
Chapter 3. Limits and Continuity

3.1 Definition: For p ∈ Z, let Z≥p =
{
n ∈ Z|n ≥ p} = {p, p+1, p+2, · · ·}. For a set

A, a sequence in A is a function a : Z≥p → A for some p ∈ Z. We write (an)n≥p to
denote the sequence a : Z≥p → A given by a(n) = an, where an ∈ A for all n ≥ p. A
subsequence of the sequence (an)n≥p is a sequence of the form (bk)k≥q with bk = ank

for
some p ≤ nk < nk+1 for all k ≥ q.

3.2 Definition: Let (an)n≥p be a sequence in Rm. We say the sequence (an)n≥p is
bounded when

∃r>0 ∀n∈Z≥p |an| ≤ r.

For b ∈ Rm, we say that the sequence (an)n≥p converges to b and write lim
n→∞

an = b (or

an → b) when

∀ε>0 ∃N ∈Z≥p ∀n∈ Z≥p
(
n ≥ N =⇒ |an − b| < ε

)
.

We say the sequence (an)n≥p diverges to ∞ and write lim
n→∞

an =∞ (or an →∞) when

∀r>0 ∃N ∈ Z≥p ∀n∈Z≥p
(
n≥N =⇒ |an| ≥ r

)
.

We say that the sequence (an)n≥p converges when it converges to some point b ∈ Rm
and otherwise we say that it diverges.

3.3 Theorem: (Convergent Sequences are Bounded) Let (an)n≥p be a sequence in Rm.
If (an)n≥p converges in Rm then (an)n≥p is bounded.

Proof: Suppose that (an)n≥p converges in Rm. Let u = lim
n→∞

an ∈ Rm. Choose N ≥ p

such that n ≥ N =⇒ |an − u| < 1. For n ≥ N , by the Triangle Inequality we have
|an| ≤ |an−u|+|u| < 1+|u|. Thus we can choose r = max

{
|ap|, |ap+1|, · · · , |aN−1| , 1+|u|

}
to obtain |an| ≤ r for all n ≥ p, and so the sequence (an)n≥p is bounded, as required.

3.4 Theorem: (Uniqueness of Limits of Sequences) Let (an)n≥p be a sequence in Rm and
let u, v ∈ Rm ∪ {∞}. If lim

n→∞
an = u and lim

n→∞
an = v then u = v.

Proof: We prove the theorem in the case that u, v ∈ Rm and leave the case that u =∞ or
v = ∞ as an exercise. Suppose that lim

n→∞
an = u ∈ Rm and lim

n→∞
an = v ∈ Rm. Suppose,

for a contradiction, that u 6= v. Choose N1 ≥ p such that n ≥ N1 =⇒ |an − u| < |u−v|
2

and choose N2 ≥ p such that n ≥ N2 =⇒ |an − v| < |u−v|
2 . Let N = max{N1, N2}. For

n ≥ N we have |u − v| ≤ |u − a| + |a − v| < |u−v|
2 + |u−v|

2 = |u − v| which is impossible.
Thus we must have u = v, as required.

3.5 Theorem: (Limits of Subsequences) Let (an)n≥p be a sequence in Rm and let (ank
)k≥q

be a subsequence of (an)n≥p. If lim
n→∞

an = u ∈ Rm ∪ {∞} then lim
k→∞

ank
= u.

Proof: We give the proof in the case that u ∈ Rm. Suppose that lim
n→∞

an = u ∈ Rm

and let (ank
)k≥q be any subsequence of (an). Let ε > 0. Choose N ≥ p such that

n ≥ N =⇒ |an − u| < ε. Choose M ≥ q such that k ≥ M =⇒ nk ≥ N (we can do this
since each nk ∈ Z with nk < nk+1 and hence nk → ∞ as k → ∞). Then for k ≥ M we
have nk ≥ N and so |ank

− u| < ε. Thus lim
k→∞

ank
= u, as required.
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3.6 Remark: It follows from the above theorem that the initial index p of a sequence
(an)n≥p does not effect whether or not the sequence converges, and it does not influence
the value of the limit. For this reason, we often omit the initial index p from our notation
and denote the sequence (an)n≥p simply as (an).

3.7 Definition: Let (an)n≥p be a sequence in Rm. For n ≥ p let an= (an,1, an,2, · · · , an,m).
For each index k with 1 ≤ k ≤ m, the kth component sequence of (an)n≥p is the
sequence (an,k)n≥p = (ap,k, ap+1,k · · ·). Note that the sequence (an)n≥p in Rm determines
and is determined by its component sequences (an,k)n≥p.

3.8 Theorem: (Limits of Component Sequences) Let (an)n≥p be a sequence in Rm, say
an =

(
an,1, an,2, · · · , an,m

)
∈ Rm.

(1) (an)n≥p is bounded if and only if (an,k)n≥p is bounded for all indices k.
(2) For b = (b1, · · · , bm) ∈ Rm we have lim

n→∞
an = b if and only if lim

n→∞
an,k = bk for all k.

Proof: Suppose that (an)n≥p is bounded. Choose r > 0 such that |an| ≤ r for all n ≥ p.
Let n ≥ p and let 1 ≤ k ≤ m. Then |an,k| ≤ |an| ≤ r and so the sequence (an,k)n≥p is also
bounded. Now suppose, conversely, that (an,k)n≥p is bounded for all indices k. For each k,
chose rk > 0 such that |an,k| ≤ rk for all n ≥ p. Let r = r1 + · · ·+ rm. Then for all n ≥ p,
by the Triangle Inequality we have |an| ≤ |an,1|+|an,2|+· · ·+|an,m| < r1+r2+· · ·+rm = r
and so the sequence (an)n≥p is bounded. This proves Part (1).

To prove Part (2), suppose first that lim
n→∞

an = b. Let ε > 0 and choose N ≥ p so

that n ≥ N =⇒
∣∣an− b| < ε. Let 1 ≤ k ≤ m. For n ≥ N we have

∣∣an,k− bk∣∣ ≤ |an− b| < ε
and so lim

n→∞
an,k = bk. Now suppose, conversely, that lim

n→∞
an,k = bk for all indices k. Let

ε > 0. For each index k, choose Nk ≥ p such that n ≥ Nk =⇒
∣∣an,k − bk∣∣ < ε

m . Then for

n ≥ N , by the Triangle Inequality we have |an−b| ≤
m∑
k=1

|an,k−bk| < ε and so lim
n→∞

an = b.

3.9 Theorem: (Operations on Limits of Sequences) Let (an) and (bn) be sequences in
Rm and let c ∈ R. Suppose that lim

n→∞
an = u ∈ Rm and lim

n→∞
bn = v ∈ Rm. Then

(1) lim
n→∞

(an + bn) = u+ v,

(2) lim
n→∞

(c an) = c u,

(3) lim
n→∞

|an| = |u|,
(4) lim

n→∞
(an . bn) = u . v, and

(5) if m = 3 then lim
n→∞

(an × bn) = u× v.

Proof: These follow easily from Part (2) of the above theorem and from known properties
of sequences in R. For eample, to prove Part (1), note that

lim
n→∞

(an + bn)k = lim
n→∞

(an,k + bn,k) = lim
n→∞

an,k + lim
n→∞

bn,k = uk + vk = (u+ v)k.
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3.10 Theorem: (Sequential Characterization of Limit Points) Let A ⊆ Rm and let
a ∈ Rm. Then a ∈ A′ if and only if there exists a sequence (xn) in A \ {a} such that
lim
n→∞

xn = a.

Proof: Let a ∈ A′. For each n ∈ Z+, since a ∈ A′ we have B∗
(
a, 1

n

)
∩A 6= ∅ so we can choose

an element xn ∈ B∗
(
a, 1

n

)
∩A and then we have xn ∈ A\{a} and |xn−a| < 1

n . Given ε > 0
we can choose a positive integer N > 1

ε and then we have n ≥ N =⇒ |xn−a| < 1
n ≤

1
N < ε.

Thus (xn)n≥1 is a sequence in A \ {a} with lim
n→∞

xn = a.

Suppose, conversely, that (xn)n≥p is a sequence in A \ {a} with lim
n→∞

xn = a. Let

r > 0. Since lim
n→∞

xn = a we can choose N ≥ p so that n ≥ N =⇒ |xn − a| < r. Then we

have xN ∈ A \ A and |xN − a| < r so that xN ∈ B∗
(
a, r), and hence B∗(a, r) 6= 0. Since

r > 0 was arbitrary, it follows that a ∈ A′.

3.11 Theorem: (Sequential Characterization of Closed Sets) Let A ⊆ Rm. Then A is
closed (in Rm) if and only if every for every sequence in A which converges in Rm, the
limit of the sequence lies in A.

Proof: Suppose that A is closed. Let (xn)n≥p be a sequence in A which converges in
Rn. Let a = lim

n→∞
xn. Suppose, for a contradiction, that a /∈ A. Since a /∈ A we have

A = A \ {a} and so (xn) is a sequence in A \ {a}. Since (xn) is a sequence in A \ {a} with
lim
n→∞

xn = a, we have a ∈ A′ by the Characterization of Limit Points. Since A is closed

we have A′ ⊆ A and so a ∈ A, giving the desired contradiction.
Suppose, conversely, that for every sequence in A which converges in Rn, the limit

of the sequence lies in A. Let a ∈ A′. By the Characterization of Limit Points, we can
choose a sequence (xn) in A \ {a} such that lim

n→∞
xn = a. Then (xn) is a sequence in A

which converges in Rn, and so its limit must lie in A, thus we have a ∈ A. Since a ∈ A′
was arbitrary, this proves that A′ ⊆ A and so A is closed.

3.12 Theorem: (Bolzano-Weierstrass) Every bounded sequence in Rm has a convergent
subsequence.

Proof: For this proof, we shall label the components of an element in Rm using superscripts
rather than subscripts, so we shall write an element x ∈ Rm as (x1, x2, · · · , xm). Let (xn) be
a bounded sequence in Rm. Then the first component sequence (x1n) is a bounded sequence
in R. By the Bolzano-Weierstrass Theorem for sequences in R, we can choose a convergent
subsequence (x1n`

), where n1 < n2 < · · ·. Since the second component sequence (x2n) is
bounded, the subsequence (x2n`

) is also bounded so we can choose a convergent subsequence
(x2n`k

), where `1 < `2 < · · ·. Note that the sequence (x1n`k
) also converges because it is a

subsequence of the convergent subsequence (x1n`
). Since the sequence (x3n) is bounded, the

subsequence (x3n`k
) is also bounded so we can choose a convergent subsequence (x3n`kj

),

where k1 < k2 < · · ·. We then obtain convergent subsequences of each of the first 3
component sequences (xin) for i = 1, 2, 3, namely the subsequences (xin`kj

). We repeat the

procedure until we obtain simultaneous subsequences of all m component sequences (xin),
which we can combine to form a subsequence of the original sequence (xn) in Rm.
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3.13 Definition: Let (an)n≥p be a sequence in Rm. We say that (an) is Cauchy when

∀ε>0 ∃N ∈Z≥p ∀k, `∈Z≥p
(
k, ` ≥ N =⇒ |ak − a`| < ε

)
.

3.14 Theorem: (The Completeness of Rm) For every sequence in Rm, the sequence
converges if and only if it is Cauchy.

Proof: Let (xn) be a sequence in Rm. Suppose that (xn) converges. Let a = lim
n→∞

xn. Let

ε > 0. Choose N so that n ≥ N =⇒ |xn− a| < ε
2 . Then for k, ` ≥ N we have |xk − a| < ε

2
and |x` − a| < ε

2 so |xk − x`| ≤ |xk − a|+ |a− x`| < ε. Thus (xn) is Cauchy.
Now suppose that (xn)n≥p is Cauchy. ChooseN ≥ p so that k, ` ≥ N =⇒ |xk−x`| < 1.

Then for all k ≥ N we have |xk − xN | < 1 hence |xk| ≤ |xk − xN | + |xN | < 1 + |xN |,
and so (xn) is bounded by max

{
|xp|, |xp+1|, · · · , |xN−1| , 1+ |xN |

}
. Choose a convergent

subsequence (xnk
) and let a = lim

k→∞
xnk

. Let ε > 0. Since (xn) is Cauchy we can choose M

so that n, ` ≥M =⇒ |xn − x`| < ε
2 . Since lim

k→∞
xnk

= a we can choose k so that nk ≥M

and |xnk
− a| < ε

2 . Then for n ≥M we have |xn − a| ≤ |xn − xnk
|+ |xnk

− a| < ε.

3.15 Definition: Let A ⊆ R` and let f : A → Rm. When a is a limit point of A and
b ∈ Rm, we say that f(x) converges to b as x tends to a, and we write lim

x→a
f(x) = b

when
∀ε>0 ∃δ>0 ∀x∈A

(
0 < |x− a| < δ =⇒ |f(x)− b| < ε

)
.

When a is a limit point of A, we say that f(x) diverges to ∞ and we write lim
x→a

f(x) =∞
when

∀r>0 ∃δ>0 ∀x∈A
(

0 < |x− a| < δ =⇒ |f(x)| ≥ r
)
.

3.16 Theorem: (Sequential Characterization of Limits) Let f : A ⊆ R` → Rm, let a be a
limit point of A and let u ∈ Rm ∪ {∞}. Then lim

x→a
f(x) = u if and only if lim

n→∞
f(xn) = u

for every sequence (xn) in A \ {a} with lim
n→∞

xn = a.

Proof: We give the proof in the case that u ∈ Rm. Suppose first that lim
x→a

f(x) = u ∈ Rm.

Let (xn) be a sequence in A \ {a} with xn → a. Let ε > 0. Since lim
x→a

f(x) = u we can

choose δ > 0 so that 0 < |x− a| < δ =⇒ |f(x)− u| < ε. Since xn → a we can choose N so
that n ≥ N =⇒ |xn − a| < δ. For n ≥ N we have |xn − a| < δ and we have xn 6= a (since
xn ∈ A \ {a}) and so 0 < |xn − a| < δ and hence |f(xn) − u| < ε. Thus lim

n→∞
f(xn) = u,

as required.
Suppose, conversely, that lim

x→a
f(x) 6= u. Choose ε such that for every δ > 0 there

exists x ∈ A such that 0 < |x− a| < δ and |f(x)−u| ≥ ε. For each n ∈ Z+, choose xn ∈ A
such that 0 < |xn − a| < 1

n and |f(xn) − u| ≥ ε. For each n, since 0 < |xn − a| we have
xn 6= a so the sequence (xn) lies in A \ {a}. Since |xn − a| < 1

n for all n ∈ Z+ it follows
that xn → a. Since |f(xn)−u| ≥ ε for all n, it follows that lim

n→∞
f(xn) 6= u. Thus we have

found a sequence (xn) in A \ {a} with xn → a such that lim
n→∞

f(xn) 6= u.

3.17 Note: Using the Sequential Characterization of Limits, many properties of limits of
sequences immediately imply analogous properties of limits of function. We list some of
these properties in the following theorems.
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3.18 Theorem: (Uniqueness of Limits of Functions) Let f : A ⊆ R` → Rm, let a ∈ A′,
and let u, v ∈ Rm ∪ {∞}. If lim

x→a
f(x) = u and lim

x→a
f(x) = v then u = v.

Proof: This can be proven by imitating the proof of the Uniqueness of Limits of Sequences.
Alternatively, we can use Uniqueness of Limits of Sequences together with the Sequential
Characterization of Limits as follows. Since a ∈ A′ we can choose a sequence (xn) ∈ A\{a}
such that xn → a. By the Sequential Characterization of Limits, since lim

x→a
f(x) = u we

have lim
n→∞

f(xn) = u and since lim
x→a

f(x) = v we have lim
n→∞

f(xn) = v. By the Uniqueness

of Limits of Sequences, since lim
n→∞

f(xn) = u and lim
n→∞

f(xn) = v it follows that u = v.

3.19 Theorem: (Local Determination of Limits of Functions) Let A ⊆ R`, let a ∈ A′,
let B = B∗(a, r) ∩ A with r > 0. Let f : A → Rm and let g : B → Rm and suppose that
f(x) = g(x) for all x ∈ B. Then lim

x→a
f(x) exists in Rm ∪ {∞} if an only if lim

x→a
g(x) exists

in Rm ∪ {∞} and, in this case, the limits are equal.

Proof: We leave the proof as an exercise.

3.20 Definition: Let f : A ⊆ R` → Rm. We can write f(x) =
(
f1(x), f2(x), · · · , fm(x)

)
where fk : A → R for each index k. Then the function fk is called the kth component
function of f . Note that fk = pk ◦ f where pk : Rm → R is the k projection map given
by pk(y1, · · · , yk, · · · , ym) = yk.

3.21 Theorem: (Limits of Component Functions) Let f : A ⊆ R` → Rm be given by
f(x) =

(
f1(x), · · · , fm(x)

)
, let a be a limit point of A, and let b = (b1, b2, · · · , bm) ∈ Rm.

Then lim
x→a

f(x) = b if and only if lim
x→a

fk(x) = bk for all indices k.

Proof: Suppose that lim
x→a

f(x) = b. Let (xn) be any sequence in A \ {a} with xn → a.

By the Sequential Characterization of Limits, we have lim
n→∞

f(xn) = b. By Limits of

Component Sequences, we have lim
n→∞

fk(xn) = bk for all indices k. By the Sequential

Characterization of Limits again, it follows that lim
x→a

fk(x) = bk for all indices k.

Suppose, conversely, that lim
x→a

fk(x) = bk for all k. Let (xn) be any sequence in A\{a}
with xn → a. By the Sequential Characterization of Limits, we have lim

n→∞
fk(xn) = bk

for all k. By Limits of Component Sequences, we have lim
n→∞

f(x) = b. By the Sequential

Characterization of Limits again, it follows that lim
x→a

f(x) = b.

3.22 Theorem: (Operations on Limits of Functions) Let f, g : A ⊆ R` → Rm, let a ∈ A′
and let c ∈ R. Suppose that lim

x→a
f(x) = u ∈ Rm and lim

n→∞
g(x) = v ∈ Rm. Then

(1) lim
x→a

(f + g)(x) = u+ v,

(2) lim
x→a

(cf)(x) = cu,

(3) lim
x→a
|f |(x) = |u|,

(4) lim
x→a

(f . g)(x) = u . v, and
(5) when m = 3 we have lim

x→∞
(f × g)(x) = u× v.

Proof: This follows from Operations on Limits of Sequences, together with the Sequential
Characterization of Limits.
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3.23 Theorem: (Comparison Theorem) Let f, g : A ⊆ R` → R with f(x) ≤ g(x) for all
x ∈ A and let a ∈ A′.
(1) If lim

x→a
f(x) = u ∈ R ∪ {±∞} and lim

x→a
g(x) = v ∈ R ∪ {±∞} then u ≤ v.

(2) If lim
x→a

f(x) =∞ then lim
x→a

g(x) =∞.

(3) If lim
x→a

g(x) = −∞ then lim
x→∞

f(x) = −∞.

Proof: This follows from the Comparison Theorem for Sequences in R together with the
Sequential Characterization of Limits.

3.24 Theorem: (Squeeze Theorem) Let f, g, h : A ⊆ R` → R with f(x) ≤ g(x) ≤ h(x)
for all x ∈ A, and let u ∈ R ∪ {±∞}. If lim

x→a
f(x) = u = lim

x→a
h(x) then lim

x→a
g(x) = u.

Proof: This follows from the Squeeze Theorem for Sequences in R together with the
Sequential Characterization of Limits.

3.25 Definition: Let A ⊆ R`, let B ⊆ Rm, and let f : A→ B. For a ∈ A, we say that f
is continuous at a when

∀ε>0 ∃δ>0 ∀x∈A
(
|x− a| < δ =⇒ |f(x)− f(a)| < ε

)
.

We say that f is continuous (on A) when f is continuous at a for every a ∈ A. We say
that f is uniformly continuous on A when

∀ε>0 ∃δ>0 ∀a∈A ∀x∈A
(
|x− a| < δ =⇒ |f(x)− f(a)| < ε

)
.

3.26 Theorem: (Continuity at Limit Points and Isolated Points) Let A ⊆ R` and let
f : A→ Rm.

(1) When a is a limit point of A, f is continuous at a ⇐⇒ lim
x→a

f(x) = f(a).

(2) When a is an isolated point of A, f is always continuous at a.

Proof: We leave the proof as an exercise.

3.27 Theorem: (Sequential Characterization of Continuity) Let A ⊆ R`, let f : A→ Rm,
and let a ∈ A. Then f is continuous at a if and only if lim

n→∞
f(xn) = f(a) for every sequence

(xn)n≥p in A with lim
n→∞

xn = a.

Proof: Suppose f is continuous at a. Let (xn) be any sequence in A with xn → a. Let ε > 0.
Since f is continuous at a we can choose δ > 0 so that |x− a| < δ =⇒ |f(x)− f(a)| < ε.
Since xn → a we can choose N so that n ≥ N =⇒ |xn − a| < δ. Then for all n ≥ N we
have |xn − a| < δ hence |f(xn)− f(a)| < ε, and so lim

n→∞
f(xn) = f(a), as required.

Suppose that f is not continuous at a. Choose ε > 0 such that for every δ > 0 there
exists x ∈ A such that |x− a| < δ and |f(x)− f(a)| ≥ ε. For each n ∈ Z+, choose xn ∈ A
such that |xn− a| < 1

n and |f(xn)− f(a)| ≥ ε. Since |xn− a| < 1
n for all n ∈ Z+ it follows

that xn → a. Since
∣∣f(xn) − f(a)

∣∣ ≥ ε for all n, it follows that lim
n→∞

f(xn) 6= f(a). Thus

we have found a sequence (xn) in A with xn → a such that lim
x→a

f(xn) 6= f(a).

3.28 Theorem: (Local Determination of Continuity) Let A ⊆ R`, let a ∈ A′, and let
B = B∗(a, r) ∩ A where r > 0. Let f : A → Rm and g : B → Rm and suppose that
f(x) = g(x) for all x ∈ B. Then f is continuous at a if and only if g is continuous at a.

Proof: The proof is left as an exercise.
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3.29 Theorem: (Continuity of Component Functions) Let A ⊆ R` and let f : A → Rm.
Then f is continuous at a if and only if fk is continuous at a for every index k.

Proof: This can be proven by imitating the proof of Continuity of Component Sequences
or by using the result of Continuity of Component Sequences together with the Sequential
Characterization of Continuity.

3.30 Theorem: (Operations on Continuous Functions) Let A ⊆ R`, let f, g : A → Rm,
let a ∈ A and let c ∈ R. If f and g are continuous at a then so are each of the functions
f + g, cf , |f | and f . g, and also f × g in the case that m = 3.

Proof: This follows from the Sequential Characterization of Continuity along with Opera-
tions on Limits of Sequences.

3.31 Theorem: (Composition and Limits) Let f : A ⊆ R` → Rm, let g : B ⊆ Rm → Rp
and let h = g ◦ f : C ⊆ R` → Rp where C = A ∩ f−1(B). Let a ∈ C ′ ⊆ A′ and let b ∈ B′.
Suppose that lim

x→a
f(x) = b and lim

y→b
g(y) = c ∈ Rp ∪ {∞}.

(1) If f(x) 6= b for all x ∈ C \ {a} then lim
x→a

h(x) = c.

(2) If b ∈ B and g is continuous at b then lim
x→a

h(x) = g(b) = c.

Proof: We leave the proof of Part (1) as an exercise. To prove Part (2), suppose that
b ∈ B and g is continuous at b. Note that since b ∈ B′ and g is continuous at b we have
g(b) = lim

y→b
g(y) = c by Theorem 3.26. Let (xn) be any sequence in C \ {a} with xn → a.

Since C ⊆ A, the sequence (xn) also lies in A \ {a}. By the Sequential Characterization
of Limits of Functions, since lim

x→a
f(x) = b we have lim

n→∞
f(xn) = b. For each index n we

have xn ∈ C = A ∩ f−1(B) so that f(xn) ∈ B, and so the sequence
(
f(xn)

)
lies in B. By

the Sequential Characterization of Continuity, since g is continuous at b and f(xn) → b
we have lim

n→∞
g
(
f(xn)

)
= g(b) = c, that is lim

n→∞
h(xn) = g(b) = c. By the Sequential

Characterization of Limits, it follows that lim
x→a

h(x) = g(b) = c.

3.32 Corollary: (Composition of Continuous Functions) Let f : A ⊆ R` → Rm, let
g : B ⊆ Rm → Rp, and let h = g ◦ f : C ⊆ R` → Rp where C = A ∩ f−1(B).

(1) If f is continuous at a∈A and g is continuous at b=f(a)∈B then h is continuous at a.
(2) If f is continuous on A and g is continuous on B then h is continuous on C.

3.33 Definition: An elementary function is a function f : A ⊆ R` → Rm which
can be obtained, using the operations of addition, subtraction, multiplication, division,
and composition of functions (whenever those operations are defined) from the following
functions, which we call the basic elementary functions: the single-variable, real-valued
functions c, xn, x1/n, ex, lnx, sinx, cosx, tanx, sin−1 x, cos−1 x and tan−1 x, and the
kth inclusion map Ik : R → R` given by Ik(t) = (0, · · · , 0, t, 0, · · · , 0) = t ek, and the
kth projection map Pk : R` → R given by Pk(x1, · · · , x`) = xk.

3.34 Corollary: Elementary functions are continuous in their domains.

3.35 Exercise: Show that lim
(x,y)→(0,0)

x2 − 2y2

x2 + y2
, lim
(x,y)→(0,0)

xy

x2 + y2
and lim

(x,y)→(0,0)

xy2

x2 + y4

do not exist, and that lim
(x,y)→(0,0)

3x2y

x2 + 2y2
= 0 and lim

(x,y)→(0,0)

xy√
x2 + y2

= 0.
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3.36 Theorem: (Topological Characterization of Continuity) Let A ⊆ Rn, let B ⊆ Rm,
and let f : A→ B.

(1) f is continuous if and only if f−1(E) is open in A for every open set E in B.
(2) f is continuous if and only if f−1(F ) is closed in A for every closed set F in B.

Proof: We prove Part (1) and leave the proof of Part (2) as an exercise. Suppose that f
is continuous. Let E be an open set in B. Let a ∈ f−1(E) so we have f(a) ∈ E. Since
f(a) ∈ E and E is open in B we can choose ε > 0 so that BB

(
f(a), ε

)
⊆ E. Since f is

continuous at a we can choose δ > 0 so that for all x ∈ A, |x−a| < δ =⇒
∣∣f(x)−f(a)

∣∣ < ε.
Let x ∈ BA(a, δ), that is let x ∈ A with |x − a| < δ. Since x ∈ A and f : A → B we
have f(x) ∈ B. Since x ∈ A with |x − a| < δ, we have and

∣∣f(x) − f(a)
∣∣ < ε. Since

f(x) ∈ B with
∣∣f(x) = f(a)

∣∣ < ε, we have f(x) ∈ BB
(
f(a), ε

)
⊆ E hence x ∈ f−1(E).

Since a ∈ BA(a, δ) was arbitrary, this shows that BA(a, δ) ⊆ f−1(E). Thus f−1(E) is
open in A, as required.

Suppose, on the other hand, that f−1(E) is open in A for every open set E in B. Let
a ∈ A and let ε > 0. The set E = BB(f(a), ε

)
is open in B so the set f−1(E) is open

in A, and so we can choose δ > 0 such that BA(a, δ) ⊆ f−1(E). It follows that for all
x ∈ BA(a, δ) we have f(a) ∈ E = BB

(
f(a), ε

)
. Equivalently, for all x ∈ A, if |x − a| < δ

then f(x) ∈ B with
∣∣f(x)−f(a)

∣∣ < ε. hus f is continuous at a. Since a ∈ A was arbitrary,
f is continuous (in its domain A).

3.37 Theorem: (Properties of Continuous Functions) Let ∅ 6= A ⊆ Rn, let B ⊆ Rm, and
let f : A→ B be continuous.

(1) If A is connected then f(A) is connected.
(2) If A is compact then f(A) is compact.
(3) If A is compact then f is uniformly continuous on A.
(4) If A is compact and m = 1 then f(x) attains its maximum and minimum values on A.
(5) if A is compact and f is bijective then f−1 is continuous.

Proof: We sketch a proof for Parts (1), (2) and (4) and leave some details, along with
the other two parts, as an exercise. To prove Part (1), suppose that f(A) is disconnected.
Choose open sets U and V in Rm which separate f(A). Since f is continuous and U and
V are open, it follows that f−1(U) and f−1(V ) are open in A. Verify that f−1(U) and
f−1(V ) separate A, so A is disconnected.

To prove Part (2), suppose that A is compact. Let S =
{
Uk
∣∣k ∈ K} be an open cover

of f(A) (with each Uk open in Rn). For each set k ∈ K, since Uk is open in Rm and f is
continuous, it follows that f−1(Uk) is open in A. Let T =

{
f−1(Uk)

∣∣k ∈ K}. Verify that
T is an open cover of A (with each set f−1(Uk) open in A). Since A is compact, we can
choose a finite subset J ⊆ K such that the set

{
f−1(Uj)

∣∣j ∈ J} is an open cover of A.

Verify that the set
{
Uj
∣∣j ∈ J} is an open cover for f(A), so f(A) is compact.

To prove Part (4), suppose that f : A ⊆ Rn → R with A is compact. Since A is
compact and f is continuous, f(A) is compact by Part (2). Since f(A) is compact, it is
closed and bounded by the Heine Borel Theorem. Since f(A) is bounded and non-empty
(since A 6= ∅) it has a supremum and an infemum in R. Let u = sup f(A). By the
Approximation Property of the Supremum, for each n ∈ Z+ we can choose xn ∈ A with
u − 1

n < f(xn) ≤ u, and it follows that f(xn) → u and hence u is a limit point of f(A).
Since u is a limit point of f(A) and f(A) is closed, we have u ∈ f(A). Thus we can choose
a ∈ A such that f(a) = u = sup f(A) = max f(A), and then f attains its maximum value
at a ∈ A. Similarly, we can choose b ∈ A such that f(b) = inf f(A) = min f(A).
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3.38 Definition: Let A ⊆ Rn. For a, b ∈ A, the line segment between a and b is the set

[a, b] =
{
a+ t(b−a)

∣∣ 0≤ t≤1
}
.

We say that A is convex when for every a, b ∈ A we have [a, b] ⊆ A.

3.39 Example: Show that for a ∈ Rn and r > 0, the ball B(a, r) is convex.

Proof: Let b, c ∈ B(a, r) so we have |b − a| < r and |c − a| < r. Let x ∈ [b, c], say
x = b+ t(c− b) = (1− t)b+ tc with 0 ≤ t ≤ 1. Note that

x− a = (1− t)b+ tc− ((1− t) + t)a = (1− t)(b− a) + t(c− a).

By the Triangle Inequality, we have

|x− a| =
∣∣(1− t)(b− a) + t(c− a)

∣∣ ≤ ∣∣(1− t)(b− a)
∣∣+
∣∣t(c− a)

∣∣
= (1− t)|b− a|+ t|c− a| < (1− t)r + tr = r

so that x ∈ B(a, r). This shows that [b, c] ⊆ B(a, r) and so B(a, r) is convex.

3.40 Definition: Let A ⊆ Rn and let a, b ∈ A. A (continuous) path from a to b in A
is a continuous function f : [0, 1] → A with f(0) = a and f(1) = b. We say that A is
path-connected when for every a, b ∈ A there exists a continuous path from a to b in A.

3.41 Note: For A ⊆ Rn, if A is convex then A is path connected because given a, b ∈ A,
since [a, b] ⊆ A, the map f(t) = a+ t(b− a) is a continuous path from a to b in A.

3.42 Theorem: (Path-Connectedness and Connectedness) Let A ⊆ Rn.
(1) If A is path-connected then A is connected.
(2) If A is open and connected then A is path-connected.

Proof: We prove Part (1) and leave Part (2) as an exercise. Suppose that A is path
connected and suppose, for a contradiction, that A is not connected. Let U and V be open
sets in Rn which separate A, that is U ∩ A 6= ∅, V ∩ A 6= ∅, U ∩ V = ∅ and A ⊆ U ∪ V .
Choose a ∈ U ∩ A and b ∈ V ∩ A. Since A is path connected we can choose a continuous
path f : [0, 1] → A with f(0) = a and f(1) = b. Since f is continuous, f−1(U) and
f−1(V ) are open in [0, 1]. Since f(0) = a ∈ U we have 0 ∈ f−1(U) so f−1(U) 6= ∅.
Similarly 1 ∈ f−1(V ) so f−1(V ) 6= ∅. Since U ∩ V = ∅ we also have f−1(U) ∩ f−1(V ) = ∅
(indeed if we had t ∈ f−1(U) ∩ f−1(V ) then we would have f(t) ∈ U and f(t) ∈ V so
that f(t) ∈ U ∩ V ). Since f : [0, 1]→ A ⊆ U ∪ V it follows that [0, 1] = f−1(U) ∪ f−1(V )
(indeed, given t ∈ [0, 1] we have f(t) ∈ A ⊆ U ∪ V , so either f(t) ∈ U or f(t) ∈ V hence
either t ∈ f−1(U) or t ∈ f−1(V )). Thus the open sets f−1(U) and f−1(V ) separate [0, 1].
This is not possible since [0, 1] is connected, so we have obtained the desired contradiction.

3.43 Example: Show that the set U =
{

(x, y) ∈ R2
∣∣y > x2

}
is open in R2.

Solution: The map f : R2 → R given by f(x, y) = y−x2 is continuous (it is an elementary
function), and the interval I = (0,∞) is open and so the set U = f−1(I) is open (by
Theorem 3.36).

3.44 Example: Show that for a ∈ Rn and r > 0, the set B(a, r) is connected.

Solution: Since B(a, r) is convex (by Example 3.39), it is path connected (by Note 3.41),
and hence it is connected (by Part 1 of Theorem 3.42).
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