives $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ and $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ both exist, but they are not equal.

6.6 Definition: for $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$, where U is open in \mathbb{R}^n with $a \in U$, we define $D^0 f(a) = f(a)$ and for $\ell \in \mathbb{Z}^+$ we define the ℓ^{th} total differential of f at a to be the map $D^\ell f(a) : \mathbb{R}^n \to \mathbb{R}$ given by

$$D^{\ell}f(a)(u) = \sum_{k_1=1}^n \sum_{k_2=1}^n \cdots \sum_{k_{\ell}=1}^n \frac{\partial^{\ell}f}{\partial x_{k_1} \partial x_{k_2} \cdots \partial x_{k_{\ell}}}(a) u_{k_1} u_{k_2} \cdots u_{k_{\ell}}$$

provided that all of the ℓ^{th} order partial derivatives exist at a.

6.7 Example: When $f: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ is \mathcal{C}^2 (so the mixed partial derivatives commute) we have

$$D^{\circ}f(u,v) = f(a,b)$$

$$D^{1}f(a,b)(u,v) = \frac{\partial f}{\partial x}(a,b) u + \frac{\partial f}{\partial y}(a,b) v$$

$$D^{2}f(a,b)(u,v) = \frac{\partial f}{\partial x^{2}}(a,b) u^{2} + 2\frac{\partial f}{\partial x \partial y}(a,b) uv + \frac{\partial f}{\partial y^{2}}(a,b) v^{2}$$

6.8 Theorem: (Taylor's Theorem) Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$ where U is open in \mathbb{R}^n . Suppose that the m^{th} oder partial derivatives of f all exist in U. Then for all $a, x \in U$ such that $[a, x] \subseteq U$ there exists $c \in [a, x]$ such that

$$f(x) = \sum_{\ell=0}^{m-1} \frac{1}{\ell!} D^{\ell} f(a)(x-a) + \frac{1}{m!} D^{m} f(c)(x-a).$$

Proof: Let $a, x \in U$ with $[a, x] \subseteq U$. Let $\alpha(t) = a + t(x - a)$ for all $t \in \mathbb{R}$ and note that $\alpha(t) \in U$ for $0 \le t \le 1$. Since U is open and α is continuous, we can choose $\delta > 0$ so that $\alpha(t) \in U$ for all $t \in I = (-\delta, 1 + \delta)$. Define $g: I \to \mathbb{R}$ by $g(t) = f(\alpha(t))$. By the Chain Rule, we have

$$g'(t) = Df(\alpha(t))\alpha'(t) = Df(\alpha(t))(x-a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\alpha(t))(x_i - a_i) = D^1f(\alpha(t))(x-a).$$

By the Chain Rule again, we have

$$g''(t) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i} (\alpha(t)) (x_j - a_j) \right) (x_i - a_i) = D^2 f(\alpha(t)) (x - a).$$

An induction argument shows that

$$g^{(\ell)}(t) = D^{\ell} f(\alpha(t))(x-a).$$

By Taylor's Theorem, applied to the function g(t) on the interval [0,1], we can choose $s \in [0,1]$ such that $g(1) = \sum_{\ell=0}^{m-1} \frac{1}{\ell!} g^{(\ell)}(0) + \frac{1}{m!} g^{(m)}(s)$, that is $f(x) = \sum_{\ell=0}^{m-1} \frac{1}{\ell!} D^{\ell} f(a)(x-a) + \frac{1}{m!} D^{m} f(\alpha(s))(x-a).$

Thus we can choose $c = \alpha(s) \in [a, x]$.

6.9 Definition: For $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$, where U is open in \mathbb{R}^n with $a \in U$, we define the m^{th} Taylor polynomial of f at a to be the polynomial

$$T^{m}f(a)(x) = \sum_{\ell=0}^{m} \frac{1}{\ell!} D^{\ell}f(a)(x-a)$$

provided that all the m^{th} order partial derivatives exist at a. When f is \mathcal{C}^2 in U (so that the mixed partial derivatives commute) we have

$$T^{2}f(a)(x) = f(a) + Df(a)(x-a) + \frac{1}{2}(x-a)^{T}Hf(a)(x-a)$$

where $Hf(a) \in M_{n \times n}(\mathbb{R})$ is the symmetric matrix with entries $Hf(a)_{k,\ell} = \frac{\partial^2 f}{\partial x_k \partial x_\ell}(a)$. The matrix Hf(a) is called the **Hessian matrix** of f at a.

6.10 Definition: Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. We say that

- (1) A is **positive-definite** when $u^T A u > 0$ for all $0 \neq u \in \mathbb{R}^n$,
- (2) A is negative-definite when $u^T A u < 0$ for all $0 \neq u \in \mathbb{R}^n$, and

(3) A is **indefinite** when there exist $0 \neq u, v \in \mathbb{R}^n$ with $u^T A u > 0$ and $v^T A v < 0$.

6.11 Theorem: (Characterization of Positive-Definiteness by Eigenvalues) Let $A \in M_n(\mathbb{R})$ be symmetric. Then

(1) A is positive-definite if and only if all of the eigenvalues of A are positive,

(2) A is negative-definite if and only if all of the eigenvalues of A are negative, and

(3) A is indefinite if and only if A has a positive eigenvalue and a negative eigenvalue.

Proof: Suppose that A is positive definite. Let λ be an eigenvalue of A and let u be a unit eigenvector for λ . Then $\lambda = \lambda |u|^2 = \lambda (u \cdot u) = \lambda u \cdot u = Au \cdot u = u^T Au > 0$. Conversely, suppose that all of the eigenvalues of A are positive. Since A is symmetric, we can orthogonally diagonalize A. Choose a matrix $P \in M_n(\mathbb{R})$ with $P^T = P$ so that $P^T AP = D = \text{diag}(\lambda_1, \dots, \lambda_n)$. Given $0 \neq u \in \mathbb{R}^n$, let $v = P^T u$. Note that $v \neq 0$ since P^T is invertible. Thus $u^T Au = u^T P D P^T u = v^T D v = \sum_{i=1}^n \lambda_i v_i^2 > 0$ since every $\lambda_i > 0$ and some $v_i \neq 0$. This proves Part (1). The proofs of Parts (2) and (3) are fairly similar.

6.12 Theorem: (Characterization of Positive-Definiteness by Determinant) Let $A \in M_n(\mathbb{R})$ be symmetric. For each k with $1 \leq k \leq n$, let $A^{(k)}$ denote the upper-left $k \times k$ sub matrix of A. Then

(1) A is positive-definite if and only if $det(A^{(k)}) > 0$ for all k with $1 \le k \le n$, and

(2) A is negative-definite if and only if $(-1)^k \det(A^{(k)}) > 0$ for all k with $1 \le k \le n$.

Proof: Part (2) follows easily from Part (1) by noting that A is negative-definite if and only if -A is positive-definite. We shall prove one direction of Part (1). Suppose that A is positive-definite. Let $1 \le k \le n$. Since $u^T A u > 0$ for all $0 \ne u \in \mathbb{R}^n$, we have $\begin{pmatrix} u^T & 0 \end{pmatrix} A \begin{pmatrix} u \\ 0 \end{pmatrix} = 0$, or equivalently $u^T A^{(k)} u > 0$, for all $0 \ne u \in \mathbb{R}^k$. This shows that $A^{(k)}$ is positive definite. By the previous theorem, all of the eigenvalues of $A^{(k)}$ are positive. Since $\det(A^{(k)})$ is equal to the product of its eigenvalues, we see that $\det(A^{(k)}) > 0$.

The proof of the other direction of Part (1) is more difficult. We shall omit the proof. It is often proven in a linear algebra course. **6.13 Exercise:** Let $A = \begin{pmatrix} 3 & -1 & 2 \\ -1 & 2 & 1 \\ 2 & 1 & 5 \end{pmatrix}$. Determine whether A is positive-definite.

6.14 Definition: Let $f : A \subseteq \mathbb{R}^n \to \mathbb{R}$ and let $a \in A$. We say that f has a **local maximum** value at a when there exists r > 0 such that $f(a) \ge f(x)$ for all $x \in B_A(a, r)$. We say that f has a **local minimum value** at a when there exists r > 0 such that $f(a) \le x$ for all $x \in B_A(a, r)$.

6.15 Exercise: Show that when $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ where U is open in \mathbb{R}^n with $a \in U$, if f has a local maximum or minimum value at a then either Df(a) = 0 or Df(a) does not exist (that is one of the partial derivatives $\frac{\partial f}{\partial x_k}(a)$ does not exist).

6.16 Definition: Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ where U is open in \mathbb{R}^n . For $a \in U$, we say that a is a **critical point** of f when either Df(a) = 0 or Df(a) does not exist. When $a \in U$ is a critical point of f but f does not have a local maximum or minimum value at a, we say that a is a **saddle point** of f.

6.17 Theorem: (The Second Derivative Test) Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$ with U open in \mathbb{R}^n and let $a \in U$. Suppose that f is \mathcal{C}^2 in U with Df(a) = 0. Then

(1) if Hf(a) is positive definite then f has a local minimum value at a,

(2) if Hf(a) is negative definite then f has a local maximum value at a, and

(3) if Hf(a) is indefinite then f has a saddle point at a.

Proof: Suppose that Hf(a) is positive-definite. Then det $(Hf(a)^{(k)}) > 0$ for $1 \le k \le n$. Since each determinant function det $(A^{(k)})$ is continuous as a function in the entries of the matrix A, the set $V = \{x \in U \mid Hf(x)^{(k)} > 0$ for $k = 1, 2, \dots, n\}$ is open. Choose r > 0 so that $B(a, r) \subseteq V$. Then we have $u^T Hf(c) u > 0$ for all $0 \ne u \in \mathbb{R}^n$ and all $c \in B(a, r)$. Let $x \in B(a, r)$ with $x \ne a$. By Taylor's Theorem, we have

$$f(x) - f(a) - Df(a)(x - a) = (x - a)^T Hf(c) (x - a)$$

for some $c \in [a, x]$. Since Df(a) = 0 and Hf(c) is positive-definite, we have f(x) - f(a) > 0. Thus f has a local minimum value at a. This proves Part (1) and Part (2) is similar.

Let us prove Part (3). Suppose there exists $0 \neq u \in \mathbb{R}^n$ such that $u^T H f(a) u > 0$. Let r > 0 with $B(a,r) \subseteq U$ and scale the vector u if necessary so that $[a,u] \subseteq B(a,r)$. Let $\alpha(t) = a + tu$ and let $g(t) = f(\alpha(t))$ for $0 \leq t \leq 1$. As in the proof of Taylor's Theorem, we have

$$g'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\alpha(t)) u_i = Df(\alpha(t)) u, \text{ and}$$
$$g''(t) = \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(\alpha(t)) u_i u_j = u^T Hf(\alpha(t)) u.$$

Since g(0) = f(a), g'(0) = Df(a) u = 0 and $g''(0) = u^T Hf(a) u > 0$, it follows from singlevariable calculus that we can choose t_0 with $0 < t_0 < 1$ so that $g(t_0) > g(0)$. When $x = \alpha(t_0)$ we have $x \in B(a, r)$ and $f(x) = f(\alpha(t_0)) = g(t_0) > g(0) = f(a)$, and so f does not have a local maximum value at a. Similarly, if there exists $0 \neq v \in \mathbb{R}^n$ such that $v^T Hf(a) v < 0$ then f does not have a local minimum value at a. Thus when Hf(a) is indefinite, f has a saddle point at a.

6.18 Exercise: Find and classify the critical points of the following functions $f : \mathbb{R}^2 \to \mathbb{R}$. (a) $f(x,y) = x^3 + 2xy + y^2$ (b) $f(x,y) = x^3 + 3x^2y - 6y^2$ (c) $f(x,y) = x^2y e^{-x^2 - 2y^2}$