
Chapter 5. Differentiation

In this chapter (and the next) we give a more detailed and precise presentation of differ-
entiation in Euclidean space. We repeat some of the definitions from the previous chapter,
and we restate some of the theorems (in a different order), and we provide rigorous proofs
for the theorems which were not proven earlier. We also prove a few additional theorems.

5.1 Note: Recall that for a single-variable function f : U ⊆ R→ R and a ∈ U ,

f is differentiable at a ⇐⇒ lim
x→a

f(x)− f(a)

x− a
exists

⇐⇒ ∃m∈R ∀ε>0 ∃δ>0 ∀x∈U 0< |x−a|<δ =⇒
∣∣∣f(x)− f(a)

x− a
−m

∣∣∣ < ε

⇐⇒ ∃m∈R ∀ε>0 ∃δ>0 ∀x∈U 0< |x−a|< δ =⇒
∣∣f(x)− f(a)−m(x− a)

∣∣ < ε |x− a|
⇐⇒ ∃m∈R ∀ε>0 ∃δ>0 ∀x∈U |x−a| ≤ δ =⇒

∣∣f(x)−
(
f(a) +m(x− a)

)∣∣ ≤ ε |x− a|.
In this case, the number m ∈ R is unique, we call it the derivative of f at a and denote
it by f ′(a), and the map `(x) = f(a) + f ′(a)(x− a) is called the linearization of f at a.

5.2 Definition: Let f : U ⊆ Rn → Rm, where U is open. We say f is differentiable at
a ∈ U if there is an m× n matrix A such that

∀ ε>0 ∃ δ>0 ∀x∈U
(
|x− a| ≤ δ =⇒

∣∣f(x)− (f(a) +A(x− a))
∣∣ ≤ ε|x− a|).

We show below that the matrix A is unique, we call it the derivative (matrix) of f at a, and
we denote it by Df(a). The affine map L : Rn → Rm given by L(x) = f(a)+Df(a)(x−a),
which approximates f(x), is called the linearization of f at a. We say f is differentiable
in U when it is differentiable at every point a ∈ U .

5.3 Example: If f is the affine map f(x) = Ax + b, then we have Df(a) = A for all a.
Indeed given ε > 0 we can choose δ > 0 to be anything we like, and then for all x we have∣∣f(x)− f(a)−A(x− a)

∣∣ =
∣∣Ax+ b−Aa− b−Ax+Aa

∣∣ = 0 ≤ ε|x− a|.

5.4 Theorem: (The Derivative is the Jacobian) Let f : U ⊆ Rn → Rm and let a ∈ U .
If f is differentiable at a then the partial derivatives ∂fk

∂x`
(a) all exist and the matrix A

which appears in the definition of the derivative is equal to the Jacobian matrix Df(a).

Proof: Suppose that f is differentiable at a. Fix indices k and ` and let g(t) = fk(a+ te`)
so that ∂fk

∂x`
(a) = g′(0) provided that the derivative g′(0) exists. Let A be a matrix as in

the definition of differentiability. Let ε > 0. Choose δ > 0 such that for all x ∈ U with
|x − a| ≤ δ we have

∣∣f(x) − f(a) − A(x − a)
∣∣ ≤ ε |x − a|. Let t ∈ R with |t| ≤ δ. Let

x = a+t e`. Then we have |x−a| = |te`| = |t| ≤ δ and so
∣∣f(x)−f(a)−A(x−a)

∣∣ ≤ ε |x−a|.
Since for any vector u ∈ Rm we have |uk| ≤ |u|, we have∣∣g(t)− g(0)−Ak,` t

∣∣ =
∣∣fk(a+ te`)− fk(a)−

(
A(te`)

)
k

∣∣
≤
∣∣f(a+ te`)− f(a)−A(te`)

∣∣
=
∣∣f(x)− f(a)−A(x− a)

∣∣
≤ ε |x− a| = ε |t|.

It follows that Ak,` = g′(0) = ∂fk
∂x`

(a), as required.
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5.5 Definition: Let A ∈ Mm×n(R) and let S =
{
x ∈ Rn

∣∣ |x| = 1
}

. Since S is compact,

by the Extreme Value Theorem, the continuous function f : Rn → R given by f(x) =
∣∣Ax∣∣

attains its maximum value on S. We define the norm of the matrix A to be

‖A‖ = max
{
|Ax|

∣∣ |x| = 1
}
.

5.6 Lemma: (Properties of the Matrix Norm) Let A ∈Mm×n(R). Then

(1) |Ax| ≤ ‖A‖ |x| for all x ∈ Rn,

(2) if A is invertible then |Ax| ≥ |x|
‖A−1‖ for all x ∈ Rn,

(3) ‖A‖ ≤
m∑
k=1

n∑̀
=1

|Ak,`|, and

(4) ‖A‖ is equal to the square root of the largest eigenvalue of the matrix ATA.

Proof: When x = 0 ∈ Rn we have |Ax| = 0 = ‖A‖ |x| and when 0 6= x ∈ Rn we have

|Ax| =
∣∣∣|x|A x

|x|

∣∣∣ = |x|
∣∣A x
|x|
∣∣ ≤ |x| ‖A‖.

This proves Part 1. To prove Part 2, suppose that A is invertible. Then we can choose
x ∈ Rn with |x| = 1 such that Ax 6= 0 so we must have ‖A‖ > 0. Similarly, since
A−1 is also invertible, we also have ‖A−1‖ > 0. By Part 1, for all x ∈ Rn we have

|x| =
∣∣A−1Ax∣∣ ≤ ‖A−1‖ |Ax| so that |Ax| ≥ |x|

‖A−1‖ , as required. To prove Part 3, let

x ∈ Rn with |x| = 1. Then |x`| ≤ |x| ≤ 1 for all indices `, and so∣∣Ax∣∣ =
∣∣∣ m∑
k=1

(Ax)kek

∣∣∣ ≤ m∑
k=1

∣∣(Ax)k
∣∣ =

m∑
k=1

∣∣∣ n∑̀
=1

Ak,`x`

∣∣∣ ≤ m∑
k=1

n∑̀
=1

|Ak,`| |x`| ≤
m∑
k=1

n∑̀
=1

|Ak,`|.

We omit the proof of Part 4, which we shall not use (it is often proven in a linear algebra
course).

5.7 Theorem: (Differentiability Implies Continuity) Let f : U ⊆ Rn → Rm. If f is
differentiable at a ∈ U , then f is continuous at a.

Proof: Suppose f is differentiable at a. Note that for all x ∈ U we have

|f(x)− f(a)| =
∣∣f(x)− f(a)−Df(a)(x− a) +Df(a)(x− a)

∣∣
≤
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣+ |Df(a) (x− a)
∣∣

≤
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣+ ‖Df(a)‖ |x− a|

Let ε > 0. Since f is differentiable at a we can choose δ with 0 < δ <
ε

1+‖Df(a)‖ such that

|x− a| ≤ δ =⇒
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣ ≤ |x− a|
and then for |x− a| ≤ δ we have∣∣f(x)− f(a)

∣∣ ≤ ∣∣f(x)− f(a)−Df(a)(x− a)
∣∣+ ‖Df(a)‖ |x− a|

≤ |x− a|+ ‖Df(a)‖ |x− a| =
(
1 + ‖Df(a)‖

)
|x− a|

≤
(
1 + ‖Df(a)‖

)
δ < ε.
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5.8 Theorem: (The Chain Rule) Let f : U ⊆ Rn → V ⊆ Rm, let g : V ⊆ Rm → R`,
and let h(x) = g(f(x)). If f is differentiable at a and g is differentiable at f(a) then h is
differentiable at a and Dh(a) = Dg(f(a))Df(a).

Proof: Suppose f is differentiable at a and g is differentiable at f(a). Write y = f(x) and
b = f(a). We have∣∣h(x)− h(a)−Dg(f(a))Df(a)(x− a)

∣∣ =
∣∣g(y)− g(b)−Dg(b)Df(a)(x− a)

∣∣
=
∣∣g(y)− g(b)−Dg(b)(y − b) +Dg(b)(y − b)−Dg(b)Df(a)(x− a)

∣∣
≤
∣∣g(y)− g(b)−Dg(b)(y − b)

∣∣+ ‖Dg(b)‖
∣∣y − b−Df(a)(x− a)

∣∣
≤
∣∣g(y)− g(b)−Dg(b)(y − b)

∣∣+
(
1 + ‖Dg(b)‖

)∣∣f(x)− f(a)−Df(a)(x− a)
∣∣

and
|y − b| = |f(x)− f(a)|

=
∣∣f(x)− f(a)−Df(a)(x− a) +Df(a)(x− a)

∣∣
≤
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣+ ‖Df(a)‖ |x− a| .

Let ε > 0 be given. Since g is differentiable at b we can choose δ0 > 0 so that

|y − b| ≤ δ0 =⇒
∣∣g(y)− g(b)−Dg(b)(y − b)

∣∣ ≤ ε
2(1+‖Df(a)‖)

|y − b| .

Since f is continuous at a we can choose δ1 > 0 so that

|x− a| ≤ δ1 =⇒ |y − b| = |f(x)− f(a)| ≤ δ0
Since f is differentiable at a we can choose δ2 > 0 so that

|x− a| ≤ δ2 =⇒
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣ ≤ |x− a|
and we can choose δ3 > 0 so that

|x− a| ≤ δ3 =⇒
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣ ≤ ε
2(1+‖Dg(a)‖)

|x− a| .

Let δ = min{δ1, δ2, δ3}. Then for |x− a| ≤ δ we have

|y − b| ≤
∣∣f(x)− f(a)−Df(a)(x− a)

∣∣+
∣∣Df(a)(x− a)

∣∣
≤ |x− a|+ ‖Df(a)‖ |x− a|
= (1 + ‖Df(a)‖) |x− a|

so ∣∣g(y)− g(b)−Dg(b)(y − b)
∣∣ ≤ ε

2(1+‖Df(a)‖)
|y − b| ≤ ε

2 |x− a|

and we have (
1 + ‖Dg(b)‖

)∣∣f(x)− f(a)−Df(a)(x− a)
∣∣ ≤ ε

2 |x− a|

and so ∣∣h(x)− h(a)−Dg(f(a))Df(a)(x− a)
∣∣ ≤ ε

2 |x− a|+
ε
2 |x− a| = ε|x− a|.

Thus h is differentiable at a with derivative Dh(a) = Dg(f(a))Df(a), as required.
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5.9 Definition: Let f : U ⊆ Rn → R, let a ∈ Rn and let v ∈ Rn. We define the
directional derivative of f at a with respect to v, written as Dvf(a), as follows: pick
any differentiable function α : (−ε, ε) ⊆ R → U ⊆ Rn, where ε > 0, such that α(0) = a
and α′(0) = v (for example, we could pick α(t) = a+ v t), let g(t) = f(α(t)), note that by
the Chain Rule we have g′(t) = Df(α(t))α′(t), and then define

Dvf(a) = g′(0) = Df(α(0))α′(0) = Df(a) v = ∇f(a) . v .
Notice that the formula for Dvf(a) does not depend on the choice of the function α(t).
The directional derivative of f at a in the direction of v is defined to be Dwf(a)
where w is the unit vector in the direction of v, that is w = v

|v| .

5.10 Remark: Some books only define the directional derivative in the case that vector
is a unit vector.

5.11 Theorem: Let f : U ⊆ Rn → R be differentiable at a ∈ U . Say f(a) = b. The
gradient ∇f(a) is perpendicular to the level set f(x) = b, it is in the direction in which f
increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: Let α(t) be any curve in the level set f(x) = b, with α(0) = a. We wish to show that
∇f(a) ⊥ α′(0). Since α(t) lies in the level set f(x) = b, we have f(α(t)) = b for all t. Take
the derivative of both sides to get Df(α(t))α′(t) = 0. Put in t = 0 to get Df(a)α′(0) = 0,
that is ∇f(a) .α′(0) = 0. Thus ∇f(a) is perpendicular to the level set f(x) = b.

Next, let u be a unit vector. Then Duf(a) = ∇f(a) .u = |∇f(a)| cos θ, where θ is the
angle between u and ∇f(a). So the maximum possible value of Duf(a) is |∇f(a)|, and this
occurs when cos θ = 1, that is when θ = 0, which happens when u is in the direction of
∇f(a).

5.12 Theorem: (Continuous Partial Derivatives Imply Differentiability) Let U ⊆ Rn be
open, let f : U ⊆ Rn → Rm and let a ∈ U . If the partial derivatives ∂fk

∂x`
(x) exist in U and

are continuous at a then f is differentiable at a.

Proof: Suppose that the partial derivatives ∂fk
∂x`

(x) exist in U and are continuous at a.

Let ε > 0. Choose δ > 0 so that B(a, δ) ⊆ U and so that for all indices k, ` and for all
y ∈ U we have |y − a| ≤ δ =⇒

∣∣∂fk
∂x`

(y) − ∂fk
∂x`

(a)
∣∣ ≤ ε

nm . Let x ∈ U with |x − a| ≤ δ. For

0 ≤ ` ≤ n, let u` = (x1, · · · , x`, a`+1, · · · , an), with u0 = a and un = x, and note that each
u`∈B(a, δ). For 1≤`≤n, let α`(t)=(x1, · · · , x`−1, t, a`+1, · · · , an) for t between a` and x`,
For 1≤ k≤m and 1≤ `≤ n, let gk,`(t) = fk

(
α`(t)

)
so that g′k,`(t) = ∂fk

∂x`

(
α`(t)

)
. By the

Mean Value Theorem, we can choose sk,` between a` and x` so that g′k,`(sk,`)(x` − a`) =

gk,`(x`)−gk,`(a`) or, equivalently, so that ∂fk
∂x`

(
α`(sk,`)

)
(x`−a`) = fk(u`)−fk(u`−1). Then

fk(x)− fk(a) = fk(un)− fk(u0) =
n∑̀
=1

(
fk(u`)− fk(u`−1)

)
=

n∑̀
=1

∂fk
∂x`

(
α`(sk,`)

)
(x` − a`).

Let B ∈ Mm×n(R) be the matrix with entries Bk,` = ∂f
∂x`

(
α`(sk,`)

)
. Then (using Part 2

of Lemma 5.7)we have∣∣∣f(x)− f(a)−Df(a)(x− a)
∣∣∣ =

∣∣∣(B −Df(a)
)
(x− a)

∣∣∣ ≤ ∥∥B −Df(a)
∥∥ |x− a|

≤
∑
k,`

∣∣∂fk
∂x`

(α`(sk,`))− ∂fk
∂x`

(a)
∣∣ |x− a| ≤ ε|x− a|.

5.13 Corollary: If U ⊆ Rn is open and f : U ⊆ Rn → Rm is C1 then f is differentiable.
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5.14 Corollary: Every function f : U ⊆ Rn → Rm, which can be obtained by applying
the standard operations (such as multiplication and composition) of functions to basic
elementary functions defined on open domains, is differentiable in U .

5.15 Exercise: For each of the following functions f : R2 \ {(0, 0)} → R, extend the
domain of f(x, y) to all of R2 by defining f(0, 0) = 0 and then determine whether the
partial derivatives of f exist at (0, 0) and whether f is differential at (0, 0).

(a) f(x, y) = xy
x2+y2 (b) f(x, y) = |xy| (c) f(x, y) =

√
|xy|

(d) f(x, y) = x3

x2+y2 (e) f(x, y) = x
(x2+y2)1/3

(f) f(x, y) = x3−3xy2
x2+y2

5.16 Theorem: (The Mean Value Theorem) Let f : U ⊆ Rn → Rm with U open in Rn.
Suppose that f is differentiable in U . Let u ∈ Rm and let a, b ∈ U with [a, b] ⊆ U , where
we recall that [a, b] =

{
a+t(b−a)

∣∣ 0≤ t≤1
}

. Then there exists c ∈ [a, b] such that

Df(c)(b− a) .u =
(
f(b)− f(a)

) .u.
Proof: Let α(t) = a+ t(b−a) and define g : [0, 1]→ R by g(t) = f

(
α(t)

) .u. By the Chain

Rule, we have g′(t) =
(
Df(α(t))α′(t)

) .u =
(
Df(α(t))(b − a)

) .u. By the Mean Value
Theorem (for a real-valued function of a single variable) we can choose s ∈ [0, 1] such that
g′(s) = g(1)− g(0), that is

(
Df(α(s))(b− a)

) .u = f(b) .u− f(a) .u =
(
f(b)− f(a)

) .u.

Thus we can take c = α(s) ∈ [a, b] to get Df(c)(b− a) .u =
(
f(b)− f(a)

) .u.

5.17 Corollary: (Vanishing Derivative) Let U ⊆ Rn be open and connected and let
f : U → Rm be differentiable with Df(x) = O for all x ∈ U . Then f is constant in U .

Proof: Let a ∈ U and let A =
{
x ∈ U

∣∣f(x) = f(a)
}

. We claim that A is open (both
in Rn and in U). Let b ∈ A, that is let b ∈ U with f(b) = f(a). Since U is open we
can choose r > 0 so that B(b, r) ⊆ U . Let c ∈ B(b, r). Since B(b, r) is convex we have
[b, c] ⊆ B(b, r) ⊆ U . Let u = f(c) − f(b) and choose d ∈ [b, c], as in the Mean Value
Theorem, so that

(
Df(d)(c− b)

) .u =
(
f(c)− f(b)

) .u. Then we have∣∣f(c)− f(b)
∣∣2 =

(
f(c)− f(b)

) .u =
(
Df(d)(c− b)

) .u = 0

since Df(d) = O . Since
∣∣f(c)− f(b)

∣∣ = 0 we have f(c) = f(b) = f(a), and so c ∈ A. Thus
B(b, r) ⊆ A and so A is open, as claimed. A similar argument shows that if b ∈ U \ A
and we chose r > 0 so that B(b, r) ⊆ U then we have f(c) = f(b) for all c ∈ B(b, r) hence
B(b, r) ⊆ U \ A and hence U \ A is also open. Note that A is non-empty since a ∈ A. If
U \ A was also non-empty then U would be the union of the two non-empty open sets A
and U \A, and this is not possible since U is connected. Thus U \A = ∅ so U = A. Since
U = A =

{
x ∈ U

∣∣f(x) = f(a)
}

we have f(x) = f(a) for all x ∈ U , so f is constant in U .
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5.18 Theorem: (The Inverse Function Theorem) Let f : U ⊆ Rn → Rn where U ⊆ Rn
is open with a ∈ U . Suppose that f is C1 in U and that Df(a) is invertible. Then there
exists an open set U0 ⊆ U with a ∈ U0 such that the set V0 = f(U0) is open in Rn and the
restriction f : U0 → V0 is bijective, and its inverse g = f−1 : V0 → U0 is C1 in V0. In this
case we have Dg(f(a)

)
= Df(a)−1.

Proof: Let A = Df(a) and note that A is invertible. Since U is open and f is C1, we can
choose r > 0 so that B(a, r) ⊆ U and so that

∣∣∂fk
∂x`

(x)− ∂fk
∂f`

(a)
∣∣ ≤ 1

2n2‖A−1‖ for all k, `. Let

U0 = B(a, r) and note that for all x ∈ U0 we have
∥∥Df(x)−A

∥∥ ≤ 1
2‖A−1‖ .

Claim 1: for all x ∈ U0, the matrix Df(x) is invertible.
Let x ∈ U0 and suppose, for a contradiction, that Df(x) is not invertible. Then we can
choose u ∈ Rn with |u| = 1 such that Df(x)u = 0. But then we have∥∥Df(x)−A

∥∥ ≥ ∣∣(Df(a)−A)u
∣∣ =

∣∣Au| ≥ |u|
‖A−1‖ = 1

‖A−1‖

which contradicts the fact that since x ∈ U0 we have
∥∥Df(x)−A

∥∥ ≤ 1
2‖A−1‖ .

Claim 2: for all b, c ∈ U0 we have
∣∣f(c)− f(b)−A(c− b)

∣∣ ≤ ‖c−b|
2‖A−1‖ .

Let b, c ∈ U0. Let α(t) = b+ t(c− b) and note that α(t) ∈ U0 for all t ∈ [0, 1]. Let φ(t) =
f
(
α(t)

)
−L
(
α(t)

)
where L is the linearization of f at a given by L(a) = f(a)+Df(a)(x−a),

and note that φ(1) − φ(0) =
(
f(c) − L(c)

)
−
(
f(b) − L(b)

)
= f(c) − f(b) − A(c − b). By

the Chain Rule, we have φ′(t) = Df
(
α(t)

)
α′(t)−DL

(
α(t)

)
α′(t) =

(
Df
(
α(t)

)
− A

)
(c− b)

and so ∣∣φ′(t)∣∣ ≤ ∥∥Df(α(t)
)
−A

∥∥ |c− b| ≤ |c−b|
2‖A−1‖ .

By the Mean Value Theorem, using u = φ(1)− φ(0), we choose t ∈ [0, 1] such that∣∣φ(1)− φ(0)
∣∣2 = (φ(1)− φ(0)) .u = (Dφ(t)(1− 0)) .u = φ′(t) .u

=
∣∣φ′(t) . (φ(1)− φ(0))

∣∣ ≤ ∣∣φ′(t)∣∣ ∣∣φ(1)− φ(0)
∣∣

by the Cauchy Schwarz Inequality, and hence |φ(1)− φ(0)| ≤ |φ′(t)| ≤ |c−b|
2‖A−1‖ , that is∣∣f(c)− f(b)−A(c− b)

∣∣ ≤ |c−b|
2‖A−1‖ .

Claim 3: for all b, c ∈ U0 we have
∣∣f(c)− f(b)

∣∣ ≥ |c−b|
2‖A−1‖ .

Let b, c ∈ U0. By the Triangle Inequality we have∣∣f(c)− f(b)−A(c− b)
∣∣ ≥ ∣∣A(c− b)

∣∣− ∣∣f(c)− f(b)
∣∣ ≥ |c−b|

‖A−1‖ −
∣∣f(c)− f(b)

∣∣
and so, by Claim 3, we have∣∣f(c)− f(b)

∣∣ ≥ |c−b|
‖A−1‖ −

∣∣f(c)− f(b)−A(c− b)
∣∣ ≥ |c−b|

‖A−1‖ −
|c−b|

2‖A−1‖ = |c−b|
2‖A−1‖ .

It follows that when b 6= c we have f(b) 6= f(c), so the restriction of f to U0 is injective.

Claim 4: the restriction of f to U0 is injective, hence f : U0 → V0 = f(U0) is bijective.

By Claim 3, when b, c ∈ U0 with b 6= c we have
∣∣f(c) − f(b)

∣∣ ≥ |c−b|
2‖A−1‖ > 0 so that

f(b) 6= f(c). Thus the restriction of f to U0 is injective, as claimed.

Claim 5: the inverse g = f−1 : V0 → U0 is continuous (indeed uniformly continuous).
Let p, q ∈ V0. Let b = g(p) and c = g(q) so that p = f(b) and q = f(c). By Claim 3 we
have |c− b| ≤ 2‖A−1‖

∣∣f(c)− f(b)
∣∣, that is

∣∣g(q)− g(p)
∣∣ ≤ 2‖A−1‖ |q − p|. It follows that

g is uniformly continuous in V0.
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Claim 6: the set V0 is open in Rn.
Let p ∈ V0. Let b = g(p) so that p = f(b). Choose s > 0 so that B(b, s) ⊆ U0.
We shall show that B

(
p, s

4‖A−1‖

)
⊆ V0. Let q ∈ B

(
b, s

4‖A−1‖

)
. We need to show that

q ∈ V0 = f(U0) and in fact we shall show that q ∈ f
(
B(b, s)

)
. To do this, define ψ : U → R

by ψ(x) =
∣∣f(x)− q

∣∣. Since ψ is continuous, it attains its minimum value on the compact

set B(b, s), say at c ∈ B(b, s). We shall show that c ∈ B(b, s) and that f(c) = q so we have
q ∈ f

(
B(b, s)

)
, hence q ∈ f(U0) = V0, hence B

(
b, s

4‖A−1‖

)
⊆ V0, and hence V0 is open.

Claim 6(a): we have c ∈ B(b, s).
Suppose, for a contradiction, that c /∈ B(b, s) so we have |c− b| = s. Then

ψ(b) =
∣∣f(b)− q

∣∣ = |p− q| < s
4‖A−1‖ and, using Claim 3,

ψ(c) =
∣∣f(c)− q

∣∣ ≥ ∣∣f(c)− f(b)
∣∣− ∣∣f(b)− q

∣∣ ≥ |c−b|
2‖A−1‖ − |p− q|

= s
2‖A−1‖ − |p− q| >

s
2‖A−1‖ −

s
4‖A−1‖ = s

4‖A−1‖

so that ψ(b) < ψ(c). But this contradicts the fact that ψ(c) is the minimum value of ψ(x)
in B(b, s), so we have c ∈ B(b, s), as claimed.

Claim 6(b): we have f(c) = q.
Suppose, for a contradiction, that f(c) 6= q so we have ψ(c) > 0. Let v = q − f(c) so that
|v| = ψ(c) > 0. Let u = A−1v so that v = Au. Then for 0 ≤ t ≤ 1, using Claim 2, we have

ψ(c+ tu) =
∣∣f(c+ tu)− q

∣∣ ≤ ∣∣f(c+ tu)− f(c)−Atu
∣∣+
∣∣f(c) +Atu− q

∣∣
≤ |tu|

2‖A−1‖ + |tv − v| = t|A−1v|
2‖A−1‖ + (1− t)|v| ≤ t

2 |v|+ (1− t)|v| =
(
1− t

2

)∣∣v|.
Since |v| > 0 we have ψ(c+ tu) ≤

(
1− t

2

)
|v| < |v| = ψ(c). But this again contradicts the

fact that ψ(x) attains its minimum value at c, and so we have f(c) = q, as claimed.

Claim 7: the function g is differentiable in V0 with Dg
(
f(b)

)
= Df(b)−1 for all b ∈ U0.

Let p ∈ V0 and let b = g(p) so that f(b) = p. Let B = Df(b). Note that B is invertible by
Claim 1. Let C = B−1. Let y ∈ V0 and let x = g(y) ∈ U0 so that y = f(x). Then we have∣∣g(y)− g(p)− C(y − p)

∣∣ =
∣∣x− b− C(f(x)− f(b))

∣∣ =
∣∣CB(x− b− C(f(x)− f(b))

)∣∣
=
∣∣C(Bx−Bb− (f(x)− f(b))

)∣∣ ≤ ‖C‖∣∣f(x)− f(b)−B(x− b)
∣∣ .

Also, as shown above, we have |y − p| =
∣∣f(x)− f(b)

∣∣ ≥ |x−b|
2‖A−1‖ so that

|x− b| ≤ 2‖A−1‖ |y − p|.
It follows that g is differentiable at p with Dg(p) = C = Df(b)−1, as claimed. Indeed,
given ε > 0, since f is differentiable at b with Df(b) = B we can choose δ1 > 0 so that when
|x−a| < δ1 we have

∣∣f(x)− f(b)−B(x− b)
∣∣ ≤ ε

2‖A−1‖ ‖C‖ |x− b|, and since g is continuous

at b we can choose δ > 0 so that when |y − p| < δ we have |x − b| = |g(y) − g(b)| < δ1.
When |y − p| < δ, the above inequalities give

∣∣g(y)− g(b)− C(y − p)
∣∣ ≤ ε |y − p|.

Claim 8: the function g is C1 in V0.
By the cofactor formula for the inverse of a matrix, for all y ∈ V0 and all indices k, `,

∂gk
∂y`

(y) =
(
Dg(y)

)
k,`

=
(
Df(g(y))−1

)
k,`

=
(−1)k+`

detDf(g(y))
detE

where is E is the matrix obtained from Df(g(y)) by removing the kth column and the `th

row. Thus ∂gk
∂y`

(y) is a continuous function of y, as claimed.
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5.19 Corollary: (The Parametric Function Theorem) Let f : U ⊆ Rn → Rn+k be C1.
Let a ∈ U and suppose that Df(a) has rank n. Then Range(f) is locally equal to the
graph of a C1 function.

Proof: Since Df(a) has maximal rank n, it follows that some n × n submatrix of Df(a)
is invertible. By reordering the variables in Rn+k, if necessary, suppose that the top
n rows of Df(a) form an invertible n × n submatrix. Write f(t) =

(
x(t), y(t)

)
, where

x(t) =
(
x1(t), · · · , xn(t)

)
and y(t) =

(
y1(t), · · · , yk(t)

)
, so that we have

Df(t) =

(
Dx(t)
Dy(t)

)
with Dx(a) invertible. By the Inverse function Theorem, the function x(t) is locally
invertible. Write the inverse function as t = t(x) and let g(x) = y

(
t(x)

)
. Then, locally,

we have Range(f) = Graph(g) because if (x, y) ∈ Graph(g) and we choose t = t(x) then
we have (x, y) =

(
x, g(x)

)
=
(
x(t), g(x(t))

)
=
(
x(t), y(t)

)
∈ Range(f) and, on the other

hand, if (x, y) ∈ Range(f), say (x, y) =
(
x(t), y(t)

)
then we must have t = t(x) so that

y(t) = y
(
t(x)

)
= g(x) so that (x, y) =

(
x(t), y(t)

)
=
(
x, g(x)

)
∈ Graph(g).

5.20 Corollary: (The Implicit Function Theorem) Let f : U ⊆ Rn+k → Rk be C1. Let
p ∈ U , suppose that Df(p) has rank k and let c = f(p). Then the level set f−1(c) is locally
the graph of a C1 function.

Proof: Since Df(p) has rank k, it follows that some k × k submatrix of f is invertible.
By reordering the variables in Rn+k, if necessary, suppose that the last k columns of
Df(p) form an invertible k × k matrix. Write p = (a, b) with a = (p1, · · · , pn) ∈ Rn and
b = (pn+1, · · · , pn+k) ∈ Rk and write z = f(x, y) with x ∈ Rn, y ∈ Rk and z ∈ Rk, and
write

Df(x, y) =
(
∂z
∂x (x, y), ∂z∂y (x, y)

)
with ∂z

∂y (a, b) invertible. Define F : U ⊆ Rn+k → Rn+k by F (x, y) =
(
x, f(x, y)

)
= (w, z).

Then we have

DF =

(
I O
∂z
∂x

∂z
∂y

)
with DF (a, b) invertible. By the Inverse Function Theorem, F = F (x, y) is locally invert-
ible. Write the inverse function as (x, y) = G(w, z) =

(
w, g(w, z)

)
and let h(x) = g(x, c).

Then, locally, we have f−1(c) = Graph(h) because

f(x, y) = c ⇐⇒ F (x, y) = (x, c) ⇐⇒ (x, y) = G(x, c)

⇐⇒ (x, y) =
(
x, g(x, c)

)
⇐⇒ (x, y) ∈ Graph(h).

5.21 Remark: We can also find a formula for Dh where h is the function in the above

proof. Since G(w, z) =
(
w, g(w, z)

)
we have DG(w, z) =

(
I O
∂g
∂w

∂g
∂z

)
and we also have

DG(w, z) = DF (x, y)−1 =

(
I O

−
(
∂z
∂y

)−1 ∂z
∂x

(
∂z
∂y

)−1) so, since h(x) = g(x, c), we have

Dh(x) = ∂g
∂w (x, c) = −

(
∂z
∂y

)−1 ∂z
∂x (x, y).
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