Chapter 2. Topological Properties of Sets in Euclidean Space

2.1 Definition: For vectors $x, y \in \mathbb{R}^{n}$ we define the dot product of x and y to be

$$
x \cdot y=y^{T} x=\sum_{i=1}^{n} x_{i} y_{i}
$$

2.2 Theorem: (Properties of the Dot Product) For all $x, y, z \in \mathbb{R}^{n}$ and all $t \in \mathbb{R}$ we have
(1) (Bilinearity) $(x+y) \cdot z=x \cdot z+y \cdot z,(t x) \cdot y=t(x \cdot y)$

$$
x \cdot(y+z)=x \cdot y+x \cdot z, x \cdot(t y)=t(x \cdot y)
$$

(2) (Symmetry) $x \cdot y=y \cdot x$, and
(3) (Positive Definiteness) $x \cdot x \geq 0$ with $x \cdot x=0$ if and only if $x=0$.

Proof: The proof is left as an exercise.
2.3 Definition: For a vector $x \in \mathbb{R}^{n}$, we define the norm (or length) of x to be

$$
|x|=\sqrt{x \cdot x}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

We say that x is a unit vector when $|x|=1$.
2.4 Theorem: (Properties of the Norm) Let $x, y \in \mathbb{R}^{n}$ and let $t \in \mathbb{R}$. Then
(1) (Positive Definiteness) $|x| \geq 0$ with $|x|=0$ if and only if $x=0$,
(2) (Scaling) $|t x|=|t||x|$,
(3) $|x \pm y|^{2}=|x|^{2} \pm 2(x \cdot y)+|y|^{2}$.
(4) (The Polarization Identities) $x \cdot y=\frac{1}{2}\left(|x+y|^{2}-|x|^{2}-|y|^{2}\right)=\frac{1}{4}\left(|x+y|^{2}-|x-y|^{2}\right)$,
(5) (The Cauchy-Schwarz Inequality) $|x \cdot y| \leq|x||y|$ with $|x \cdot y|=|x||y|$ if and only if the set $\{x, y\}$ is linearly dependent, and
(6) (The Triangle Inequality) $|x+y| \leq|x|+|y|$.

Proof: We leave the proofs of Parts (1), (2) and (3) as an exercise, and we note that (4) follows immediately from (3). To prove part (5), suppose first that $\{x, y\}$ is linearly dependent. Then one of x and y is a multiple of the other, say $y=t x$ with $t \in \mathbb{R}$. Then

$$
|x \cdot y|=|x \cdot(t x)|=|t(x \cdot x)|=|t||x|^{2}=|x||t x|=|x||y| .
$$

Suppose next that $\{x, y\}$ is linearly independent. Then for all $t \in \mathbb{R}$ we have $x+t y \neq 0$ and so

$$
0 \neq|x+t y|^{2}=(x+t y) \cdot(x+t y)=|x|^{2}+2 t(x \cdot y)+t^{2}|y|^{2}
$$

Since the quadratic on the right is non-zero for all $t \in \mathbb{R}$, it follows that the discriminant of the quadratic must be negative, that is

$$
4(x \cdot y)^{2}-4|x|^{2}|y|^{2}<0
$$

Thus $(x \cdot y)^{2}<|x|^{2}|y|^{2}$ and hence $|x \cdot y|<|x||y|$. This proves part (5).
Using part (5) note that
$|x+y|^{2}=|x|^{2}+2(x \cdot y)+|y|^{2} \leq|x+y|^{2}+2|x \cdot y|+|y|^{2} \leq|x|^{2}+2|x||y|+|y|^{2}=(|x|+|y|)^{2}$ and so $|x+y| \leq|x|+|y|$, which proves part (6).
2.5 Definition: For points $a, b \in \mathbb{R}^{n}$, we define the distance between a and b to be

$$
\operatorname{dist}(a, b)=|b-a|
$$

2.6 Theorem: (Properties of Distance) Let $a, b, c \in \mathbb{R}^{n}$. Then
(1) (Positive Definiteness) dist $(a, b) \geq 0$ with $\operatorname{dist}(a, b)=0$ if and only if $a=b$,
(2) $($ Symmetry $) \operatorname{dist}(a, b)=\operatorname{dist}(b, a)$, and
(3) (The Triangle Inequality) $\operatorname{dist}(a, c) \leq \operatorname{dist}(a, b)+\operatorname{dist}(b, c)$.

Proof: The proof is left as an exercise.
2.7 Definition: For nonzero vectors $0 \neq u, v \in \mathbb{R}^{n}$, we define the angle between u and v to be $\theta(u, v)=\cos ^{-1} \frac{u \cdot v}{|u||v|} \in[0, \pi]$. We say that u and v are orthogonal when $u \cdot v=0$. As an exercise, determine (with proof) some properties of angles.
2.8 Definition: For $a \in \mathbb{R}^{n}$ and $0<r \in \mathbb{R}$, the sphere, the open ball, the closed ball, and the (open) punctured ball in \mathbb{R}^{n} centered at a of radius r are defined to be the sets

$$
\begin{aligned}
S(a, r) & =\left\{x \in \mathbb{R}^{n} \mid \operatorname{dist}(x, a)=r\right\}=\left\{x \in \mathbb{R}^{n}| | a-x \mid=r\right\} \\
B(a, r) & =\left\{x \in \mathbb{R}^{n} \mid \operatorname{dist}(x, a)<r\right\}=\left\{x \in \mathbb{R}^{n}| | a-x \mid<r\right\} \\
\bar{B}(a, r) & =\left\{x \in \mathbb{R}^{n} \mid \operatorname{dist}(x, a) \leq r\right\}=\left\{x \in \mathbb{R}^{n}| | a-x \mid \leq r\right\} \\
B^{*}(a, r) & =\left\{x \in \mathbb{R}^{n} \mid 0<\operatorname{dist}(x, a)<r\right\}=\left\{x \in \mathbb{R}^{n}|0<|a-x|<r\} .\right.
\end{aligned}
$$

2.9 Definition: Let $A \subseteq \mathbb{R}^{n}$. We say that A is bounded when $A \subseteq B(a, r)$ for some $a \in \mathbb{R}^{n}$ and some $0<r \in \mathbb{R}$. As an exercise, verify that A is bounded if and only if $A \subseteq B(0, r)$ for some $r>0$.
2.10 Definition: For a set $A \subseteq \mathbb{R}^{n}$, we say that A is open (in \mathbb{R}^{n}) when for every $a \in A$ there exists $r>0$ such that $B(a, r) \subseteq A$, and we say that A is closed (in \mathbb{R}^{n}) when its complement $A^{c}=\mathbb{R}^{n} \backslash A$ is open in \mathbb{R}^{n}.
2.11 Exercise: Show that open intervals in \mathbb{R} are open in \mathbb{R} and closed intervals in \mathbb{R} are closed in \mathbb{R}.
2.12 Example: Show that for $a \in \mathbb{R}^{n}$ and $0<r \in \mathbb{R}$, the set $B(a, r)$ is open and the set $\bar{B}(a, r)$ is closed.

Solution: Let $a \in \mathbb{R}^{n}$ and let $r>0$. We claim that $B(a, r)$ is open. We need to show that for all $b \in B(a, r)$ there exists $s>0$ such that $B(b, s) \subseteq B(a, r)$. Let $b \in B(a, r)$ and note that $|b-a|<r$. Let $s=r-|b-a|$ and note that $s>0$. Let $x \in B(b, s)$, so we have $|x-b|<s$. Then, by the Triangle Inequality, we have

$$
|x-a|=|x-b+b-a| \leq|x-b|+|b-a|<s+|b-a|=r
$$

and so $x \in B(a, r)$. This shows that $B(b, s) \subseteq B(a, r)$ and hence $B(a, r)$ is open.
Next we claim that $\bar{B}(a, r)$ is closed, that is $\bar{B}(a, r)^{c}$ is open. Let $b \in \bar{B}(a, r)^{c}$, that is let $b \in \mathbb{R}^{n}$ with $b \notin \bar{B}(a, r)$. Since $b \notin \bar{B}(a, r)$ we have $|b-a|>r$. Let $s=|b-a|-r>0$. Let $x \in B(b, s)$ and note that $|x-b|<s$. Then we have

$$
|b-a|=|b-x+x-a| \leq|b-x|+|x-a|<s+|x-a|
$$

and so $|x-a|>|b-a|-s=r$. Since $|x-a|>r$ we have $x \notin \bar{B}(a, r)$ and so $x \in \bar{B}(a, r)^{c}$. This shows that $B(b, s) \subseteq \bar{B}(a, r)^{c}$ and it follows that $\bar{B}(a, r)^{c}$ is open and hence that $\bar{B}(a, r)$ is closed.

2.13 Theorem: (Basic Properties of Open Sets)

(1) The sets \emptyset and \mathbb{R}^{n} are open in \mathbb{R}^{n}.
(2) If S is a set of open sets then the union $\bigcup S=\bigcup_{U \in S} U$ is open.
(3) If S is a finite set of open sets then the intersection $\bigcap S=\bigcap_{U \in S} U$ is open.

Proof: The empty set is open because any statement of the form "for all $x \in \emptyset F$ " (where F is any statement) is considered to be true (by convention). The set \mathbb{R}^{n} is open because given $a \in \mathbb{R}^{n}$ we can choose any value of $r>0$ and then we have $B(a, r) \subseteq \mathbb{R}^{n}$ by the definition of $B(a, r)$. This proves Part (1).

To prove Part (2), let S be any set of open sets. Let $a \in \bigcup S=\bigcup_{U \in S} U$. Choose an open set $U \in S$ such that $a \in U$. Since U is open we can choose $r>0$ such that $B(a, r) \subseteq U$. Since $U \in S$ we have $U \subseteq \bigcup S$. Since $B(a, r) \subseteq U$ and $U \subseteq \bigcup S$ we have $B(a, r) \subseteq \bigcup S$. Thus $\bigcup S$ is open, as required.

To prove Part (3), let S be a finite set of open sets. If $S=\emptyset$ then we use the convention that $\bigcap S=\mathbb{R}^{n}$, which is open. Suppose that $S \neq \emptyset$, say $S=\left\{U_{1}, U_{2}, \cdots, U_{m}\right\}$ where each U_{k} is an open set. Let $a \in \bigcap S=\bigcap_{k=1}^{m} U_{k}$. For each index k, since $a \in U_{k}$ we can choose $r_{k}>0$ so that $B\left(a, r_{k}\right) \subseteq U_{k}$. Let $r=\min \left\{r_{1}, r_{2}, \cdots, r_{m}\right\}$. Then for each index k we have $B(a, r) \subseteq B\left(a, r_{k}\right) \subseteq U_{k}$. Since $B(a, r) \subseteq U_{k}$ for every index k, it follows that $B(a, r) \subseteq \bigcap_{k=1}^{m} U_{k}=\bigcap S$. Thus $\bigcap S$ is open, as required.
2.14 Theorem: (Basic Properties of Closed Sets)
(1) The sets \emptyset and \mathbb{R}^{n} are closed in \mathbb{R}^{n}.
(2) If S is a set of closed sets then the intersection $\bigcap S=\bigcap_{K \in S} K$ is closed.
(3) If S is a finite set of closed sets then the union $\bigcup S=\bigcup_{K \in S} K$ is closed.

Proof: The proof is left as an exercise
2.15 Definition: Let $A \subseteq \mathbb{R}^{n}$. The interior and the closure of A (in \mathbb{R}^{n}) are the sets

$$
\begin{aligned}
A^{0} & =\bigcup\left\{U \subseteq \mathbb{R}^{n} \mid U \text { is open, and } U \subseteq A\right\} \\
\bar{A} & =\bigcap\left\{K \subseteq \mathbb{R}^{n} \mid K \text { is closed and } A \subseteq K\right\}
\end{aligned}
$$

2.16 Theorem: Let $A \subseteq \mathbb{R}^{n}$.
(1) The interior of A is the largest open set which is contained in A. In other words, $A^{0} \subseteq A$ and A^{0} is open, and for every open set U with $U \subseteq A$ we have $U \subseteq A^{0}$.
(2) The closure of A is the smallest closed set which contains A. In other words, $A \subseteq \bar{A}$ and \bar{A} is closed, and for every closed set K with $A \subseteq K$ we have $\bar{A} \subseteq K$.

Proof: Note that A^{0} is open by Part (2) of Theorem 2.13, because A^{0} is equal to the union of a set of open sets. Also note that $A^{0} \subseteq A$ because A^{0} is equal to the union of a set of subsets of A. Finally note that for any open set U with $U \subseteq A$ we have $U \in S$ so that $U \subseteq \bigcup S=A^{0}$. This completes the proof of Part (1), and the proof of Part (2) is similar.
2.17 Corollary: Let $A \subseteq \mathbb{R}^{n}$.
(1) $\left(A^{0}\right)^{0}=A^{0}$ and $\overline{\bar{A}}=\bar{A}$.
(2) A is open if and only if $A=A^{0}$
(3) A is closed if and only if $A=\bar{A}$.

Proof: The proof is left as an exercise.
2.18 Definition: Let $A \subseteq \mathbb{R}^{n}$. An interior point of A is a point $a \in A$ such that for some $r>0$ we have $B(a, r) \subseteq A$. A limit point of A is a point $a \in \mathbb{R}^{n}$ such that for every $r>0$ we have $B^{*}(a, r) \cap A \neq \emptyset$. An isolated point of A is a point $a \in A$ which is not a limit point of A. A boundary point of A is a point $a \in \mathbb{R}^{n}$ such that for every $r>0$ we have $B(a, r) \cap A \neq \emptyset$ and $B(a, r) \cap A^{c} \neq \emptyset$. The set of limit points of A is denoted by A^{\prime}. The boundary of A, denoted by ∂A, is the set of all boundary points of A.
2.19 Theorem: (Properties of Interior, Limit and Boundary Points) Let $A \subseteq \mathbb{R}^{n}$.
(1) A^{0} is equal to the set of all interior points of A.
(2) A is closed if and only if $A^{\prime} \subseteq A$.
(3) $\bar{A}=A \cup A^{\prime}$.
(4) $\partial A=\bar{A} \backslash A^{0}$.

Proof: We leave the proofs of Parts (1) and (4) as exercises. To prove Part (2) note that when $a \notin A$ we have $B(a, r) \cap A=B^{*}(a, r) \cap A$ and so

$$
\begin{aligned}
A \text { is closed } & \Longleftrightarrow A^{c} \text { is open } \\
& \Longleftrightarrow \forall a \in A^{c} \exists r>0 B(a, r) \subseteq A^{c} \\
& \Longleftrightarrow \forall a \in \mathbb{R}^{n}\left(a \notin A \Longrightarrow \exists r>0 B(a, r) \subseteq A^{c}\right. \\
& \Longleftrightarrow \forall a \in \mathbb{R}^{n}(a \notin A \Longrightarrow \exists r>0 B(a, r) \cap A=\emptyset) \\
& \Longleftrightarrow \forall a \in \mathbb{R}^{n}\left(a \notin A \Longrightarrow \exists r>0 B^{*}(a, r) \cap A=\emptyset\right) \\
& \Longleftrightarrow \forall a \in \mathbb{R}^{n}\left(\forall r>0 B^{*}(a, r) \cap A \neq \emptyset \Longrightarrow a \in A\right) \\
& \Longleftrightarrow \forall a \in \mathbb{R}^{n}\left(a \in A^{\prime} \Longrightarrow a \in A\right) \\
& \Longleftrightarrow A^{\prime} \subseteq A .
\end{aligned}
$$

To prove Part (3) we shall prove that $A \cup A^{\prime}$ is the smallest closed set which contains A. It is clear that $A \cup A^{\prime}$ contains A. We claim that $A \cup A^{\prime}$ is closed, that is $\left(A \cup A^{\prime}\right)^{c}$ is open. Let $a \in\left(A \cup A^{\prime}\right)^{c}$, that is let $a \in \mathbb{R}^{n}$ with $a \notin A$ and $a \notin A^{\prime}$. Since $a \notin A^{\prime}$ we can choose $r>0$ so that $B(a, r) \cap A=\emptyset$. We claim that because $B(a, r) \cap A=\emptyset$ it follows that $B(a, r) \cap A^{\prime}=\emptyset$. Suppose, for a contradiction, that $B(a, r) \cap A^{\prime} \neq \emptyset$. Choose $b \in B(a, r) \cap A^{\prime}$. Since $b \in B(a, r)$ and $B(a, r)$ is open, we can choose $s>0$ so that $B(b, s) \subseteq B(a, r)$. Since $b \in A^{\prime}$ it follows that $B(b, s) \cap A \neq \emptyset$. Choose $x \in B(b, s) \cap A$. Then we have $x \in B(b, s) \subseteq B(a, r)$ and $x \in A$ and so $x \in B(a, r) \cap A$, which contradicts the fact that $B(a, r) \cap A=\emptyset$. Thus $B(a, r) \cap A^{\prime}=\emptyset$, as claimed. Since $B(a, r) \cap A=\emptyset$ and $B(a, r) \cap A^{\prime}=\emptyset$ it follows that $B(a, r) \cap\left(A \cup A^{\prime}\right)=\emptyset$ hence $B(a, r) \subseteq\left(A \cup A^{\prime}\right)^{c}$. Thus proves that $\left(A \cup A^{\prime}\right)^{c}$ is open, and hence $A \cup A^{\prime}$ is closed.

It remains to show that for every closed set K with $A \subseteq K$ we have $A \cup A^{\prime} \subseteq K$. Let K be a closed set in \mathbb{R}^{n} with $A \subseteq K$. Note that since $A \subseteq K$ it follows that $A^{\prime} \subseteq K^{\prime}$ because if $a \in A^{\prime}$ then for all $r>0$ we have $B(a, r) \cap A \neq \emptyset$ hence $B(a, r) \cap K \neq \emptyset$ and so $a \in K^{\prime}$. Since K is closed we have $K^{\prime} \subseteq K$ by Part (2). Since $A^{\prime} \subseteq K^{\prime}$ and $K^{\prime} \subseteq K$ we have $A^{\prime} \subseteq K$. Since $A \subseteq K$ and $A^{\prime} \subseteq K$ we have $A \cup A^{\prime} \subseteq K$, as required. This completes the proof of Part (3).
2.20 Definition: Let $A \subseteq \mathbb{R}^{n}$. For sets $U, V \subseteq \mathbb{R}^{n}$, we say that U and V separate A when

$$
U \cap A \neq \emptyset, V \cap A \neq \emptyset, U \cap V=\emptyset \text { and } A \subseteq U \cup V
$$

We say that A is connected when there do not exist open sets U and V in \mathbb{R}^{n} which separate A. We say that A is disconnected when it is not connected, that is when there do exist open sets U and V in \mathbb{R}^{n} which separate A.
2.21 Theorem: The connected sets in \mathbb{R} are the intervals, that is the sets of one of the forms

$$
(a, b),[a, b),(a, b],[a, b],(a, \infty),[a, \infty),(-\infty, b),(-\infty, b],(-\infty, \infty)
$$

for some $a, b \in \mathbb{R}$ with $a \leq b$. We include the case that $a=b$ in order to include the degenerate intervals $\emptyset=(a, a)$ and $\{a\}=[a, a]$.

Proof: We use the fact that the intervals in \mathbb{R} are the sets with the intermediate value property (a set $A \subseteq \mathbb{R}$ has the intermediate value property when for all $a, b, \in A$ and all $x \in \mathbb{R}$, if $a<x<b$ then $x \in A$). Let $A \subseteq \mathbb{R}$. Suppose that A is not an interval. Then A does not have the intermediate value property so we can choose $a, b \in A$ and $u \in \mathbb{R}$ with $a<u<b$. Then $U=(-\infty, u)$ and $V=(u, \infty)$ separate A and so A is disconnected.

Suppose, conversely, that A is disconnected. Choose open sets U and V which separate A. Choose $a \in U$ and $b \in V$. Note that $a \neq b$ since $U \cap V=\emptyset$. Suppose that $a<b$ (the case that $b<a$ is similar). Let $u=\sup (U \cap[a, b])$. Note that $u \neq a$ since we can choose $\delta>0$ such that $[a, a+\delta) \subseteq U \cap[a, b]$ and then we have $u=\sup (U \cap[a, b]) \geq a+\delta$. Note that $u \neq b$ since we can choose $\delta>0$ such that $(b-\delta, b] \subseteq V \cap[a, b]$ and then we have $u=\sup (U \cap[a, b]) \leq b-\delta$ since $U \cap V=\emptyset$. Thus we have $a<u<b$. Note that $u \notin U$ since if we had $u \in U$ we could choose $\delta>0$ such that $(u-\delta, u+\delta) \subseteq U \cap[a, b]$ which contradicts the fact that $u=\sup (U \cap[a, b])$. Note that $u \notin V$ since if we had $u \in V$ then we could choose $\delta>0$ such that $(u-\delta, u+\delta) \subseteq V \cap[a, b]$ which contradicts the fact that $u=\sup (U \cap[a, b])$ because $U \cap V=\emptyset$. Since $u \notin U$ and $u \notin V$ and $A \subseteq U \cap V$ we have $u \notin A$, so A does not have the intermediate value property, and so A is not an interval.
2.22 Definition: Let $A \subseteq \mathbb{R}^{n}$. An open cover of A is a set S of open sets in \mathbb{R}^{n} such that $A \subseteq \bigcup S$. A subcover of an open cover S of A is a subset $T \subseteq S$ such that $A \subseteq \bigcup T$. We say that A is compact when every open cover of A has a finite subcover.
2.23 Exercise: Show that the set $A=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}^{+}\right\}$is not compact, but that the set $B=A \cup\{0\}$ is compact.
2.24 Theorem: (The Nested Interval Theorem) Let $I_{0}, I_{1}, I_{2}, \cdots$ be nonempty, closed bounded intervals in \mathbb{R}. Suppose that $I_{0} \supseteq I_{1} \supset I_{2} \supset \cdots$. Then $\bigcap_{k=0}^{\infty} I_{k} \neq \emptyset$.

Proof: For each $k \geq 1$, let $I_{k}=\left[a_{k}, b_{k}\right]$ with $a_{k}<b_{k}$. For each k, since $I_{k+1} \subseteq I_{k}$ we have $a_{k} \leq a_{k+1}<b_{k+1} \leq b_{k+1}$. Since $a_{k} \geq a_{k+1}$ for all k, the sequence $\left(a_{k}\right)$ is increasing. Since $a_{k}<b_{k} \leq b_{k-1} \leq \cdots \leq b_{1}$ for all k, the sequence $\left(a_{k}\right)$ is bounded above by b_{1}. Since $\left(a_{k}\right)$ is increasing and bounded above, it converges. Let $a=\sup \left\{a_{k}\right\}=\lim _{k \rightarrow \infty} a_{k}$. Similarly, $\left(b_{k}\right)$ is decreasing and bounded below by a_{1}, and so it converges. Let $b=\inf \left\{b_{k}\right\}=\lim _{k \rightarrow \infty} b_{k}$. Fix $m \geq 1$. For all $k \geq m$ we have $a_{m}<b_{m} \leq b_{m+1} \leq \cdots \leq b_{k}$. Since $a_{k} \leq b_{k}$ for all k, by the Comparison Theorem we have $a \leq b$, and so the interval $[a, b]$ is not empty. Since $\left(a_{k}\right)$ is increasing with $a_{k} \rightarrow a$, it follows (we leave the proof as an exercise) that $a_{k} \leq a$ for all $k \geq 1$. Similarly, we have $b_{k} \geq b$ for all $k \geq 1$ and so $[a, b] \subseteq\left[a_{k}, b_{k}\right]=I_{k}$. Thus $[a, b] \subseteq \bigcap_{k=1}^{\infty} I_{k}$, and so $\bigcap_{k=1}^{\infty} I_{k} \neq \emptyset$.
2.25 Definition: A closed rectangle in \mathbb{R}^{n} is a set of the form

$$
\begin{aligned}
R & =\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \\
& =\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{n} \mid a_{j} \leq x_{j} \leq b_{j} \text { for all } j\right\} .
\end{aligned}
$$

2.26 Theorem: (Nested Rectangles) Let $R_{1}, R_{2}, R_{3}, \cdots$ be closed rectangles in \mathbb{R}^{n} with $R_{1} \supseteq R_{2} \supseteq R_{3} \supseteq \cdots$. Then

$$
\bigcap_{k=1}^{\infty} R_{k} \neq \emptyset
$$

Proof: Let $R_{k}=\left[a_{k, 1}, b_{k, 1}\right] \times\left[a_{k, 2}, b_{k, 2}\right] \times \cdots \times\left[a_{k, n}, b_{k, n}\right]$. Since $R_{1} \supseteq R_{2} \supseteq \cdots$ it follows that for each index j with $1 \leq j \leq n$ we have $\left[a_{1, j}, b_{1, j}\right] \supseteq\left[a_{2, j}, b_{2, j}\right] \supseteq \cdots$. By the Nested Interval Theorem, for each index j we can choose $u_{j} \in \bigcap_{k=1}^{\infty}\left[a_{k, j}, b_{k, j}\right]$. Then for $u=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ we have $u \in \bigcap_{k=1}^{\infty} R_{k}$.
2.27 Theorem: (Compactness of Rectangles) Every closed rectangle in \mathbb{R}^{n} is compact.

Proof: Let $R=I_{1} \times I_{2} \times \cdots \times I_{n}$ where $I_{j}=\left[a_{j}, b_{j}\right]$ with $a_{j} \leq b_{j}$. Let d be the diameter of R, that is $d=\operatorname{diam}(R)=\left(\sum_{j=1}^{n}\left(b_{j}-a_{j}\right)^{2}\right)^{1 / 2}$. Let S be an open cover of R. Suppose, for a contradiction, that S does not have a finite subset which covers R. Let $a_{1, j}=a_{j}, b_{1, j}=b_{j}$, $I_{1, j}=I_{j}=\left[a_{1, j}, b_{1, j}\right]$ and $R_{1}=R=I_{1,1} \times \cdots \times I_{1, n}$. Recursively, we construct rectangles $R=R_{1} \supseteq R_{2} \supseteq R_{3} \supseteq \cdots$, with $R_{k}=I_{k, 1} \times \cdots \times I_{k, n}$ where $I_{k, j}=\left[a_{k, j}, b_{k, j}\right]$, and $d_{k}=\operatorname{diam}\left(R_{k}\right)=\left(\sum_{j=1}^{n}\left(b_{k, j}-a_{k, j}\right)^{2}\right)^{1 / 2}=\frac{d}{2^{k-1}}$, such that the open cover S does not have a finite subset which covers any of the rectangles R_{k}. We do this recursive construction as follows. Having constructed one of the rectangles R_{k}, we partition each of the intervals $I_{k, j}=\left[a_{k, j}, b_{k, j}\right]$ into the two equal-sized subintervals $\left[a_{k, j}, \frac{a_{k, j}+b_{k, j}}{2}\right]$ and $\left[\frac{a_{k, j}+b_{k, j}}{2}, b_{k, j}\right]$, and we thereby partition the rectangle R_{k} into 2^{n} equal-sized sub-rectangles. We choose R_{k+1} to be equal to one of these 2^{n} sub-rectangles with the property that the open cover S does not have a finite subset which covers R_{k+1} (if each of the 2^{n} sub-rectangles could be covered by a finite subset of S then the union of theses 2^{n} finite subsets would be a finite subset of S which covers R_{k}).

By the Nested Rectangles Theorem, we can choose an element $u \in \bigcap_{k=1}^{\infty} R_{k}$. Since $u \in R$ and S covers R we can choose an open set $U \in S$ such that $u \in U$. Since U is open we can choose $r>0$ such that $B(u, r) \subseteq U$. Since $d_{k} \rightarrow 0$ we can choose k so that $d_{k}<r$. Since $u \in R_{k}$ and $\operatorname{diam} R_{k}=d_{k}<r$ we have $R_{k} \subseteq B(u, r) \subseteq U$. Thus S does have a finite subset, namely $\{U\}$, which covers R_{k}, giving the desired contradiction.
2.28 Theorem: Let $A \subseteq K \subseteq \mathbb{R}^{n}$. If A is closed and K is compact then A is compact.

Proof: Suppose that A is closed in \mathbb{R}^{n} and that K is compact. Let S be an open cover of A. Let $A^{c}=\mathbb{R}^{n} \backslash A$. Since $A \subseteq \bigcup S$ we have $\bigcup S \cup\left\{A^{c}\right\}=\mathbb{R}^{n}$ and so $S \cup\left\{A^{c}\right\}$ is an open cover of K. Since K is compact, we can choose a finite subset $T \subseteq S \cup\left\{A^{c}\right\}$ with $K \subseteq \bigcup T$. Since $A \subseteq K \subseteq \bigcup T$ we also have $A \subseteq \bigcup\left(T \backslash\left\{A^{c}\right\}\right)$. Thus the open cover S of A does have a finite subcover, namely $T \backslash\left\{A^{c}\right\}$, and so A is compact, as required.
2.29 Theorem: (The Heine-Borel Theorem) Let $A \subseteq \mathbb{R}^{n}$. Then A is compact if and only if A is closed and bounded.

Proof: Suppose that A is compact. Suppose, for a contradiction, that A is not bounded. For each $k \in \mathbb{Z}^{+}$let $U_{k}=B(0, k)$ and let $S=\left\{U_{k} \mid k \in \mathbb{Z}^{+}\right\}$. Then $\bigcup S=\mathbb{R}^{n}$ so S is an open cover of A. Let T be any finite subset of S. If $T=\emptyset$ then $\bigcup T=\emptyset$ and $A \nsubseteq \bigcup T$. Suppose that $T \neq \emptyset$, say $T=\left\{U_{k_{1}}, U_{k_{2}}, \cdots, U_{k_{m}}\right\}$ with $k_{1}<k_{2}<\cdots<k_{m}$. Since $U_{k_{1}} \subseteq U_{k_{2}} \subseteq \cdots \subseteq U_{k_{m}}$ we have $\bigcup T=\bigcup_{i=1}^{m} U_{k_{i}}=U_{k_{m}}=B\left(0, k_{m}\right)$. Since A is not bounded we have $A \nsubseteq B\left(0, k_{m}\right)$ and so $A \nsubseteq \bigcup T$. This shows that the open cover S has no finite subcover T, which contradicts the fact that A is compact.

Next suppose, for a contradiction, that A is not closed. By Part (2) of Theorem 2.19, it follows that $A^{\prime} \nsubseteq A$. Choose $a \in A^{\prime}$ with $a \notin A$. For each $k \in \mathbb{Z}^{+}$let U_{k} be the open set $U_{k}=\bar{B}\left(a, \frac{1}{k}\right)^{c}=\left\{x \in \mathbb{R}^{n}| | x-a \left\lvert\,>\frac{1}{k}\right.\right\}$ and let $S=\left\{U_{k} \mid k \in \mathbb{Z}^{+}\right\}$. Note that $\bigcup S=\mathbb{R}^{n} \backslash\{a\}$ so S is an open cover of A. Let T be any finite subset of S. If $T=\emptyset$ then $\bigcup T=\emptyset$ so $A \nsubseteq \bigcup T$ (since A is not closed so $A \neq \emptyset$). Suppose that $T \neq \emptyset$, say $T=\left\{U_{k_{1}}, U_{k_{2}}, \cdots, U_{k_{m}}\right\}$ with $k_{1}<k_{2}<\cdots<k_{m}$. Since $U_{k_{1}} \subseteq U_{k_{2}} \subseteq \cdots \subseteq U_{k_{m}}$ we have $\bigcup T=\bigcup_{i=1}^{m} U_{k_{i}}=U_{k_{m}}=\bar{B}\left(a, \frac{1}{k_{m}}\right)^{c}$. Since a is a limit point of A we have $B\left(a, \frac{1}{k_{m}}\right) \neq \emptyset$ hence $\bar{B}\left(a, \frac{1}{k_{m}}\right) \cap A \neq \emptyset$ and so $A \nsubseteq \bar{B}\left(a, \frac{1}{k_{m}}\right)^{c}$, hence $A \nsubseteq \bigcup T$. This shows that the open cover S has no finite subcover T, which again contradicts the fact that A is compact.

Suppose, conversely, that A is closed and bounded. Since A is bounded we can choose $r>0$ so that $A \subseteq B(0, r)$. Let R be the closed rectangle $R=\left\{x \in \mathbb{R}^{n}| | x_{k} \mid \leq r\right.$ for all $\left.k\right\}$. Note that $B(0, r) \subseteq R$ since when $x=\left(x_{1}, \cdots, x_{n}\right) \in B(0, r)$, for each index k we have

$$
\left|x_{k}\right|=\left(x_{k}^{2}\right)^{1 / 2} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}=|x|<r
$$

Since A is closed and $A \subseteq R$ and R is compact, it follows that A is compact, by the above theorem.
2.30 Definition: Let $P \subseteq \mathbb{R}^{n}$. For $a \in P$ and $0<r \in \mathbb{R}$ we define the open ball in P and the closed ball in P centred at a of radius r to be the sets

$$
\begin{aligned}
B_{P}(a, r) & =\{x \in P| | x-a \mid<r\} \\
\bar{B}_{P}(a, r) & =\{x \in P(a, r) \cap P
\end{aligned}
$$

For $A \subseteq P \subseteq \mathbb{R}^{n}$, we say A is open in P when for every $a \in A$ there exists $r>0$ such that $B_{P}(a, r) \subseteq A$, and we say A is closed in P when $A^{c}=P \backslash A$ is open in P.
2.31 Theorem: Let $A \subseteq P \subseteq \mathbb{R}^{n}$.
(1) A is open in P if and only if there exists an open set U in \mathbb{R}^{n} such that $A=U \cap P$.
(2) A is closed in P if and only if there exists a closed set K in \mathbb{R}^{n} such that $A=K \cap P$.

Proof: To prove Part (1), suppose first that A is open in P. For each $a \in A$, choose $r_{a}>0$ so that $B\left(a, r_{a}\right) \cap P \subseteq A$, and let $U=\bigcup_{a \in A} B\left(a, r_{a}\right)$. Since U is equal to the union of a set of open sets in \mathbb{R}^{n}, it follows that U is open in \mathbb{R}^{n}. Note that $A \subseteq U \cap P$ and, since $B\left(a, r_{a}\right) \cap P \subseteq A$ for every $a \in A$, we also have $U \cap P=\left(\bigcup_{a \in U} B\left(a, r_{a}\right)\right) \cap P=$ $\bigcup_{a \in A}\left(B\left(a, r_{a}\right) \cap P\right) \subseteq A$. Thus $A=U \cap P$, as required.

Suppose, conversely, that $A=U \cap P$ with U open in \mathbb{R}^{n}. Let $a \in A$. Since $a \in A=$ $U \cap P$, we also have $a \in U$. Since $a \in U$ and U is open in \mathbb{R}^{n} we can choose $r>0$ so that $B(a, r) \subseteq U$. Since $B(a, r) \subseteq U$ and $U \cap P=A$ we have $B(a, r) \cap P \subseteq U \cap P=A$, as required.

To prove Part (2), suppose first that A is closed in P. Let B be the complement of A in P, that is $B=P \backslash A$. Then B is open in P. Choose an open set U in \mathbb{R}^{n} such that $B=U \cap P$. Let K be the complement of U in \mathbb{R}^{n}, that is $K=\mathbb{R}^{n} \backslash U$. Then $A=K \cap P$ since for $x \in \mathbb{R}^{n}$ we have $x \in A \Longleftrightarrow(x \in P$ and $x \notin B) \Longleftrightarrow(x \in P$ and $x \notin U \cap P)$ $\Longleftrightarrow(x \in P$ and $x \notin U) \Longleftrightarrow(x \in P$ and $x \in K) \Longleftrightarrow x \in K \cap P$.

Suppose, conversely, that K is a closed set in P with $A=K \cap P$. Let B be the complement of A in P, that is $B=P \backslash A$, and let U be the complement of K in P, that is $U=P \backslash K$, and note that U is open in P. Then we have $B=U \cap P$ since for $x \in P$ we have $x \in B \Longleftrightarrow(x \in P$ and $x \notin A) \Longleftrightarrow(x \in P$ and $x \notin K \cap P)$ $\Longleftrightarrow(x \in P$ and $x \notin K) \Longleftrightarrow(x \in P$ and $x \in U) \Longleftrightarrow x \in U \cap P$. Since U is open in P and $B=U \cap P$ we know that B is open in P. Since B is open in P, its complement $A=P \backslash B$ is closed in P.
2.32 Theorem: Let $A \subseteq P \subseteq \mathbb{R}^{n}$. Define A to be connected in P when there do not exists sets $E, F \subseteq P$ which are open in P and which separate A. Define A to be compact in P when for every set S of open sets in P such that $A \subseteq \bigcup S$ there exists a finite subset $T \subseteq S$ such that $A \subseteq \bigcup T$. Then
(1) A is connected in P if and only if A is connected in \mathbb{R}^{n}, and
(2) A is compact in P if and only if A is compact in \mathbb{R}^{n}.

Proof: We prove. Part (1) and leave the proof of Part (2) as an exercise. Suppose that A is not connected in \mathbb{R}^{n}. Choose open sets U and V in \mathbb{R}^{n} which separate A, that is $U \cap A \neq \emptyset, V \cap A \neq \emptyset, U \cap V=\emptyset$ and $A \subseteq U \cup V$. Let $E=U \cap P$ and $F=V \cap P$. Note that E and F are open in P and E and F separate A.

Suppose, conversely, that there exist sets $E, F \subseteq P$ which are open in P and which separate A, that is $A \cap E \neq \emptyset, A \cap F \neq \emptyset, E \cap F=\emptyset$ and $A \subseteq E \cup F$. Choose open sets $U, V \subseteq \mathbb{R}^{n}$ such that $E=U \cap P$ and $F=V \cap P$. Note that it is possible that $U \cap V \neq \emptyset$ and so U and V might not separate A in \mathbb{R}^{n}. For this reason, we shall construct open subsets $U_{0} \subseteq U$ and $V_{0} \subseteq V$ which do separate A in \mathbb{R}^{n}. For each $a \in E$ choose $r_{a}>0$ such that $B\left(a, 2 r_{a}\right) \subseteq U$ and then let $U_{0}=\bigcup_{a \in E} B\left(a, r_{a}\right)$. Note that U_{0} is open in \mathbb{R}^{n} (since it is a union of open sets in \mathbb{R}^{n}) and that we have $E \subseteq U_{0} \subseteq U$. Similarly, for each $b \in F$ choose $s_{b}>0$ so that $B\left(b, 2 s_{b}\right) \subseteq V$, and then let $V_{0}=\bigcup_{b \in F} B\left(b, s_{b}\right)$. Note that V_{0} is open in \mathbb{R}^{n} and $F \subseteq V_{0} \subseteq V$. We claim that the open sets U_{0} and V_{0} separate A in \mathbb{R}^{n}. Since $E \subseteq U_{0}$ and $F \subseteq V_{0}$ we have $\emptyset \neq A \cap E \subseteq A \cap U_{0}, \emptyset \neq A \cap F \subseteq A \cap V_{0}$ and $A \subseteq E \cup F \subseteq U_{0} \cup V_{0}$. It remains to show that $U_{0} \cap V_{0}=\emptyset$. Suppose, for a contradiction, that $U_{0} \cap V_{0} \neq \emptyset$. Choose $x \in U_{0} \cap V_{0}$. Since $x \in U_{0}=\bigcup_{a \in E} B\left(a, r_{a}\right)$ we can choose $a \in E$ such that $x \in B\left(a, r_{a}\right)$. Similarly, we can choose $b \in F$ so that $x \in B\left(b, s_{b}\right)$. Suppose that $r_{a} \geq s_{b}$ (the case that $s_{b} \geq r_{a}$ is similar). By the Triangle Inequality, it follows that $|b-a| \leq|b-x|+|x-a|<s_{b}+r_{a} \leq 2 r_{a}$ and so we have $b \in B\left(a, 2 r_{a}\right) \subseteq U$. Since $b \in F \subseteq P$ and $b \in U$ we have $b \in U \cap P=E$. Thus we have $b \in E \cap F$ which contradicts the fact that $E \cap F=\emptyset$, and so $U_{0} \cap V_{0}=\emptyset$, as required.
2.33 Corollary: A set $A \subseteq \mathbb{R}^{n}$ is connected (in \mathbb{R}^{n}) if and only if the only subsets of A which are both open and closed in A are the sets \emptyset and A.

Proof: We leave it as an exercise to show that this follows from the above theorem by taking $A=P$.

