Chapter 4. Introduction to Derivatives

In this chapter, we give an informal introduction to differentiation of vector-valued functions of several variables. We state some definitions and theorems, and we provide some computational examples, but the proofs are postponed until the following chapter.
4.1 Definition: Let $U \subseteq \mathbb{R}^{n}$ be open in \mathbb{R}^{n}, let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$, and let at $a \in U$, say $a=\left(a_{1}, \cdots, a_{n}\right)$. We define the $k^{t h}$ partial derivative of f at a to be

$$
\frac{\partial f}{\partial x_{k}}(a)=g_{k}^{\prime}\left(a_{k}\right), \text { where } g_{k}(t)=f\left(a_{1}, \cdots, a_{k-1}, t, a_{k+1}, \cdots a_{n}\right)
$$

or equivalently,

$$
\frac{\partial f}{\partial x_{k}}(a)=h_{k}^{\prime}(0), \text { where } h_{k}(t)=f\left(a_{1}, \cdots, a_{k-1}, a_{k}+t, a_{k+1}, \cdots a_{n}\right),
$$

provided that the derivatives exist. Note that g_{k} and h_{k} are functions of a single variable.
Sometimes $\frac{\partial f}{\partial x_{k}}$ is written as $f_{x_{k}}$ or as f_{k}. When we write $u=f(x)$, we can also write $\frac{\partial f}{\partial x_{k}}$ as $\frac{\partial u}{\partial x_{k}}, u_{x_{k}}$ or u_{k}. When $n=3$ and we write x, y and z instead of x_{1}, x_{2} and x_{3}, the partial derivatives $\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}$ and $\frac{\partial f}{\partial x_{3}}$ are written as $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$, or as f_{x}, f_{y} and f_{z}. When $n=1$ so there is only one variable $x=x_{1}$ we have $\frac{\partial f}{\partial x}(a)=\frac{d f}{d x}(a)=f^{\prime}(a)$.
4.2 Example: Let $f(x, y)=x^{3} y+2 x y^{2}$. Find $\frac{\partial f}{\partial x}(1,2)$ and $\frac{\partial f}{\partial y}(1,2)$.

Solution: Let $g_{1}(t)=f(t, 2)=2 t^{3}+8 t$. Then $g_{1}^{\prime}(t)=6 t^{2}+8$ so $\frac{\partial f}{\partial x}(1,2)=g^{\prime}(1)=14$. Let $g_{2}(t)=f(1, t)=t+2 t^{2}$. Then $g_{2}^{\prime}(t)=1+4 t$ so $\frac{\partial f}{\partial y}(1,2)=g_{2}^{\prime}(2)=9$.
4.3 Note: Rather than explicitly determining the functions $g_{k}(t)$ as we did in the above solution, we can calculate the partial derivative $\frac{\partial f}{\partial x_{k}}(a)$ by simply treating the variables x_{i} with $i \neq k$ as constants, and differentiating f as if it were a function of the single variable x_{k}.
4.4 Example: Let $f(x, y, z)=\left(x-z^{2}\right) \sin \left(x^{2} y+z\right)$. Find $\frac{\partial f}{\partial x}(x, y, z)$ and $\frac{\partial f}{\partial x}\left(3, \frac{\pi}{2}, 0\right)$.

Solution: Treating y and z as constants, we obtain

$$
\frac{\partial f}{\partial x}(x, y, z)=\sin \left(x^{2} y+z\right)+\left(x-z^{2}\right) \cos \left(x^{2} y+z\right)(2 x y)
$$

and so $\frac{\partial f}{\partial x}\left(3, \frac{\pi}{2}, 0\right)=\sin \frac{9 \pi}{2}+3 \cos \frac{9 \pi}{2}(3 \pi)=1$.
4.5 Definition: Let $U \subseteq \mathbb{R}^{n}$ be open in \mathbb{R}^{n}, let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let $a \in U$. Write $u=f(x)=\left(f_{1}(x), f_{2}(x), \cdots, f_{m}(x)\right)^{T}$ with $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}$. We define the derivative matrix, or the Jacobian matrix, of f at a to be the matrix

$$
D f(a)=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}}(a) & \frac{\partial f_{1}}{\partial x_{2}}(a) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(a) \\
\frac{\partial f_{2}}{\partial x_{1}}(a) & \frac{\partial f_{2}}{\partial x_{2}}(a) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(a) \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(a) & \frac{\partial f_{m}}{\partial x_{2}}(a) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(a)
\end{array}\right)
$$

and we define the linearization of f at a to be the affine map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by

$$
L(x)=f(a)+D f(a)(x-a)
$$

provided that all the partial derivatives $\frac{\partial f_{k}}{\partial x_{l}}(a)$ exist.
4.6 Definition: Let U be open in \mathbb{R}^{n} and let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. We say that f is \mathcal{C}^{1} in U when all the partial derivatives $\frac{\partial f_{k}}{\partial f_{l}}$ exist and are continuous in U. The second order partial derivatives of f are the functions

$$
\frac{\partial^{2} f_{j}}{\partial x_{k} \partial x_{l}}=\frac{\partial\left(\frac{\partial f_{j}}{\partial x_{l}}\right)}{\partial x_{k}}
$$

We also write $\frac{\partial^{2} f_{j}}{\partial x_{k}{ }^{2}}=\frac{\partial^{2} f_{j}}{\partial x_{k} \partial x_{k}}$. We say that f is \mathcal{C}^{2} when all the partial derivatives $\frac{\partial^{2} f_{j}}{\partial x_{k} \partial x_{l}}$ exist and are continuous in U. Higher order derivatives can be defined similarly, and we say f is \mathcal{C}^{k} when all the $k^{\text {th }}$ order derivatives $\frac{\partial^{k} f_{j}}{\partial x_{i_{1}} \partial x_{i_{2}} \cdots \partial x_{i_{k}}}$ exist and are continuous in U.
4.7 Definition: Let $a \in U$ where U is an open set in \mathbb{R}, and let $f: U \subseteq \mathbb{R} \rightarrow \mathbb{R}^{m}$, say $x=f(t)=\left(x_{1}(t), x_{2}(t), \cdots, x_{m}(t)\right)$. Then we write $f^{\prime}(a)=D f(a)$ and we have

$$
f^{\prime}(a)=D f(a)=\left(\begin{array}{c}
\frac{\partial x_{1}}{\partial t}(a) \\
\vdots \\
\frac{\partial x_{m}}{\partial t}(a)
\end{array}\right)=\left(\begin{array}{c}
x_{1}^{\prime}(a) \\
\vdots \\
x_{m}^{\prime}(a)
\end{array}\right)
$$

The vector $f^{\prime}(a)$ is called the tangent vector to the curve $x=f(t)$ at the point $f(a)$. In the case that t represents time and $f(t)$ represents the position of a moving point, $f^{\prime}(a)$ is also called the velocity of the moving point at time $t=a$.
4.8 Definition: Let $a \in U$ where U is an open set in \mathbb{R}^{n} and let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$. We define the gradient of f at a to be the vector

$$
\nabla f(a)=D f(a)^{T}=\left(\frac{\partial f}{\partial x_{1}}(a), \cdots, \frac{\partial f}{\partial x_{n}}(a)\right)^{T}=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(a) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(a)
\end{array}\right)
$$

4.9 Definition: Let $U \subseteq \mathbb{R}^{n}$ be open in \mathbb{R}^{n}, let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and let $a \in U$. We say that f is differentiable at a when there exists an affine map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
\forall \epsilon>0 \exists \delta>0 \forall x \in U(|x-a| \leq \delta \Longrightarrow|f(x)-L(x)| \leq \epsilon|x-a|)
$$

We say that f is differentiable in U when f is differentiable at every point $a \in U$.
4.10 Theorem: Let $U \subseteq \mathbb{R}^{n}$ be open, let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let $a \in U$. Then
(1) If f is differentiable at a then the partial derivatives of f at a all exist, and the affine map L which appears in the definition of the derivative is the linearization of f at a.
(2) If f is differentiable in U then f is continuous in U.
(3) If f is \mathcal{C}^{1} in U then f is differentiable in U.
(4) If f is \mathcal{C}^{2} in U then $\frac{\partial^{2} f_{j}}{\partial x_{k} \partial x_{\ell}}=\frac{\partial^{2} f_{j}}{\partial x_{\ell} \partial x_{k}}$ for all j, k, ℓ.

Proof: The proof will be given in the next two chapters.
4.11 Note: Let $a \in U$ where U is open in \mathbb{R}^{n} and let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable at a. The definition of the derivative, together with Part (1) of the above theorem, imply that the function f is approximated by its linearization near $x=a$, that is when $x \cong a$ we have

$$
f(x) \cong L(x)=f(a)+D f(a)(x-a)
$$

The geometric objects (curves and surfaces etc) $\operatorname{Graph}(f), \operatorname{Null}(f), f^{-1}(k)$ and Range (f) are all approximated by the affine spaces $\operatorname{Graph}(L), \operatorname{Null}(L), L^{-1}(k)$ and Range (L). Each of these affine spaces is called the (affine) tangent space of its corresponding geometric object: the space $\operatorname{Graph}(L)$ is called the (affine) tangent space of the set $\operatorname{Graph}(f)$ at the point $(a, f(a))$; when $f(a)=0$, the space $\operatorname{Null}(L)$ is called the (affine) tangent space of $\operatorname{Null}(f)$ at the point a, and more generally when $f(a)=k$, so that $a \in f^{-1}(k)$, the space $L^{-1}(k)$ is called the (affine) tangent space to $f^{-1}(k)$ at the point a; and the space Range (L) is called the (affine) tangent space of the set Range (f) at the point $f(a)$. When a tangent space is 1-dimensional we call it a tangent line and when a tangent space is 2-dimensional we call it a tangent plane.
4.12 Example: Find an explicit, an implicit and a parametric equation for the tangent line to the curve in \mathbb{R}^{2} which is defined explicitly by the equation $y=f(x)$, implicitly by the equation $g(x, y)=k$, and parametrically by the equation $(x, y)=\alpha(t)=(x(t), y(t))$.
Solution: The curve in \mathbb{R}^{2} defined explicitly by $y=f(x)$ has a tangent line at the point ($a, f(a)$) which is given explicitly by $y=L(x)$, that is

$$
y=f(a)+f^{\prime}(a)(x-a) .
$$

When $g(a, b)=k$, the curve in \mathbb{R}^{2} defined implicitly by the equation $g(x, y)=k$ has a tangent line at the point (a, b) which is given implicitly by the equation $L(x, y)=k$, that is by $f(a, b)+\left(\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right)(x-a, y-b)^{T}=k$, or equivalently by

$$
\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)=0 .
$$

The curve in \mathbb{R}^{2} defined parametrically by $(x, y)=\alpha(t)=(x(t), y(t))$ or, more accurately, by $(x, y)^{T}=\alpha(t)=(x(t), y(t))^{T}$ has a tangent line at the point $\alpha(a)=(x(a), y(a))^{T}$ which is given parametrically by $(x, y)^{T}=L(t)=\alpha(a)+\alpha^{\prime}(a)(t-a)$, that is

$$
\binom{x}{y}=\binom{x(a)}{y(a)}+\binom{x^{\prime}(a)}{y^{\prime}(a)}(t-a) .
$$

4.13 Example: Find an explicit, an implicit, and a parametric equation for the tangent line to the curve in \mathbb{R}^{3} which is defined explicitly by $(x, y)=f(z)=(x(z), y(z))$, implicitly by $u(x, y, z)=k$ and $v(x, y, z)=l$, and parametrically by $(x, y, z)=\alpha(t)=$ $(x(t), y(t), z(t))$.

Solution: The curve in \mathbb{R}^{3} given explicitly by $(x, y)=f(z)=(x(z), y(z))$ or, more accurately, by $(x, y)^{T}=f(z)=(x(z), y(z))^{T}$, has a tangent plane at the point $(x(c), y(c), c)$ which is given explicitly by $(x, y)^{T}=L(z)=f(c)+D f(c)(z-c)$, that is by

$$
\binom{x}{y}=\binom{x(c)}{y(c)}+\binom{x^{\prime}(c)}{y^{\prime}(c)}(z-c)
$$

When $u(a, b, c)=k$ and $v(a, b, c)=\ell$ and we write $g(x, y, z)=(u(x, y, z), v(x, y, z))^{T}$, the curve in \mathbb{R}^{3} given implicitly by $g(x, y, z)=(k, \ell)^{T}$, has a tangent line at (a, b, c) given
implicitly by $L(x, y, z)=(k, \ell)^{T}$, that is b $g(a, b, c)+D g(a, b, c)(x-a, y-b, z-c)^{T}=(k, \ell)^{T}$, or equivalently by

$$
\left(\begin{array}{lll}
\frac{\partial u}{\partial x}(a, b, c) & \frac{\partial u}{\partial y}(a, b, c) & \frac{\partial u}{\partial z}(a, b, c) \\
\frac{\partial v}{\partial x}(a, b, c) & \frac{\partial v}{\partial y}(a, b, c) & \frac{\partial v}{\partial z}(a, b, c)
\end{array}\right)\left(\begin{array}{l}
x-a \\
y-b \\
z-c
\end{array}\right)=\binom{0}{0}
$$

The curve in \mathbb{R}^{3} given parametrically by $(x, y, z)^{T}=\alpha(a)=(x(a), y(a), z(a))^{T}$ has a tangent line at $\alpha(a)$ which is given parametrically by $(x, y, z)^{T}=L(t)=\alpha(a)+\alpha^{\prime}(a)(t-a)$, that is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x(a) \\
y(a) \\
z(a)
\end{array}\right)+\left(\begin{array}{c}
x^{\prime}(a) \\
y^{\prime}(a) \\
z^{\prime}(a)
\end{array}\right)(t-a)
$$

4.14 Example: Find an explicit, an implicit and a parametric equation for the tangent plane to the surface in \mathbb{R}^{3} which is defined explicitly by $z=f(x, y)$, implicitly by $g(x, y, z)=k$, and parametrically by $(x, y, z)=\sigma(s, t)=(x(s, t), y(s, t), z(s, t))$.
Solution: The surface in \mathbb{R}^{3} given explicitly by $z=f(x, y)$ has a tangent plane at the point $(a, b, f(a, b))$ given explicitly by $z=L(x, y)=f(a, b)+D f(a, b)(x-a, y-b)^{T}$, that is

$$
z=f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b) .
$$

When $g(a, b, c)=k$, the surface in \mathbb{R}^{3} given implicitly by $g(x, y, z)=k$ has tangent plane at (a, b, c) given implicitly by $L(x, y, z)=k$, that is $g(a, b, c)+D g(a, b, c)(x-a, y-b, z-c)^{T}=k$ or equivalenty

$$
\frac{\partial g}{\partial x}(a, b, c)(x-a)+\frac{\partial g}{\partial y}(a, b, c)(y-b)+\frac{\partial g}{\partial z}(a, b, c)(z-c)=0
$$

The surface in \mathbb{R}^{3} defined parametrically by $(x, y, z)=\sigma(s, t)=(x(s, t), y(s, t), z(s, t))$ or, more accurately, by $(x, y, z)^{T}=\sigma(s, t)=(x(s, t), y(s, t), z(s, t))^{T}$ has a tangent plane at $\sigma(a, b)$ which is given parametrically by $(x, y, z)^{T}=L(s, t)=\sigma(a, b)+D \sigma(a, b)(s-a, t-b)^{T}$, that is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x(a, b) \\
y(a, b) \\
z(a, b)
\end{array}\right)+\left(\begin{array}{ll}
\frac{\partial x}{\partial s}(a, b) & \frac{\partial x}{\partial t}(a, b) \\
\frac{\partial y}{\partial s}(a . b) & \frac{\partial y}{\partial t}(a, b) \\
\frac{\partial z}{\partial s}(a, b) & \frac{\partial z}{\partial t}(a, b)
\end{array}\right)\binom{s-a}{t-b} .
$$

4.15 Example: Find a parametric equation for the tangent line to the helix given by $(x, y, z)=(2 \cos t, 2 \sin t, t)$ at the point where $t=\frac{\pi}{3}$, and find the point where this tangent line crosses the $x z$-plane.

Solution: Let $f(t)=(2 \cos t, 2 \sin t, t)$ and note that $f^{\prime}(t)=(-2 \sin t, 2 \cos t, 1)$. We have $f\left(\frac{\pi}{3}\right)=\left(1, \sqrt{3}, \frac{\pi}{3}\right)$ and $f^{\prime}\left(\frac{\pi}{3}\right)=(-\sqrt{3}, 1,1)$ and so the tangent line at the point $f\left(\frac{\pi}{3}\right)$ is given parametrically by $(x, y, z)=L(t)=\left(1, \sqrt{3}, \frac{\pi}{3}\right)+(-\sqrt{3}, 1,1)\left(t-\frac{\pi}{3}\right)$. The point of intersection with the $x z$-plane occurs when $y=0$, that is when $\sqrt{3}+t-\frac{\pi}{3}=0$, so we take $t=\frac{\pi}{3}-\sqrt{3}$ to obtain $(x, y, z)=L\left(\frac{\pi}{3}-\sqrt{3}\right)=\left(1, \sqrt{3}, \frac{\pi}{3}\right)-\sqrt{3}(-\sqrt{3}, 1,1)=\left(4,0, \frac{\pi}{3}-\sqrt{3}\right)$.
4.16 Example: Find an explicit equation for the tangent plane to the surface $z=\frac{e^{x^{2}+2 x y}}{\sqrt{2+y}}$ at the point $(2,-1)$.
Solution: Let $f(x, y)=\frac{e^{x^{2}+2 x y}}{\sqrt{2+y}}$. Then

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(x, y)=\frac{e^{x^{2}+2 y}(2 x+2 y)}{\sqrt{2+y}} \\
& \frac{\partial f}{\partial y}(x, y)=\frac{e^{x^{2}+2 y}(2 x) \sqrt{2+y}-e^{x^{2}+2 x y} \frac{1}{2 \sqrt{2+y}}}{2+y}
\end{aligned}
$$

so we have $f(2,-1)=1$, and $\frac{\partial f}{\partial x}(2,-1)=2$ and $\frac{\partial f}{\partial y}(2,-1)=\frac{7}{2}$. Thus the equation to the tangent plane is $z=1+2(x-2)+\frac{7}{2}(y+1)$, or equivalently $4 x+7 y-2 z=-1$.
4.17 Example: Find an implicit equation for the tangent line to the curve given by $2 \sqrt{y+x^{2}}+\ln \left(y-x^{2}\right)=6$ at the point $(2,5)$.
Solution: Let $g(x, y)=2 \sqrt{y+x^{2}}+\ln \left(y-x^{2}\right)$ and note that $g(2,5)=2 \sqrt{9}+\ln 1=6$. We have $\frac{\partial g}{\partial x}(x, y)=\frac{2 x}{\sqrt{y+x^{2}}}-\frac{2 x}{y-x^{2}}$ and $\frac{\partial g}{\partial y}(x, y)=\frac{1}{\sqrt{y+x^{2}}}+\frac{1}{y-x^{2}}$ so that $\frac{\partial g}{\partial x}(2,5)=\frac{4}{3}-\frac{4}{1}=-\frac{8}{3}$ and $\frac{\partial g}{\partial y}(2,5)=\frac{1}{3}+\frac{1}{1}=\frac{4}{3}$, so the tangent line at $(2,5)$ is given by $-\frac{8}{3}(x-2)+\frac{4}{3}(y-5)=0$ or, equivalently, by $2(x-2)=(y-5)$ or by $y=2 x+1$.
4.18 Example: Find a parametric equation for the tangent line to the curve of intersection of the paraboloid $z=2-x^{2}-y^{2}$ with the cone $y=\sqrt{x^{2}+z^{2}}$ at the point $p=(1,1,0)$.
Solution: Note that the paraboloid is given by $x^{2}+y^{2}+z=2$ and the cone is given by $x^{2}-y^{2}+z^{2}=0$, with $y \geq 0$. Let $u(x, y, z)=x^{2}+y^{2}+z$ and $v(x, y, z)=x^{2}-y^{2}+z^{2}$ and let $g(x, y, z)=(u(x, y, z), v(x, y, z))^{T}$ so that the curve of intersection is given implicitly by $g(x, y, z)=(2,0)^{T}$. Note that $g(1,1,0)=(2,0)^{T}$ and

$$
\begin{aligned}
D g(x, y, z) & =\left(\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z}
\end{array}\right)=\left(\begin{array}{ccc}
2 x & 2 y & 1 \\
2 x & -2 y & 2 z
\end{array}\right) \\
D g(1,1,0) & =\left(\begin{array}{ccc}
2 & 2 & 1 \\
2 & -2 & 0
\end{array}\right)
\end{aligned}
$$

The tangent line at $(1,1,0)$ is given implicitly by $D g(1,1,0)(x-1, y-1, z)^{T}=(0,0)^{T}$ that is

$$
\left(\begin{array}{ccc}
2 & 2 & 1 \\
2 & -2 & 0
\end{array}\right)\left(\begin{array}{c}
x-1 \\
y-1 \\
z
\end{array}\right)=\binom{0}{0}
$$

This is equivalent to the pair of equations $2(x-1)+2(y-1)+z=0$ and $2(x-1)-2(y-1)=0$. We remark that these are the equations of the tangent planes to the two given surfaces at $(1,1,0)$. The two equations are equivalent to $2 x+2 y+z=4$ and $x-y=0$. We let $y=t$, then the second equation gives $x=y=t$, and the first equation gives $z=4-2 x-2 y=$ $4-4 t$, so the line is given parametrically by $(x, y, z)=(0,0,4)+t(1,1,-4)$.
4.19 Exercise: Find an explicit equation for the tangent plane to the surface given by $(x, y, z)=\left(r \cos t, r \sin t, \frac{3}{1+r^{2}}\right)$ at the point where $(r, t)=\left(\sqrt{2}, \frac{\pi}{4}\right)$.
4.20 Theorem: (The Chain Rule) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow V \subseteq \mathbb{R}^{m}$, let $g: V \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$, and let $h(x)=g(f(x))$. If f is differentiable at a and g is differentiable at $f(a)$ then h is differentiable at a and $D h(a)=D g(f(a)) D f(a)$.

Proof: A proof will be given in the next chapter.
4.21 Exercise: Let $z=f(x, y)=4 x^{2}-8 x y+5 y^{2},(u, v)=g(z)=(\sqrt{z-1}, 5 \ln z)$ and $h(x, y)=g(f(x, y))$. Find $\operatorname{Dh}(2,1)$.
4.22 Exercise: Let $(x, y)=f(r, \theta)=(r \cos \theta, r \sin \theta)$, let $z=g(x, y)$ and let $z=h(r, \theta)=$ $g(f(r, \theta))$. If $h(r, \theta)=r^{2} e^{\sqrt{3}\left(\theta-\frac{\pi}{6}\right)}$ then find $\nabla g(\sqrt{3}, 1)$.
4.23 Exercise: Let $(x, y, z)=f(s, t)$ and $(u, v)=g(x, y, z)$. Find a formula for $\frac{\partial u}{\partial t}$.
4.24 Definition: Let $a \in U$ where U is an open set in \mathbb{R}^{n}, let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at a, and let $v \in \mathbb{R}^{n}$. We define the directional derivative of f at a with respect to v, written as $D_{v} f(a)$, as follows: pick any differentiable curve $\alpha(t)$ with $\alpha(0)=a$ and $\alpha^{\prime}(0)=v$ (for example, we could pick $\alpha(t)=a+v t$), and define $D_{v} f(a)$ to be the rate of change of the function f at $t=0$ as we move along the curve α. To be precise, let $\beta(t)=f(\alpha(t))$, note that $\beta^{\prime}(t)=D f(\alpha(t)) \alpha^{\prime}(t)$, and then define $D_{v} f(a)$ to be

$$
\begin{aligned}
D_{v} f(a) & =\beta^{\prime}(0) \\
& =D f(\alpha(0)) \alpha^{\prime}(0) \\
& =D f(a) v \\
& =\nabla f(a) \cdot v .
\end{aligned}
$$

Notice that the formula for $D_{v} f(a)$ does not depend on the choice of the curve $\alpha(t)$. The (directional) derivative of f in the direction of v is defined to be $D_{w} f(a)$ where w is the unit vector in the direction of v, that is $w=\frac{v}{|v|}$.
4.25 Exercise: Let $f(x, y, z)=x \sin \left(y^{2}-2 x z\right)$ and let $\alpha(t)=\left(\sqrt{t}, \frac{1}{2} t, e^{(t-4) / 4}\right)$. Find the rate of change of f as we move along the curve $\alpha(t)$ when $t=4$.
4.26 Theorem: Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $a \in U$. Say $f(a)=b$. The gradient $\nabla f(a)$ is perpendicular to the level set $f(x)=b$, it is in the direction in which f increases most rapidly, and its length is the rate of increase of f in that direction.

Proof: The proof will be given in the next chapter.
4.27 Note: Let $a \in U$ where U is an open set in \mathbb{R}^{n}, and let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be differentiable. The $k^{\text {th }}$ column vector of the derivative matrix $D f(a)$ is the vector

$$
f_{x_{k}}(a)=\frac{\partial f}{\partial x_{k}}(a)=\left(\frac{\partial f_{1}}{\partial x_{k}}(a), \cdots, \frac{\partial f_{m}}{\partial x_{k}}(a)\right)^{T} \in \mathbb{R}^{m}
$$

which is the tangent vector to the curve $\beta_{k}(t)=f\left(\alpha_{k}(t)\right)$ at $t=0$, where α_{k} is the curve through a in the direction of the standard basis vector e_{k} given by $\alpha_{k}(t)=a+t e_{k}$.
The $\ell^{\text {th }}$ column vector of the derivative matrix $D f(a)$ is the vector

$$
\nabla f_{\ell}(a)=\left(\frac{\partial f_{\ell}}{\partial x_{1}}(a), \cdots, \frac{\partial f_{\ell}}{\partial x_{n}}(a)\right)^{T}
$$

which is orthogonal to the level set $f_{\ell}(x)=f_{\ell}(a)$, and points in the direction in which f_{ℓ} increases most rapidly, and its length is the rate of increase of f_{ℓ} in that direction.

