## Chapter 6. Higher Order Derivatives

6.1 Theorem: (Iterated Limits) Let $I$ and $J$ be open intervals in $\mathbb{R}$ with $a \in I$ and $b \in J$, let $U=(I \times J) \backslash\{(a, b)\}$, and let $f: U \rightarrow \mathbb{R}$. Suppose that $\lim _{y \rightarrow b} f(x, y)$ exists for every $x \in I$ and that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=u \in \mathbb{R}$. Then $\lim _{x \rightarrow a} \lim _{t \rightarrow b} f(x, y)=u$.
Proof: Define $g: I \rightarrow \mathbb{R}$ by $g(x)=\lim _{y \rightarrow b} f(x, y)$. Let $\epsilon>0$. Since $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=u$ we can choose $\delta>0$ such that for all $(x, y) \in U$ with $0<|(x, y)-(a, b)| \leq 2 \delta$ we have $|f(x, y)-u| \leq \epsilon$. Let $x \in I$ with $0<|x-a| \leq \delta$. For all $y \in J$ with $0<|y-b| \leq \delta$ we have $0<|(x, y)-(a, b)| \leq|x-a|+|y-b| \leq 2 \delta$ and so $|f(x, y)-u| \leq \epsilon$ and hence

$$
|g(x)-u| \leq|g(x)-f(x, y)|+|f(x, y)-u| \leq|g(x)-f(x, y)|+\epsilon
$$

Take the limit as $y \rightarrow b$ on both sides to get $|g(x)-u| \leq \epsilon$. Thus $\lim _{x \rightarrow a} g(x)=u$, as required.
6.2 Theorem: (Mixed Partials Commute) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ where $U$ is open in $\mathbb{R}^{n}$ with $a \in U$, and let $k, \ell \in\{1, \cdots, n\}$. Suppose $\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}(x)$ exists in $U$ and is continuous at $a$, $\frac{\partial f}{\partial x_{k}}(x)$ exists and is continuous in $U$, and $\frac{\partial^{2} f}{\partial x_{\ell} \partial x_{k}}(a)$ exists. Then $\frac{\partial^{2} f}{\partial x_{\ell} \partial x_{k}}(a)=\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}(a)$.
Proof: When $k=\ell$ there is nothing to prove, so suppose that $k \neq \ell$. Choose $r>0$ so that $B(a, 2 r) \subseteq U$. For $|x|<r$ and $|y|<r$ note that the points $a, a+x e_{k}, a+y e_{\ell}$ and $a+x e_{k}+y e_{\ell}$ all lie in $B(a, 2 r)$. For $|X|<r$ and $|y|<r$, define

$$
g(x, y)=f\left(a+x e_{k}+y e_{\ell}\right)-f\left(a+x e_{k}\right)-f\left(a+y e_{\ell}\right)+f(a) .
$$

By the Mean Value Theorem, applied to the function $f\left(a+x e_{k}+y e_{\ell}\right)-f\left(a+y e_{\ell}\right)$ as a function of $y$, we can choose $t$ between 0 and $y$ such that

$$
y\left(\frac{\partial f}{\partial x_{\ell}}\left(a+x e_{k}+t e_{\ell}\right)-\frac{\partial f}{\partial x_{\ell}}\left(a+t e_{\ell}\right)\right)=g(x, y) .
$$

By the Mean Value Theorem, applied to the function $\frac{\partial f}{\partial x_{\ell}}\left(a+x e_{k}+t e_{\ell}\right)$ as a function of $x$, we can choose $s$ between 0 and $x$ such that

$$
x \frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}\left(a+s e_{k}+t e_{\ell}\right)=\frac{\partial f}{\partial x_{\ell}}\left(a+x e_{k}+t e_{\ell}\right)-\frac{\partial f}{\partial x_{\ell}}\left(a+t e_{\ell}\right) .
$$

Also by the Mean Value Theorem, applied to the function $f\left(a+x e_{k}+y e_{\ell}\right)-f\left(a+x e_{k}\right)$ as a function of $x$, we can choose $r$ between 0 and $x$ such that

$$
x\left(\frac{\partial f}{\partial x_{k}}\left(a+r e_{k}+y e_{\ell}\right)-\frac{\partial f}{\partial x_{k}}\left(a+r e_{\ell}\right)\right)=g(x, y) .
$$

Then for $|x|<r$ and $0<|y|<r$ we have

$$
\frac{\frac{\partial f}{\partial x_{k}}\left(a+r e_{k}+y e_{\ell}\right)-\frac{\partial f}{\partial x_{k}}\left(a+r e_{k}\right)}{y}=\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}\left(a+s e_{k}+t e_{\ell}\right) .
$$

Since $\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}$ is continuous, the limit on the right as $(x, y) \rightarrow(0,0)$ is equal to $\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}(a)$, and since $\frac{\partial f}{\partial x_{k}}$ is continuous, the limit as $y \rightarrow 0$ of the limit as $x \rightarrow 0$ on the left is equal to $\frac{\partial^{2} f}{\partial x_{\ell} \partial x_{k}}(a)$, so the desired result follows from the above lemma.
6.3 Corollary: If $U \subseteq \mathbb{R}^{n}$ is open and $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is $\mathcal{C}^{2}$ in $U$ then we have $\frac{\partial^{2} f}{\partial x_{\ell} \partial x_{k}}(x)=\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}(x)$ for all $x \in U$ and for all $k, \ell$.
6.4 Exercise: Verify that for $f(x, y)=\frac{x^{2}}{x^{2}+y^{2}}$ we have $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y) \neq \lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)$.
6.5 Exercise: Let $f(x, y)=\left\{\begin{array}{cc}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0 & , \text { if }(x, y)=(0,0)\end{array}\right\}$. Verify that the mixed partial derivatives $\frac{\partial^{2} f}{\partial x \partial y}(0,0)$ and $\frac{\partial^{2} f}{\partial y \partial x}(0,0)$ both exist, but they are not equal.
6.6 Definition: for $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$, where $U$ is open in $\mathbb{R}^{n}$ with $a \in U$, we define $D^{0} f(a)=f(a)$ and for $\ell \in \mathbb{Z}^{+}$we define the $\ell^{\text {th }}$ total differential of $f$ at $a$ to be the map $D^{\ell} f(a): \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
D^{\ell} f(a)(u)=\sum_{k_{1}=1}^{n} \sum_{k_{2}=1}^{n} \cdots \sum_{k_{\ell}=1}^{n} \frac{\partial^{\ell} f}{\partial x_{k_{1}} \partial x_{k_{2}} \cdots \partial x_{k_{\ell}}}\left(\text { a) } u_{k_{1}} u_{k_{2}} \cdots u_{k_{\ell}}\right.
$$

provided that all of the $\ell^{\text {th }}$ order partial derivatives exist at $a$.
6.7 Example: When $f: U \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ is $\mathcal{C}^{2}$ (so the mixed partial derivatives commute) we have

$$
\begin{aligned}
D^{0} f(u, v) & =f(a, b) \\
D^{1} f(a, b)(u, v) & =\frac{\partial f}{\partial x}(a, b) u+\frac{\partial f}{\partial y}(a, b) v \\
D^{2} f(a, b)(u, v) & =\frac{\partial f}{\partial x^{2}}(a, b) u^{2}+2 \frac{\partial f}{\partial x \partial y}(a, b) u v+\frac{\partial f}{\partial y^{2}}(a, b) v^{2}
\end{aligned}
$$

6.8 Theorem: (Taylor's Theorem) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ where $U$ is open in $\mathbb{R}^{n}$. Suppose that the $m^{\text {th }}$ oder partial derivatives of $f$ all exist in $U$. Then for all $a, x \in U$ such that $[a, x] \subseteq U$ there exists $c \in[a, x]$ such that

$$
f(x)=\sum_{\ell=0}^{m-1} \frac{1}{\ell!} D^{\ell} f(a)(x-a)+\frac{1}{m!} D^{m} f(c)(x-a) .
$$

Proof: Let $a, x \in U$ with $[a, x] \subseteq U$. Let $\alpha(t)=a+t(x-a)$ for all $t \in \mathbb{R}$ and note that $\alpha(t) \in U$ for $0 \leq t \leq 1$. Since $U$ is open and $\alpha$ is continuous, we can choose $\delta>0$ so that $\alpha(t) \in U$ for all $t \in I=(-\delta, 1+\delta)$. Define $g: I \rightarrow \mathbb{R}$ by $g(t)=f(\alpha(t))$. By the Chain Rule, we have

$$
g^{\prime}(t)=D f(\alpha(t)) \alpha^{\prime}(t)=D f(\alpha(t))(x-a)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\alpha(t))\left(x_{i}-a_{i}\right)=D^{1} f(\alpha(t))(x-a) .
$$

By the Chain Rule again, we have

$$
g^{\prime \prime}(t)=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\alpha(t))\left(x_{j}-a_{j}\right)\right)\left(x_{i}-a_{i}\right)=D^{2} f(\alpha(t))(x-a)
$$

An induction argument shows that

$$
g^{(\ell)}(t)=D^{\ell} f(\alpha(t))(x-a) .
$$

By Taylor's Theorem, applied to the function $g(t)$ on the interval $[0,1]$, we can choose $s \in[0,1]$ such that $g(1)=\sum_{\ell=0}^{m-1} \frac{1}{\ell!} g^{(\ell)}(0)+\frac{1}{m!} g^{(m)}(s)$, that is

$$
f(x)=\sum_{\ell=0}^{m-1} \frac{1}{\ell!} D^{\ell} f(a)(x-a)+\frac{1}{m!} D^{m} f(\alpha(s))(x-a)
$$

Thus we can choose $c=\alpha(s) \in[a, x]$.
6.9 Definition: For $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$, where $U$ is open in $\mathbb{R}^{n}$ with $a \in U$, we define the $m^{\text {th }}$ Taylor polynomial of $f$ at $a$ to be the polynomial

$$
T^{m} f(a)(x)=\sum_{\ell=0}^{m} \frac{1}{\ell!} D^{\ell} f(a)(x-a)
$$

provided that all the $m^{\text {th }}$ order partial derivatives exist at $a$. When $f$ is $\mathcal{C}^{2}$ in $U$ (so that the mixed partial derivatives commute) we have

$$
T^{2} f(a)(x)=f(a)+D f(a)(x-a)+\frac{1}{2}(x-a)^{T} H f(a)(x-a)
$$

where $H f(a) \in M_{n \times n}(\mathbb{R})$ is the symmetric matrix with entries $H f(a)_{k, \ell}=\frac{\partial^{2} f}{\partial x_{k} \partial x_{\ell}}(a)$. The matrix $H f(a)$ is called the Hessian matrix of $f$ at $a$.
6.10 Definition: Let $A \in M_{n}(\mathbb{R})$ be a symmetric matrix. We say that
(1) $A$ is positive-definite when $u^{T} A u>0$ for all $0 \neq u \in \mathbb{R}^{n}$,
(2) $A$ is negative-definite when $u^{T} A u<0$ for all $0 \neq u \in \mathbb{R}^{n}$, and
(3) $A$ is indefinite when there exist $0 \neq u, v \in \mathbb{R}^{n}$ with $u^{T} A u>0$ and $v^{T} A v<0$.
6.11 Theorem: (Characterization of Positive-Definiteness by Eigenvalues) Let $A \in M_{n}(\mathbb{R})$ be symmetric. Then
(1) $A$ is positive-definite if and only if all of the eigenvalues of $A$ are positive,
(2) $A$ is negative-definite if and only if all of the eigenvalues of $A$ are negative, and
(3) $A$ is indefinite if and only if $A$ has a positive eigenvalue and a negative eigenvalue.

Proof: Suppose that $A$ is positive definite. Let $\lambda$ be an eigenvalue of $A$ and let $u$ be a unit eigenvector for $\lambda$. Then $\lambda=\lambda|u|^{2}=\lambda(u \cdot u)=\lambda u \cdot u=A u \cdot u=u^{T} A u>0$. Conversely, suppose that all of the eigenvalues of $A$ are positive. Since $A$ is symmetric, we can orthogonally diagonalize $A$. Choose a matrix $P \in M_{n}(\mathbb{R})$ with $P^{T}=P$ so that $P^{T} A P=D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$. Given $0 \neq u \in \mathbb{R}^{n}$, let $v=P^{T} u$. Note that $v \neq 0$ since $P^{T}$ is invertible. Thus $u^{T} A u=u^{T} P D P^{T} u=v^{T} D v=\sum_{i=1}^{n} \lambda_{i} v_{i}{ }^{2}>0$ since every $\lambda_{i}>0$ and some $v_{i} \neq 0$. This proves Part (1). The proofs of Parts (2) and (3) are fairly similar.
6.12 Theorem: (Characterization of Positive-Definiteness by Determinant) Let $A \in M_{n}(\mathbb{R})$ be symmetric. For each $k$ with $1 \leq k \leq n$, let $A^{(k)}$ denote the upper-left $k \times k$ sub matrix of $A$. Then
(1) $A$ is positive-definite if and only if $\operatorname{det}\left(A^{(k)}\right)>0$ for all $k$ with $1 \leq k \leq n$, and
(2) $A$ is negative-definite if and only if $(-1)^{k} \operatorname{det}\left(A^{(k}\right)>0$ for all $k$ with $1 \leq k \leq n$.

Proof: Part (2) follows easily from Part (1) by noting that $A$ is negative-definite if and only if $-A$ is positive-definite. We shall prove one direction of Part (1). Suppose that $A$ is positivedefinite. Let $1 \leq k \leq n$. Since $u^{T} A u>0$ for all $0 \neq u \in \mathbb{R}^{n}$, we have $\left(\begin{array}{ll}u^{T} & 0\end{array}\right) A\binom{u}{0}=0$, or equivalently $u^{T} A^{(k)} u>0$, for all $0 \neq u \in \mathbb{R}^{k}$. This shows that $A^{(k)}$ is positive definite. By the previous theorem, all of the eigenvalues of $A^{(k)}$ are positive. Since $\operatorname{det}\left(A^{(k)}\right)$ is equal to the product of its eigenvalues, we see that $\operatorname{det}\left(A^{(k)}\right)>0$.

The proof of the other direction of Part (1) is more difficult. We shall omit the proof. It is often proven in a linear algebra course.
6.13 Exercise: Let $A=\left(\begin{array}{ccc}3 & -1 & 2 \\ -1 & 2 & 1 \\ 2 & 1 & 5\end{array}\right)$. Determine whether $A$ is positive-definite.
6.14 Definition: Let $f: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ and let $a \in A$. We say that $f$ has a local maximum value at $a$ when there exists $r>0$ such that $f(a) \geq f(x)$ for all $x \in B_{A}(a, r)$. We say that $f$ has a local minimum value at $a$ when there exists $r>0$ such that $f(a) \leq x$ for all $x \in B_{A}(a, r)$.
6.15 Exercise: Show that when $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ where $U$ is open in $\mathbb{R}^{n}$ with $a \in U$, if $f$ has a local maximum or minimum value at $a$ then either $D f(a)=0$ or $D f(a)$ does not exist (that is one of the partial derivatives $\frac{\partial f}{\partial x_{k}}(a)$ does not exist).
6.16 Definition: Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ where $U$ is open in $\mathbb{R}^{n}$. For $a \in U$, we say that $a$ is a critical point of $f$ when either $D f(a)=0$ or $D f(a)$ does not exist. When $a \in U$ is a critical point of $f$ but $f$ does not have a local maximum or minimum value at $a$, we say that $a$ is a saddle point of $f$.
6.17 Theorem: (The Second Derivative Test) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $U$ open in $\mathbb{R}^{n}$ and let $a \in U$. Suppose that $f$ is $\mathcal{C}^{2}$ in $U$ with $D f(a)=0$. Then
(1) if $\operatorname{Hf}(a)$ is positive definite then $f$ has a local minimum value at $a$,
(2) if $\operatorname{Hf}(a)$ is negative definite then $f$ has a local maximum value at $a$, and
(3) if $\operatorname{Hf}(a)$ is indefinite then $f$ has a saddle point at $a$.

Proof: Suppose that $H f(a)$ is positive-definite. Then $\operatorname{det}\left(H f(a)^{(k}\right)>0$ for $1 \leq k \leq n$. Since each determinant function $\operatorname{det}\left(A^{(k)}\right)$ is continuous as a function in the entries of the matrix $A$, the set $V=\left\{x \in U \mid H f(x)^{(k)}>0\right.$ for $\left.k=1,2, \cdots, n\right\}$ is open. Choose $r>0$ so that $B(a, r) \subseteq V$. Then we have $u^{T} H f(c) u>0$ for all $0 \neq u \in \mathbb{R}^{n}$ and all $c \in B(a, r)$. Let $x \in B(a, r)$ with $x \neq a$. By Taylor's Theorem, we have

$$
f(x)-f(a)-D f(a)(x-a)=(x-a)^{T} H f(c)(x-a)
$$

for some $c \in[a, x]$. Since $D f(a)=0$ and $H f(c)$ is positive-definite, we have $f(x)-f(a)>0$. Thus $f$ has a local minimum value at $a$. This proves Part (1) and Part (2) is similar.

Let us prove Part (3). Suppose there exists $0 \neq u \in \mathbb{R}^{n}$ such that $u^{T} H f(a) u>0$. Let $r>0$ with $B(a, r) \subseteq U$ and scale the vector $u$ if necessary so that $[a, u] \subseteq B(a, r)$. Let $\alpha(t)=a+t u$ and let $g(t)=f(\alpha(t))$ for $0 \leq t \leq 1$. As in the proof of Taylor's Theorem, we have

$$
\begin{aligned}
g^{\prime}(t) & =\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\alpha(t)) u_{i}=D f(\alpha(t)) u, \text { and } \\
g^{\prime \prime}(t) & =\sum_{i, j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\alpha(t)) u_{i} u_{j}=u^{T} H f(\alpha(t)) u
\end{aligned}
$$

Since $g(0)=f(a), g^{\prime}(0)=D f(a) u=0$ and $g^{\prime \prime}(0)=u^{T} H f(a) u>0$, it follows from singlevariable calculus that we can choose $t_{0}$ with $0<t_{0}<1$ so that $g\left(t_{0}\right)>g(0)$. When $x=\alpha\left(t_{0}\right)$ we have $x \in B(a, r)$ and $f(x)=f\left(\alpha\left(t_{0}\right)\right)=g\left(t_{0}\right)>g(0)=f(a)$, and so $f$ does not have a local maximum value at $a$. Similarly, if there exists $0 \neq v \in \mathbb{R}^{n}$ such that $v^{T} H f(a) v<0$ then $f$ does not have a local minimum value at $a$. Thus when $\operatorname{Hf}(a)$ is indefinite, $f$ has a saddle point at $a$.
6.18 Exercise: Find and classify the critical points of the following functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(a) $f(x, y)=x^{3}+2 x y+y^{2}$
(b) $f(x, y)=x^{3}+3 x^{2} y-6 y^{2}$
(c) $f(x, y)=x^{2} y e^{-x^{2}-2 y^{2}}$

