Chapter 5. Differentiation

In this chapter (and the next) we give a more detailed and precise presentation of differentiation in Euclidean space. We repeat some of the definitions from the previous chapter, and we restate some of the theorems (in a different order), and we provide rigorous proofs for the theorems which were not proven earlier. We also prove a few additional theorems.

5.1 Note: Recall that for a single-variable function $f: U \subseteq \mathbb{R} \to \mathbb{R}$ and $a \in U$,

$$f \text{ is differentiable at } a \iff \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \text{ exists}$$
$$\iff \exists m \in \mathbb{R} \ \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in U \ 0 < |x - a| < \delta \implies \left| \frac{f(x) - f(a)}{x - a} - m \right| < \epsilon$$
$$\iff \exists m \in \mathbb{R} \ \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in U \ 0 < |x - a| < \delta \implies \left| f(x) - f(a) - m(x - a) \right| < \epsilon \ |x - a|$$
$$\iff \exists m \in \mathbb{R} \ \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in U \ |x - a| \le \delta \implies \left| f(x) - f(a) - m(x - a) \right| \le \epsilon \ |x - a|$$

In this case, the number $m \in \mathbb{R}$ is unique, we call it the **derivative** of f at a and denote it by f'(a), and the map $\ell(x) = f(a) + f'(a)(x - a)$ is called the **linearization** of f at a.

5.2 Definition: Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, where U is open. We say f is **differentiable** at $a \in U$ if there is an $m \times n$ matrix A such that

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in U \ \Big(|x - a| \le \delta \Longrightarrow \big| f(x) - (f(a) + A(x - a)) \Big| \le \epsilon |x - a| \Big).$$

We show below that the matrix A is unique, we call it the **derivative** (matrix) of f at a, and we denote it by Df(a). The affine map $L : \mathbb{R}^n \to \mathbb{R}^m$ given by L(x) = f(a) + Df(a)(x-a), which approximates f(x), is called the **linearization** of f at a. We say f is **differentiable** in U when it is differentiable at every point $a \in U$.

5.3 Example: If f is the affine map f(x) = Ax + b, then we have Df(a) = A for all a. Indeed given $\epsilon > 0$ we can choose $\delta > 0$ to be anything we like, and then for all x we have

$$|f(x) - f(a) - A(x - a)| = |Ax + b - Aa - b - Ax + Aa| = 0 \le \epsilon |x - a|$$

5.4 Theorem: (The Derivative is the Jacobian) Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and let $a \in U$. If f is differentiable at a then the partial derivatives $\frac{\partial f_k}{\partial x_\ell}(a)$ all exist and the matrix A which appears in the definition of the derivative is equal to the Jacobian matrix Df(a).

Proof: Suppose that f is differentiable at a. Fix indices k and ℓ and let $g(t) = f_k(a + te_\ell)$ so that $\frac{\partial f_k}{\partial x_\ell}(a) = g'(0)$ provided that the derivative g'(0) exists. Let A be a matrix as in the definition of differentiability. Let $\epsilon > 0$. Choose $\delta > 0$ such that for all $x \in U$ with $|x - a| \leq \delta$ we have $|f(x) - f(a) - A(x - a)| \leq \epsilon |x - a|$. Let $t \in \mathbb{R}$ with $|t| \leq \delta$. Let $x = a + t e_\ell$. Then we have $|x - a| = |te_\ell| = |t| \leq \delta$ and so $|f(x) - f(a) - A(x - a)| \leq \epsilon |x - a|$. Since for any vector $u \in \mathbb{R}^m$ we have $|u_k| \leq |u|$, we have

$$\begin{aligned} \left|g(t) - g(0) - A_{k,\ell} t\right| &= \left|f_k(a + te_\ell) - f_k(a) - \left(A(te_\ell)\right)_k\right| \\ &\leq \left|f(a + te_\ell) - f(a) - A(te_\ell)\right| \\ &= \left|f(x) - f(a) - A(x - a)\right| \\ &\leq \epsilon \left|x - a\right| = \epsilon \left|t\right|. \end{aligned}$$

It follows that $A_{k,\ell} = g'(0) = \frac{\partial f_k}{\partial x_\ell}(a)$, as required.

5.5 Definition: Let $A \in M_{m \times n}(\mathbb{R})$ and let $S = \{x \in \mathbb{R}^n \mid |x| = 1\}$. Since S is compact, by the Extreme Value Theorem, the continuous function $f : \mathbb{R}^n \to \mathbb{R}$ given by f(x) = |Ax| attains its maximum value on S. We define the **norm** of the matrix A to be

 $||A|| = \max\{|Ax| \mid |x| = 1\}.$

5.6 Lemma: (Properties of the Matrix Norm) Let $A \in M_{m \times n}(\mathbb{R})$. Then

(1) $|Ax| \le ||A|| |x|$ for all $x \in \mathbb{R}^n$,

(2) if A is invertible then $|Ax| \ge \frac{|x|}{\|A^{-1}\|}$ for all $x \in \mathbb{R}^n$,

(3) $||A|| \le \sum_{k=1}^{m} \sum_{\ell=1}^{n} |A_{k,\ell}|$, and

(4) ||A|| is equal to the square root of the largest eigenvalue of the matrix $A^{T}A$.

Proof: When $x = 0 \in \mathbb{R}^n$ we have |Ax| = 0 = ||A|| |x| and when $0 \neq x \in \mathbb{R}^n$ we have

$$|Ax| = \left| |x| A \frac{x}{|x|} \right| = |x| \left| A \frac{x}{|x|} \right| \le |x| ||A||.$$

This proves Part 1. To prove Part 2, suppose that A is invertible. Then we can choose $x \in \mathbb{R}^n$ with |x| = 1 such that $Ax \neq 0$ so we must have ||A|| > 0. Similarly, since A^{-1} is also invertible, we also have $||A^{-1}|| > 0$. By Part 1, for all $x \in \mathbb{R}^n$ we have $||x| = |A^{-1}Ax| \leq ||A^{-1}|| |Ax|$ so that $|Ax| \geq \frac{|x|}{||A^{-1}||}$, as required. To prove Part 3, let $x \in \mathbb{R}^n$ with |x| = 1. Then $|x_\ell| \leq |x| \leq 1$ for all indices ℓ , and so

$$\left|Ax\right| = \left|\sum_{k=1}^{m} (Ax)_{k} e_{k}\right| \le \sum_{k=1}^{m} \left|(Ax)_{k}\right| = \sum_{k=1}^{m} \left|\sum_{\ell=1}^{n} A_{k,\ell} x_{\ell}\right| \le \sum_{k=1}^{m} \sum_{\ell=1}^{n} |A_{k,\ell}| |x_{\ell}| \le \sum_{k=1}^{m} \sum_{\ell=1}^{n} |A_{k,\ell}|.$$

We omit the proof of Part 4, which we shall not use (it is often proven in a linear algebra course).

5.7 Theorem: (Differentiability Implies Continuity) Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$. If f is differentiable at $a \in U$, then f is continuous at a.

Proof: Suppose f is differentiable at a. Note that for all $x \in U$ we have

$$|f(x) - f(a)| = |f(x) - f(a) - Df(a)(x - a) + Df(a)(x - a)|$$

$$\leq |f(x) - f(a) - Df(a)(x - a)| + |Df(a)(x - a)|$$

$$\leq |f(x) - f(a) - Df(a)(x - a)| + ||Df(a)|| |x - a|$$

Let $\epsilon > 0$. Since f is differentiable at a we can choose δ with $0 < \delta < \frac{\epsilon}{1+\|Df(a)\|}$ such that

$$|x-a| \le \delta \Longrightarrow |f(x) - f(a) - Df(a)(x-a)| \le |x-a|$$

and then for $|x - a| \leq \delta$ we have

$$\begin{aligned} \left| f(x) - f(a) \right| &\leq \left| f(x) - f(a) - Df(a)(x - a) \right| + \left\| Df(a) \right\| |x - a| \\ &\leq |x - a| + \left\| Df(a) \right\| |x - a| = \left(1 + \left\| Df(a) \right\| \right) |x - a| \\ &\leq \left(1 + \left\| Df(a) \right\| \right) \delta < \epsilon. \end{aligned}$$

5.8 Theorem: (The Chain Rule) Let $f : U \subseteq \mathbb{R}^n \to V \subseteq \mathbb{R}^m$, let $g : V \subseteq \mathbb{R}^m \to \mathbb{R}^\ell$, and let h(x) = g(f(x)). If f is differentiable at a and g is differentiable at f(a) then h is differentiable at a and Dh(a) = Dg(f(a))Df(a).

Proof: Suppose f is differentiable at a and g is differentiable at f(a). Write y = f(x) and b = f(a). We have

$$\begin{aligned} \left| h(x) - h(a) - Dg(f(a))Df(a)(x-a) \right| &= \left| g(y) - g(b) - Dg(b)Df(a)(x-a) \right| \\ &= \left| g(y) - g(b) - Dg(b)(y-b) + Dg(b)(y-b) - Dg(b)Df(a)(x-a) \right| \\ &\leq \left| g(y) - g(b) - Dg(b)(y-b) \right| + \left\| Dg(b) \right\| \left| y - b - Df(a)(x-a) \right| \\ &\leq \left| g(y) - g(b) - Dg(b)(y-b) \right| + \left(1 + \left\| Dg(b) \right\| \right) \left| f(x) - f(a) - Df(a)(x-a) \right| \end{aligned}$$

and

$$|y - b| = |f(x) - f(a)|$$

= $|f(x) - f(a) - Df(a)(x - a) + Df(a)(x - a)|$
 $\leq |f(x) - f(a) - Df(a)(x - a)| + ||Df(a)|| |x - a|$

Let $\epsilon > 0$ be given. Since g is differentiable at b we can choose $\delta_0 > 0$ so that

$$|y-b| \le \delta_0 \Longrightarrow \left| g(y) - g(b) - Dg(b)(y-b) \right| \le \frac{\epsilon}{2(1+\|Df(a)\|)} |y-b|$$

Since f is continuous at a we can choose $\delta_1 > 0$ so that

$$|x-a| \le \delta_1 \Longrightarrow |y-b| = |f(x) - f(a)| \le \delta_0$$

Since f is differentiable at a we can choose $\delta_2 > 0$ so that

$$|x-a| \le \delta_2 \Longrightarrow |f(x) - f(a) - Df(a)(x-a)| \le |x-a|$$

and we can choose $\delta_3 > 0$ so that

$$|x-a| \le \delta_3 \Longrightarrow \left| f(x) - f(a) - Df(a)(x-a) \right| \le \frac{\epsilon}{2(1+\|Dg(a)\|)} |x-a|.$$

Let $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. Then for $|x - a| \leq \delta$ we have

$$|y - b| \le |f(x) - f(a) - Df(a)(x - a)| + |Df(a)(x - a)|$$

$$\le |x - a| + ||Df(a)|| |x - a|$$

$$= (1 + ||Df(a)||) |x - a|$$

 \mathbf{SO}

$$|g(y) - g(b) - Dg(b)(y - b)| \le \frac{\epsilon}{2(1 + ||Df(a)||)} |y - b| \le \frac{\epsilon}{2} |x - a|$$

and we have

$$(1 + ||Dg(b)||) |f(x) - f(a) - Df(a)(x - a)| \le \frac{\epsilon}{2} |x - a|$$

and so

$$\left|h(x) - h(a) - Dg(f(a))Df(a)(x-a)\right| \le \frac{\epsilon}{2} |x-a| + \frac{\epsilon}{2} |x-a| = \epsilon |x-a|.$$

Thus *h* is differentiable at *a* with derivative $Dh(a) = Dg(f(a))Df(a)$, as required.

5.9 Definition: Let $f : U \subseteq \mathbb{R}^n \to R$, let $a \in \mathbb{R}^n$ and let $v \in \mathbb{R}^n$. We define the **directional derivative of** f **at** a **with respect to** v, written as $D_v f(a)$, as follows: pick any differentiable function $\alpha : (-\epsilon, \epsilon) \subseteq \mathbb{R} \to U \subseteq \mathbb{R}^n$, where $\epsilon > 0$, such that $\alpha(0) = a$ and $\alpha'(0) = v$ (for example, we could pick $\alpha(t) = a + vt$), let $g(t) = f(\alpha(t))$, note that by the Chain Rule we have $g'(t) = Df(\alpha(t))\alpha'(t)$, and then define

$$D_v f(a) = g'(0) = Df(\alpha(0)) \alpha'(0) = Df(a) v = \nabla f(a) \cdot v$$

Notice that the formula for $D_v f(a)$ does not depend on the choice of the function $\alpha(t)$. The **directional derivative of** f **at** a **in the direction of** v is defined to be $D_w f(a)$ where w is the unit vector in the direction of v, that is $w = \frac{v}{|w|}$.

5.10 Remark: Some books only define the directional derivative in the case that vector is a unit vector.

5.11 Theorem: Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$ be differentiable at $a \in U$. Say f(a) = b. The gradient $\nabla f(a)$ is perpendicular to the level set f(x) = b, it is in the direction in which f increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: Let $\alpha(t)$ be any curve in the level set f(x) = b, with $\alpha(0) = a$. We wish to show that $\nabla f(a) \perp \alpha'(0)$. Since $\alpha(t)$ lies in the level set f(x) = b, we have $f(\alpha(t)) = b$ for all t. Take the derivative of both sides to get $Df(\alpha(t))\alpha'(t) = 0$. Put in t = 0 to get $Df(a)\alpha'(0) = 0$, that is $\nabla f(a) \cdot \alpha'(0) = 0$. Thus $\nabla f(a)$ is perpendicular to the level set f(x) = b.

Next, let u be a unit vector. Then $D_u f(a) = \nabla f(a) \cdot u = |\nabla f(a)| \cos \theta$, where θ is the angle between u and $\nabla f(a)$. So the maximum possible value of $D_u f(a)$ is $|\nabla f(a)|$, and this occurs when $\cos \theta = 1$, that is when $\theta = 0$, which happens when u is in the direction of $\nabla f(a)$.

5.12 Theorem: (Continuous Partial Derivatives Imply Differentiability) Let $U \subseteq \mathbb{R}^n$ be open, let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and let $a \in U$. If the partial derivatives $\frac{\partial f_k}{\partial x_\ell}(x)$ exist in U and are continuous at a then f is differentiable at a.

Proof: Suppose that the partial derivatives $\frac{\partial f_k}{\partial x_\ell}(x)$ exist in U and are continuous at a. Let $\epsilon > 0$. Choose $\delta > 0$ so that $\overline{B}(a, \delta) \subseteq U$ and so that for all indices k, ℓ and for all $y \in U$ we have $|y - a| \leq \delta \Longrightarrow \left| \frac{\partial f_k}{\partial x_\ell}(y) - \frac{\partial f_k}{\partial x_\ell}(a) \right| \leq \frac{\epsilon}{nm}$. Let $x \in U$ with $|x - a| \leq \delta$. For $0 \leq \ell \leq n$, let $u_\ell = (x_1, \cdots, x_\ell, a_{\ell+1}, \cdots, a_n)$, with $u_0 = a$ and $u_n = x$, and note that each $u_\ell \in \overline{B}(a, \delta)$. For $1 \leq \ell \leq n$, let $\alpha_\ell(t) = (x_1, \cdots, x_{\ell-1}, t, a_{\ell+1}, \cdots, a_n)$ for t between a_ℓ and x_ℓ , For $1 \leq k \leq m$ and $1 \leq \ell \leq n$, let $g_{k,\ell}(t) = f_k(\alpha_\ell(t))$ so that $g'_{k,\ell}(t) = \frac{\partial f_k}{\partial x_\ell}(\alpha_\ell(t))$. By the Mean Value Theorem, we can choose $s_{k,\ell}$ between a_ℓ and x_ℓ so that $g'_{k,\ell}(s_{k,\ell})(x_\ell - a_\ell) = g_{k,\ell}(x_\ell) - g_{k,\ell}(a_\ell)$ or, equivalently, so that $\frac{\partial f_k}{\partial x_\ell}(\alpha_\ell(s_{k,\ell}))(x_\ell - a_\ell) = f_k(u_\ell) - f_k(u_{\ell-1})$. Then

$$f_k(x) - f_k(a) = f_k(u_n) - f_k(u_0) = \sum_{\ell=1}^n \left(f_k(u_\ell) - f_k(u_{\ell-1}) \right) = \sum_{\ell=1}^n \frac{\partial f_k}{\partial x_\ell} \left(\alpha_\ell(s_{k,\ell}) \right) (x_\ell - a_\ell).$$

Let $B \in M_{m \times n}(\mathbb{R})$ be the matrix with entries $B_{k,\ell} = \frac{\partial f}{\partial x_\ell} (\alpha_\ell(s_{k,\ell}))$. Then (using Part 2 of Lemma 5.7)we have

$$\left| f(x) - f(a) - Df(a)(x-a) \right| = \left| \left(B - Df(a) \right)(x-a) \right| \le \left| B - Df(a) \right| |x-a|$$
$$\le \sum_{k,\ell} \left| \frac{\partial f_k}{\partial x_\ell} (\alpha_\ell(s_{k,\ell})) - \frac{\partial f_k}{\partial x_\ell} (a) \right| |x-a| \le \epsilon |x-a|.$$

5.13 Corollary: If $U \subseteq \mathbb{R}^n$ is open and $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is \mathcal{C}^1 then f is differentiable.

5.14 Corollary: Every function $f : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, which can be obtained by applying the standard operations (such as multiplication and composition) of functions to basic elementary functions defined on open domains, is differentiable in U.

5.15 Exercise: For each of the following functions $f : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$, extend the domain of f(x,y) to all of \mathbb{R}^2 by defining f(0,0) = 0 and then determine whether the partial derivatives of f exist at (0,0) and whether f is differential at (0,0).

(a) $f(x,y) = \frac{xy}{x^2+y^2}$ (b) f(x,y) = |xy| (c) $f(x,y) = \sqrt{|xy|}$ (d) $f(x,y) = \frac{x^3}{x^2+y^2}$ (e) $f(x,y) = \frac{x}{(x^2+y^2)^{1/3}}$ (f) $f(x,y) = \frac{x^3-3xy^2}{x^2+y^2}$

5.16 Theorem: (The Mean Value Theorem) Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$ with U open in \mathbb{R}^n . Suppose that f is differentiable in U. Let $u \in \mathbb{R}^m$ and let $a, b \in U$ with $[a, b] \subseteq U$, where we recall that $[a, b] = \{a+t(b-a) \mid 0 \le t \le 1\}$. Then there exists $c \in [a, b]$ such that

$$Df(c)(b-a) \cdot u = (f(b) - f(a)) \cdot u.$$

Proof: Let $\alpha(t) = a + t(b-a)$ and define $g: [0,1] \to \mathbb{R}$ by $g(t) = f(\alpha(t)) \cdot u$. By the Chain Rule, we have $g'(t) = (Df(\alpha(t))\alpha'(t)) \cdot u = (Df(\alpha(t))(b-a)) \cdot u$. By the Mean Value Theorem (for a real-valued function of a single variable) we can choose $s \in [0,1]$ such that g'(s) = g(1) - g(0), that is $(Df(\alpha(s))(b-a)) \cdot u = f(b) \cdot u - f(a) \cdot u = (f(b) - f(a)) \cdot u$. Thus we can take $c = \alpha(s) \in [a,b]$ to get $Df(c)(b-a) \cdot u = (f(b) - f(a)) \cdot u$.

5.17 Corollary: (Vanishing Derivative) Let $U \subseteq \mathbb{R}^n$ be open and connected and let $f: U \to \mathbb{R}^m$ be differentiable with Df(x) = O for all $x \in U$. Then f is constant in U.

Proof: Let $a \in U$ and let $A = \{x \in U | f(x) = f(a)\}$. We claim that A is open (both in \mathbb{R}^n and in U). Let $b \in A$, that is let $b \in U$ with f(b) = f(a). Since U is open we can choose r > 0 so that $B(b,r) \subseteq U$. Let $c \in B(b,r)$. Since B(b,r) is convex we have $[b,c] \subseteq B(b,r) \subseteq U$. Let u = f(c) - f(b) and choose $d \in [b,c]$, as in the Mean Value Theorem, so that $(Df(d)(c-b)) \cdot u = (f(c) - f(b)) \cdot u$. Then we have

$$|f(c) - f(b)|^2 = (f(c) - f(b)) \cdot u = (Df(d)(c - b)) \cdot u = 0$$

since Df(d) = O. Since |f(c) - f(b)| = 0 we have f(c) = f(b) = f(a), and so $c \in A$. Thus $B(b,r) \subseteq A$ and so A is open, as claimed. A similar argument shows that if $b \in U \setminus A$ and we chose r > 0 so that $B(b,r) \subseteq U$ then we have f(c) = f(b) for all $c \in B(b,r)$ hence $B(b,r) \subseteq U \setminus A$ and hence $U \setminus A$ is also open. Note that A is non-empty since $a \in A$. If $U \setminus A$ was also non-empty then U would be the union of the two non-empty open sets A and $U \setminus A$, and this is not possible since U is connected. Thus $U \setminus A = \emptyset$ so U = A. Since $U = A = \{x \in U | f(x) = f(a)\}$ we have f(x) = f(a) for all $x \in U$, so f is constant in U.

5.18 Theorem: (The Inverse Function Theorem) Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ where $U \subseteq \mathbb{R}^n$ is open with $a \in U$. Suppose that f is \mathcal{C}^1 in U and that Df(a) is invertible. Then there exists an open set $U_0 \subseteq U$ with $a \in U_0$ such that the set $V_0 = f(U_0)$ is open in \mathbb{R}^n and the restriction $f: U_0 \to V_0$ is bijective, and its inverse $g = f^{-1}: V_0 \to U_0$ is \mathcal{C}^1 in V_0 . In this case we have $Dg(f(a)) = Df(a)^{-1}$.

Proof: Let A = Df(a) and note that A is invertible. Since U is open and f is \mathcal{C}^1 , we can choose r > 0 so that $B(a, r) \subseteq U$ and so that $\left|\frac{\partial f_k}{\partial x_\ell}(x) - \frac{\partial f_k}{\partial f_\ell}(a)\right| \leq \frac{1}{2n^2 \|A^{-1}\|}$ for all k, ℓ . Let $U_0 = B(a, r)$ and note that for all $x \in U_0$ we have $\left\|Df(x) - A\right\| \leq \frac{1}{2\|A^{-1}\|}$.

Claim 1: for all $x \in U_0$, the matrix Df(x) is invertible.

Let $x \in U_0$ and suppose, for a contradiction, that Df(x) is not invertible. Then we can choose $u \in \mathbb{R}^n$ with |u| = 1 such that Df(x)u = 0. But then we have

$$\left\| Df(x) - A \right\| \ge \left| (Df(a) - A)u \right| = \left| Au \right| \ge \frac{|u|}{\|A^{-1}\|} = \frac{1}{\|A^{-1}\|}$$

which contradicts the fact that since $x \in U_0$ we have $||Df(x) - A|| \le \frac{1}{2||A^{-1}||}$.

Claim 2: for all $b, c \in U_0$ we have $|f(c) - f(b) - A(c-b)| \le \frac{||c-b|}{2||A^{-1}||}$.

Let $b, c \in U_0$. Let $\alpha(t) = b + t(c - b)$ and note that $\alpha(t) \in U_0$ for all $t \in [0, 1]$. Let $\phi(t) = f(\alpha(t)) - L(\alpha(t))$ where L is the linearization of f at a given by L(a) = f(a) + Df(a)(x-a), and note that $\phi(1) - \phi(0) = (f(c) - L(c)) - (f(b) - L(b)) = f(c) - f(b) - A(c - b)$. By the Chain Rule, we have $\phi'(t) = Df(\alpha(t))\alpha'(t) - DL(\alpha(t))\alpha'(t) = (Df(\alpha(t)) - A)(c - b)$ and so

$$|\phi'(t)| \le ||Df(\alpha(t)) - A|| |c - b| \le \frac{|c - b|}{2||A^{-1}||}.$$

By the Mean Value Theorem, using $u = \phi(1) - \phi(0)$, we choose $t \in [0, 1]$ such that

$$|\phi(1) - \phi(0)|^2 = (\phi(1) - \phi(0)) \cdot u = (D\phi(t)(1-0)) \cdot u = \phi'(t) \cdot u$$

= $|\phi'(t) \cdot (\phi(1) - \phi(0))| \le |\phi'(t)| |\phi(1) - \phi(0)|$

by the Cauchy Schwarz Inequality, and hence $|\phi(1) - \phi(0)| \le |\phi'(t)| \le \frac{|c-b|}{2||A^{-1}||}$, that is

$$|f(c) - f(b) - A(c - b)| \le \frac{|c - b|}{2||A^{-1}||}.$$

Claim 3: for all $b, c \in U_0$ we have $|f(c) - f(b)| \ge \frac{|c-b|}{2||A^{-1}||}$. Let $b, c \in U_0$. By the Triangle Inequality we have

$$|f(c) - f(b) - A(c - b)| \ge |A(c - b)| - |f(c) - f(b)| \ge \frac{|c - b|}{\|A^{-1}\|} - |f(c) - f(b)|$$

and so, by Claim 3, we have

$$\left|f(c) - f(b)\right| \ge \frac{|c-b|}{\|A^{-1}\|} - \left|f(c) - f(b) - A(c-b)\right| \ge \frac{|c-b|}{\|A^{-1}\|} - \frac{|c-b|}{2\|A^{-1}\|} = \frac{|c-b|}{2\|A^{-1}\|}.$$

It follows that when $b \neq c$ we have $f(b) \neq f(c)$, so the restriction of f to U_0 is injective. Claim 4: the restriction of f to U_0 is injective, hence $f: U_0 \to V_0 = f(U_0)$ is bijective. By Claim 3, when $b, c \in U_0$ with $b \neq c$ we have $|f(c) - f(b)| \geq \frac{|c-b|}{2||A^{-1}||} > 0$ so that $f(b) \neq f(c)$. Thus the restriction of f to U_0 is injective, as claimed.

Claim 5: the inverse $g = f^{-1} : V_0 \to U_0$ is continuous (indeed uniformly continuous). Let $p, q \in V_0$. Let b = g(p) and c = g(q) so that p = f(b) and q = f(c). By Claim 3 we have $|c - b| \leq 2||A^{-1}|| |f(c) - f(b)|$, that is $|g(q) - g(p)| \leq 2||A^{-1}|| |q - p|$. It follows that g is uniformly continuous in V_0 . Claim 6: the set V_0 is open in \mathbb{R}^n .

Let $p \in V_0$. Let b = g(p) so that p = f(b). Choose s > 0 so that $\overline{B}(b,s) \subseteq U_0$. We shall show that $B(p, \frac{s}{4\|A^{-1}\|}) \subseteq V_0$. Let $q \in B(b, \frac{s}{4\|A^{-1}\|})$. We need to show that $q \in V_0 = f(U_0)$ and in fact we shall show that $q \in f(B(b,s))$. To do this, define $\psi : U \to \mathbb{R}$ by $\psi(x) = |f(x) - q|$. Since ψ is continuous, it attains its minimum value on the compact set $\overline{B}(b,s)$, say at $c \in \overline{B}(b,s)$. We shall show that $c \in B(b,s)$ and that f(c) = q so we have $q \in f(B(b,s))$, hence $q \in f(U_0) = V_0$, hence $B(b, \frac{s}{4\|A^{-1}\|}) \subseteq V_0$, and hence V_0 is open.

Claim 6(a): we have $c \in B(b, s)$.

Suppose, for a contradiction, that $c \notin B(b,s)$ so we have |c - b| = s. Then

$$\begin{split} \psi(b) &= \left| f(b) - q \right| = \left| p - q \right| < \frac{s}{4 \|A^{-1}\|} \text{ and, using Claim 3,} \\ \psi(c) &= \left| f(c) - q \right| \ge \left| f(c) - f(b) \right| - \left| f(b) - q \right| \ge \frac{|c-b|}{2 \|A^{-1}\|} - |p-q| \\ &= \frac{s}{2 \|A^{-1}\|} - |p-q| > \frac{s}{2 \|A^{-1}\|} - \frac{s}{4 \|A^{-1}\|} = \frac{s}{4 \|A^{-1}\|} \end{split}$$

so that $\psi(b) < \psi(c)$. But this contradicts the fact that $\psi(c)$ is the minimum value of $\psi(x)$ in $\overline{B}(b,s)$, so we have $c \in B(b,s)$, as claimed.

Claim 6(b): we have f(c) = q.

Suppose, for a contradiction, that $f(c) \neq q$ so we have $\psi(c) > 0$. Let v = q - f(c) so that $|v| = \psi(c) > 0$. Let $u = A^{-1}v$ so that v = Au. Then for $0 \leq t \leq 1$, using Claim 2, we have

$$\begin{split} \psi(c+tu) &= \left| f(c+tu) - q \right| \le \left| f(c+tu) - f(c) - Atu \right| + \left| f(c) + Atu - q \right| \\ &\le \frac{|tu|}{2||A^{-1}||} + |tv - v| = \frac{t|A^{-1}v|}{2||A^{-1}||} + (1-t)|v| \le \frac{t}{2} |v| + (1-t)|v| = \left(1 - \frac{t}{2}\right) |v|. \end{split}$$

Since |v| > 0 we have $\psi(c + tu) \le (1 - \frac{t}{2})|v| < |v| = \psi(c)$. But this again contradicts the fact that $\psi(x)$ attains its minimum value at c, and so we have f(c) = q, as claimed.

Claim 7: the function g is differentiable in V_0 with $Dg(f(b)) = Df(b)^{-1}$ for all $b \in U_0$. Let $p \in V_0$ and let b = g(p) so that f(b) = p. Let B = Df(b). Note that B is invertible by Claim 1. Let $C = B^{-1}$. Let $y \in V_0$ and let $x = g(y) \in U_0$ so that y = f(x). Then we have

$$|g(y) - g(p) - C(y - p)| = |x - b - C(f(x) - f(b))| = |CB(x - b - C(f(x) - f(b)))|$$

= $|C(Bx - Bb - (f(x) - f(b)))| \le ||C|| |f(x) - f(b) - B(x - b)|$

Also, as shown above, we have $|y - p| = |f(x) - f(b)| \ge \frac{|x-b|}{2||A^{-1}||}$ so that

$$|x-b| \le 2||A^{-1}|| |y-p|.$$

It follows that g is differentiable at p with $Dg(p) = C = Df(b)^{-1}$, as claimed. Indeed, given $\epsilon > 0$, since f is differentiable at b with Df(b) = B we can choose $\delta_1 > 0$ so that when $|x-a| < \delta_1$ we have $|f(x) - f(b) - B(x-b)| \le \frac{\epsilon}{2||A^{-1}|| ||C||} ||x-b||$, and since g is continuous at b we can choose $\delta > 0$ so that when $|y-p| < \delta$ we have $|x-b| = |g(y) - g(b)| < \delta_1$. When $|y-p| < \delta$, the above inequalities give $|g(y) - g(b) - C(y-p)| \le \epsilon |y-p|$.

Claim 8: the function g is C^1 in V_0 .

By the cofactor formula for the inverse of a matrix, for all $y \in V_0$ and all indices k, ℓ ,

$$\frac{\partial g_k}{\partial y_\ell}(y) = \left(Dg(y)\right)_{k,\ell} = \left(Df(g(y))^{-1}\right)_{k,\ell} = \frac{(-1)^{k+\ell}}{\det Df(g(y))} \det E$$

where is E is the matrix obtained from Df(g(y)) by removing the k^{th} column and the ℓ^{th} row. Thus $\frac{\partial g_k}{\partial y_\ell}(y)$ is a continuous function of y, as claimed.

5.19 Corollary: (The Parametric Function Theorem) Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}^{n+k}$ be \mathcal{C}^1 . Let $a \in U$ and suppose that Df(a) has rank n. Then $\operatorname{Range}(f)$ is locally equal to the graph of a \mathcal{C}^1 function.

Proof: Since Df(a) has maximal rank n, it follows that some $n \times n$ submatrix of Df(a) is invertible. By reordering the variables in \mathbb{R}^{n+k} , if necessary, suppose that the top n rows of Df(a) form an invertible $n \times n$ submatrix. Write f(t) = (x(t), y(t)), where $x(t) = (x_1(t), \dots, x_n(t))$ and $y(t) = (y_1(t), \dots, y_k(t))$, so that we have

$$Df(t) = \begin{pmatrix} Dx(t) \\ Dy(t) \end{pmatrix}$$

with Dx(a) invertible. By the Inverse function Theorem, the function x(t) is locally invertible. Write the inverse function as t = t(x) and let g(x) = y(t(x)). Then, locally, we have $\operatorname{Range}(f) = \operatorname{Graph}(g)$ because if $(x, y) \in \operatorname{Graph}(g)$ and we choose t = t(x) then we have $(x, y) = (x, g(x)) = (x(t), g(x(t))) = (x(t), y(t)) \in \operatorname{Range}(f)$ and, on the other hand, if $(x, y) \in \operatorname{Range}(f)$, say (x, y) = (x(t), y(t)) then we must have t = t(x) so that y(t) = y(t(x)) = g(x) so that $(x, y) = (x(t), y(t)) = (x, g(x)) \in \operatorname{Graph}(g)$.

5.20 Corollary: (The Implicit Function Theorem) Let $f : U \subseteq \mathbb{R}^{n+k} \to \mathbb{R}^k$ be \mathcal{C}^1 . Let $p \in U$, suppose that Df(p) has rank k and let c = f(p). Then the level set $f^{-1}(c)$ is locally the graph of a \mathcal{C}^1 function.

Proof: Since Df(p) has rank k, it follows that some $k \times k$ submatrix of f is invertible. By reordering the variables in \mathbb{R}^{n+k} , if necessary, suppose that the last k columns of Df(p) form an invertible $k \times k$ matrix. Write p = (a, b) with $a = (p_1, \dots, p_n) \in \mathbb{R}^n$ and $b = (p_{n+1}, \dots, p_{n+k}) \in \mathbb{R}^k$ and write z = f(x, y) with $x \in \mathbb{R}^n$, $y \in \mathbb{R}^k$ and $z \in \mathbb{R}^k$, and write

$$Df(x,y) = \left(\frac{\partial z}{\partial x}(x,y), \frac{\partial z}{\partial y}(x,y)\right)$$

with $\frac{\partial z}{\partial y}(a,b)$ invertible. Define $F: U \subseteq \mathbb{R}^{n+k} \to \mathbb{R}^{n+k}$ by F(x,y) = (x, f(x,y)) = (w,z). Then we have

$$DF = \begin{pmatrix} I & O\\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{pmatrix}$$

with DF(a, b) invertible. By the Inverse Function Theorem, F = F(x, y) is locally invertible. Write the inverse function as (x, y) = G(w, z) = (w, g(w, z)) and let h(x) = g(x, c). Then, locally, we have $f^{-1}(c) = \text{Graph}(h)$ because

$$f(x,y) = c \iff F(x,y) = (x,c) \iff (x,y) = G(x,c)$$
$$\iff (x,y) = (x,g(x,c)) \iff (x,y) \in \operatorname{Graph}(h).$$

5.21 Remark: We can also find a formula for Dh where h is the function in the above proof. Since G(w, z) = (w, g(w, z)) we have $DG(w, z) = \begin{pmatrix} I & O \\ \frac{\partial g}{\partial w} & \frac{\partial g}{\partial z} \end{pmatrix}$ and we also have

$$DG(w,z) = DF(x,y)^{-1} = \begin{pmatrix} I & O \\ -\left(\frac{\partial z}{\partial y}\right)^{-1}\frac{\partial z}{\partial x} & \left(\frac{\partial z}{\partial y}\right)^{-1} \end{pmatrix} \text{ so, since } h(x) = g(x,c), \text{ we have}$$
$$Dh(x) = \frac{\partial g}{\partial w}(x,c) = -\left(\frac{\partial z}{\partial y}\right)^{-1}\frac{\partial z}{\partial x}(x,y).$$