
Chapter 2. Topological Properties of Sets in Euclidean Space

2.1 Definition: For vectors x, y ∈ Rn we define the dot product of x and y to be

x . y = yTx =
n∑

i=1

xiyi .

2.2 Theorem: (Properties of the Dot Product) For all x, y, z ∈ Rn and all t ∈ R we have

(1) (Bilinearity) (x+ y) . z = x . z + y . z , (tx) . y = t(x . y)
x . (y + z) = x . y + x . z , x . (ty) = t(x . y),

(2) (Symmetry) x . y = y .x, and
(3) (Positive Definiteness) x .x ≥ 0 with x .x = 0 if and only if x = 0.

Proof: The proof is left as an exercise.

2.3 Definition: For a vector x ∈ Rn, we define the norm (or length) of x to be

|x| =
√
x .x =

√
n∑

i=1

xi
2.

We say that x is a unit vector when |x| = 1.

2.4 Theorem: (Properties of the Norm) Let x, y ∈ Rn and let t ∈ R. Then

(1) (Positive Definiteness) |x| ≥ 0 with |x| = 0 if and only if x = 0,
(2) (Scaling) |tx| = |t||x|,
(3) |x± y|2 = |x|2 ± 2(x . y) + |y|2.
(4) (The Polarization Identities) x . y = 1

2

(
|x+ y|2 − |x|2 − |y|2

)
= 1

4

(
|x+ y|2 − |x− y|2

)
,

(5) (The Cauchy-Schwarz Inequality) |x . y| ≤ |x| |y| with |x . y| = |x| |y| if and only if the
set {x, y} is linearly dependent, and
(6) (The Triangle Inequality) |x+ y| ≤ |x|+ |y|.

Proof: We leave the proofs of Parts (1), (2) and (3) as an exercise, and we note that
(4) follows immediately from (3). To prove part (5), suppose first that {x, y} is linearly
dependent. Then one of x and y is a multiple of the other, say y = tx with t ∈ R. Then

|x . y| = |x . (tx)| = |t(x .x)| = |t| |x|2 = |x| |tx| = |x| |y|.

Suppose next that {x, y} is linearly independent. Then for all t ∈ R we have x + ty 6= 0
and so

0 6= |x+ ty|2 = (x+ ty) . (x+ ty) = |x|2 + 2t(x . y) + t2|y|2.

Since the quadratic on the right is non-zero for all t ∈ R, it follows that the discriminant
of the quadratic must be negative, that is

4(x . y)2 − 4|x|2|y|2 < 0.

Thus (x . y)2 < |x|2|y|2 and hence |x . y| < |x| |y|. This proves part (5).
Using part (5) note that

|x+y|2 = |x|2 +2(x . y)+ |y|2 ≤ |x+y|2 +2|x . y|+ |y|2 ≤ |x|2 +2|x| |y|+ |y|2 =
(
|x|+ |y|

)2
and so |x+ y| ≤ |x|+ |y|, which proves part (6).
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2.5 Definition: For points a, b ∈ Rn, we define the distance between a and b to be

dist(a, b) = |b− a|.

2.6 Theorem: (Properties of Distance) Let a, b, c ∈ Rn. Then

(1) (Positive Definiteness) dist(a, b) ≥ 0 with dist(a, b) = 0 if and only if a = b,
(2) (Symmetry) dist(a, b) = dist(b, a), and
(3) (The Triangle Inequality) dist(a, c) ≤ dist(a, b) + dist(b, c).

Proof: The proof is left as an exercise.

2.7 Definition: For nonzero vectors 0 6= u, v ∈ Rn, we define the angle between u and
v to be θ(u, v) = cos−1 u. v

|u| |v| ∈ [0, π]. We say that u and v are orthogonal when u . v = 0.

As an exercise, determine (with proof) some properties of angles.

2.8 Definition: For a ∈ Rn and 0 < r ∈ R, the sphere, the open ball, the closed ball,
and the (open) punctured ball in Rn centered at a of radius r are defined to be the sets

S(a, r) =
{
x ∈ Rn

∣∣dist(x, a) = r
}

=
{
x ∈ Rn

∣∣|a− x| = r
}
,

B(a, r) =
{
x ∈ Rn

∣∣dist(x, a) < r
}

=
{
x ∈ Rn

∣∣|a− x| < r
}
,

B(a, r) =
{
x ∈ Rn

∣∣dist(x, a) ≤ r
}

=
{
x ∈ Rn

∣∣|a− x| ≤ r},
B∗(a, r) =

{
x ∈ Rn

∣∣0 < dist(x, a) < r
}

=
{
x ∈ Rn

∣∣0 < |a− x| < r
}
.

2.9 Definition: Let A ⊆ Rn. We say that A is bounded when A ⊆ B(a, r) for some
a ∈ Rn and some 0 < r ∈ R. As an exercise, verify that A is bounded if and only if
A ⊆ B(0, r) for some r > 0.

2.10 Definition: For a set A ⊆ Rn, we say that A is open (in Rn) when for every a ∈ A
there exists r > 0 such that B(a, r) ⊆ A, and we say that A is closed (in Rn) when its
complement Ac = Rn \A is open in Rn.

2.11 Exercise: Show that open intervals in R are open in R and closed intervals in R are
closed in R.

2.12 Example: Show that for a ∈ Rn and 0 < r ∈ R, the set B(a, r) is open and the set
B(a, r) is closed.

Solution: Let a ∈ Rn and let r > 0. We claim that B(a, r) is open. We need to show that
for all b ∈ B(a, r) there exists s > 0 such that B(b, s) ⊆ B(a, r). Let b ∈ B(a, r) and note
that |b − a| < r. Let s = r − |b − a| and note that s > 0. Let x ∈ B(b, s), so we have
|x− b| < s. Then, by the Triangle Inequality, we have

|x− a| = |x− b+ b− a| ≤ |x− b|+ |b− a| < s+ |b− a| = r

and so x ∈ B(a, r). This shows that B(b, s) ⊆ B(a, r) and hence B(a, r) is open.
Next we claim that B(a, r) is closed, that is B(a, r)c is open. Let b ∈ B(a, r)c, that is

let b ∈ Rn with b /∈ B(a, r). Since b /∈ B(a, r) we have |b− a| > r. Let s = |b− a| − r > 0.
Let x ∈ B(b, s) and note that |x− b| < s. Then we have

|b− a| = |b− x+ x− a| ≤ |b− x|+ |x− a| < s+ |x− a|
and so |x− a| > |b− a| − s = r. Since |x− a| > r we have x /∈ B(a, r) and so x ∈ B(a, r)c.
This shows that B(b, s) ⊆ B(a, r)c and it follows that B(a, r)c is open and hence that
B(a, r) is closed.
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2.13 Theorem: (Basic Properties of Open Sets)

(1) The sets ∅ and Rn are open in Rn.
(2) If S is a set of open sets then the union

⋃
S =

⋃
U∈S

U is open.

(3) If S is a finite set of open sets then the intersection
⋂
S =

⋂
U∈S

U is open.

Proof: The empty set is open because any statement of the form “for all x∈∅ F” (where
F is any statement) is considered to be true (by convention). The set Rn is open because
given a ∈ Rn we can choose any value of r > 0 and then we have B(a, r) ⊆ Rn by the
definition of B(a, r). This proves Part (1).

To prove Part (2), let S be any set of open sets. Let a ∈
⋃
S =

⋃
U∈S U . Choose

an open set U ∈ S such that a ∈ U . Since U is open we can choose r > 0 such that
B(a, r) ⊆ U . Since U ∈ S we have U ⊆

⋃
S. Since B(a, r) ⊆ U and U ⊆

⋃
S we have

B(a, r) ⊆
⋃
S. Thus

⋃
S is open, as required.

To prove Part (3), let S be a finite set of open sets. If S = ∅ then we use the convention
that

⋂
S = Rn, which is open. Suppose that S 6= ∅, say S = {U1, U2, · · · , Um} where each

Uk is an open set. Let a ∈
⋂
S =

⋂m
k=1 Uk. For each index k, since a ∈ Uk we can

choose rk > 0 so that B(a, rk) ⊆ Uk. Let r = min{r1, r2, · · · , rm}. Then for each index
k we have B(a, r) ⊆ B(a, rk) ⊆ Uk. Since B(a, r) ⊆ Uk for every index k, it follows that
B(a, r) ⊆

⋂m
k=1 Uk =

⋂
S. Thus

⋂
S is open, as required.

2.14 Theorem: (Basic Properties of Closed Sets)

(1) The sets ∅ and Rn are closed in Rn.
(2) If S is a set of closed sets then the intersection

⋂
S =

⋂
K∈S

K is closed.

(3) If S is a finite set of closed sets then the union
⋃
S =

⋃
K∈S

K is closed.

Proof: The proof is left as an exercise

2.15 Definition: Let A ⊆ Rn. The interior and the closure of A (in Rn) are the sets

A0 =
⋃{

U ⊆ Rn
∣∣U is open, and U ⊆ A

}
,

A =
⋂{

K ⊆ Rn
∣∣K is closed and A ⊆ K

}
.

2.16 Theorem: Let A ⊆ Rn.

(1) The interior of A is the largest open set which is contained in A. In other words,
A0 ⊆ A and A0 is open, and for every open set U with U ⊆ A we have U ⊆ A0.

(2) The closure of A is the smallest closed set which contains A. In other words, A ⊆ A
and A is closed, and for every closed set K with A ⊆ K we have A ⊆ K.

Proof: Note that A0 is open by Part (2) of Theorem 2.13, because A0 is equal to the union
of a set of open sets. Also note that A0 ⊆ A because A0 is equal to the union of a set of
subsets of A. Finally note that for any open set U with U ⊆ A we have U ∈ S so that
U ⊆

⋃
S = A0. This completes the proof of Part (1), and the proof of Part (2) is similar.

2.17 Corollary: Let A ⊆ Rn.

(1) (A0)0 = A0 and A = A.
(2) A is open if and only if A = A0

(3) A is closed if and only if A = A.

Proof: The proof is left as an exercise.
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2.18 Definition: Let A ⊆ Rn. An interior point of A is a point a ∈ A such that for
some r > 0 we have B(a, r) ⊆ A. A limit point of A is a point a ∈ Rn such that for every
r > 0 we have B∗(a, r) ∩ A 6= ∅. An isolated point of A is a point a ∈ A which is not a
limit point of A. A boundary point of A is a point a ∈ Rn such that for every r > 0 we
have B(a, r) ∩ A 6= ∅ and B(a, r) ∩ Ac 6= ∅. The set of limit points of A is denoted by A′.
The boundary of A, denoted by ∂A, is the set of all boundary points of A.

2.19 Theorem: (Properties of Interior, Limit and Boundary Points) Let A ⊆ Rn.
(1) A0 is equal to the set of all interior points of A.
(2) A is closed if and only if A′ ⊆ A.
(3) A = A ∪A′.
(4) ∂A = A \A0.

Proof: We leave the proofs of Parts (1) and (4) as exercises. To prove Part (2) note that
when a /∈ A we have B(a, r) ∩A = B∗(a, r) ∩A and so

A is closed ⇐⇒ Ac is open

⇐⇒ ∀a∈Ac ∃r>0 B(a, r) ⊆ Ac

⇐⇒ ∀a∈Rn
(
a /∈A =⇒ ∃r>0 B(a, r) ⊆ Ac

⇐⇒ ∀a∈Rn
(
a /∈A =⇒ ∃r>0 B(a, r) ∩A = ∅

)
⇐⇒ ∀a∈Rn

(
a /∈A =⇒ ∃r>0 B∗(a, r) ∩A = ∅

)
⇐⇒ ∀a∈Rn

(
∀r>0 B∗(a, r) ∩A 6= ∅ =⇒ a∈A

)
⇐⇒ ∀a∈Rn

(
a ∈ A′ =⇒ a ∈ A

)
⇐⇒ A′ ⊆ A.

To prove Part (3) we shall prove that A ∪ A′ is the smallest closed set which contains A.
It is clear that A ∪ A′ contains A. We claim that A ∪ A′ is closed, that is (A ∪ A′)c is
open. Let a ∈ (A ∪ A′)c, that is let a ∈ Rn with a /∈ A and a /∈ A′. Since a /∈ A′ we
can choose r > 0 so that B(a, r) ∩ A = ∅. We claim that because B(a, r) ∩ A = ∅ it
follows that B(a, r) ∩A′ = ∅. Suppose, for a contradiction, that B(a, r) ∩A′ 6= ∅. Choose
b ∈ B(a, r) ∩ A′. Since b ∈ B(a, r) and B(a, r) is open, we can choose s > 0 so that
B(b, s) ⊆ B(a, r). Since b ∈ A′ it follows that B(b, s) ∩ A 6= ∅. Choose x ∈ B(b, s) ∩ A.
Then we have x ∈ B(b, s) ⊆ B(a, r) and x ∈ A and so x ∈ B(a, r) ∩ A, which contradicts
the fact that B(a, r) ∩ A = ∅. Thus B(a, r) ∩ A′ = ∅, as claimed. Since B(a, r) ∩ A = ∅
and B(a, r)∩A′ = ∅ it follows that B(a, r)∩ (A∪A′) = ∅ hence B(a, r) ⊆ (A∪A′)c. Thus
proves that (A ∪A′)c is open, and hence A ∪A′ is closed.

It remains to show that for every closed set K with A ⊆ K we have A ∪A′ ⊆ K. Let
K be a closed set in Rn with A ⊆ K. Note that since A ⊆ K it follows that A′ ⊆ K ′

because if a ∈ A′ then for all r > 0 we have B(a, r) ∩A 6= ∅ hence B(a, r) ∩K 6= ∅ and so
a ∈ K ′. Since K is closed we have K ′ ⊆ K by Part (2). Since A′ ⊆ K ′ and K ′ ⊆ K we
have A′ ⊆ K. Since A ⊆ K and A′ ⊆ K we have A∪A′ ⊆ K, as required. This completes
the proof of Part (3).

2.20 Definition: Let A ⊆ Rn. For sets U, V ⊆ Rn, we say that U and V separate A
when

U ∩A 6= ∅ , V ∩A 6= ∅ , U ∩ V = ∅ and A ⊆ U ∪ V.

We say that A is connected when there do not exist open sets U and V in Rn which
separate A. We say that A is disconnected when it is not connected, that is when there
do exist open sets U and V in Rn which separate A.
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2.21 Theorem: The connected sets in R are the intervals, that is the sets of one of the
forms

(a, b) , [ a, b) , (a, b ] , [ a, b ] , (a,∞) , [ a,∞) , (−∞, b) , (−∞, b ] , (−∞,∞)

for some a, b ∈ R with a ≤ b. We include the case that a = b in order to include the
degenerate intervals ∅ = (a, a) and {a} = [a, a].

Proof: We use the fact that the intervals in R are the sets with the intermediate value
property (a set A ⊆ R has the intermediate value property when for all a, b,∈ A and
all x ∈ R, if a < x < b then x ∈ A). Let A ⊆ R. Suppose that A is not an interval. Then
A does not have the intermediate value property so we can choose a, b ∈ A and u ∈ R with
a < u < b. Then U = (−∞, u) and V = (u,∞) separate A and so A is disconnected.

Suppose, conversely, that A is disconnected. Choose open sets U and V which separate
A. Choose a ∈ U and b ∈ V . Note that a 6= b since U ∩ V = ∅. Suppose that a < b (the
case that b < a is similar). Let u = sup

(
U ∩ [a, b]

)
. Note that u 6= a since we can choose

δ > 0 such that [a, a+δ) ⊆ U ∩ [a, b] and then we have u = sup
(
U ∩ [a, b]

)
≥ a+ δ. Note

that u 6= b since we can choose δ > 0 such that (b−δ, b] ⊆ V ∩ [a, b] and then we have
u = sup

(
U ∩ [a, b]

)
≤ b − δ since U ∩ V = ∅. Thus we have a < u < b. Note that u /∈ U

since if we had u ∈ U we could choose δ > 0 such that (u−δ, u+δ) ⊆ U ∩ [a, b] which
contradicts the fact that u = sup

(
U ∩ [a, b]

)
. Note that u /∈ V since if we had u ∈ V then

we could choose δ > 0 such that (u−δ, u+δ) ⊆ V ∩ [a, b] which contradicts the fact that
u = sup

(
U ∩ [a, b]

)
because U ∩ V = ∅. Since u /∈ U and u /∈ V and A ⊆ U ∩ V we have

u /∈ A, so A does not have the intermediate value property, and so A is not an interval.

2.22 Definition: Let A ⊆ Rn. An open cover of A is a set S of open sets in Rn such
that A ⊆

⋃
S. A subcover of an open cover S of A is a subset T ⊆ S such that A ⊆

⋃
T .

We say that A is compact when every open cover of A has a finite subcover.

2.23 Exercise: Show that the set A =
{

1
n

∣∣n ∈ Z+
}

is not compact, but that the set
B = A ∪ {0} is compact.

2.24 Theorem: (The Nested Interval Theorem) Let I0, I1, I2, · · · be nonempty, closed

bounded intervals in R. Suppose that I0 ⊇ I1 ⊃ I2 ⊃ · · ·. Then
∞⋂
k=0

Ik 6= ∅.

Proof: For each k ≥ 1, let Ik = [ak, bk] with ak < bk. For each k, since Ik+1 ⊆ Ik we have
ak ≤ ak+1 < bk+1 ≤ bk+1. Since ak ≥ ak+1 for all k, the sequence (ak) is increasing. Since
ak < bk ≤ bk−1 ≤ · · · ≤ b1 for all k, the sequence (ak) is bounded above by b1. Since (ak)
is increasing and bounded above, it converges. Let a = sup{ak} = lim

k→∞
ak. Similarly, (bk)

is decreasing and bounded below by a1, and so it converges. Let b = inf{bk} = lim
k→∞

bk.

Fix m ≥ 1. For all k ≥ m we have am < bm ≤ bm+1 ≤ · · · ≤ bk. Since ak ≤ bk for all k,
by the Comparison Theorem we have a ≤ b, and so the interval [a, b] is not empty. Since
(ak) is increasing with ak → a, it follows (we leave the proof as an exercise) that ak ≤ a
for all k ≥ 1. Similarly, we have bk ≥ b for all k ≥ 1 and so [a, b] ⊆ [ak, bk] = Ik. Thus

[a, b] ⊆
∞⋂
k=1

Ik, and so
∞⋂
k=1

Ik 6= ∅.

2.25 Definition: A closed rectangle in Rn is a set of the form

R = [a1, b1]× [a2, b2]× · · · × [an, bn]

=
{

(x1, x2, · · · , xn) ∈ Rn
∣∣aj ≤ xj ≤ bj for all j

}
.
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2.26 Theorem: (Nested Rectangles) Let R1, R2, R3, · · · be closed rectangles in Rn with
R1 ⊇ R2 ⊇ R3 ⊇ · · ·. Then

∞⋂
k=1

Rk 6= ∅.

Proof: Let Rk = [ak,1, bk,1]× [ak,2, bk,2]× · · · × [ak,n, bk,n]. Since R1 ⊇ R2 ⊇ · · · it follows
that for each index j with 1 ≤ j ≤ n we have [a1,j , b1,j ] ⊇ [a2,j , b2,j ] ⊇ · · ·. By the

Nested Interval Theorem, for each index j we can choose uj ∈
∞⋂
k=1

[ak,j , bk,j ]. Then for

u = (u1, u2, · · · , un) we have u ∈
∞⋂
k=1

Rk.

2.27 Theorem: (Compactness of Rectangles) Every closed rectangle in Rn is compact.

Proof: Let R = I1× I2×· · ·× In where Ij = [aj , bj ] with aj ≤ bj . Let d be the diameter of

R, that is d=diam(R)=
( n∑
j=1

(bj − aj)2
)1/2

. Let S be an open cover of R. Suppose, for a

contradiction, that S does not have a finite subset which covers R. Let a1,j = aj , b1,j = bj ,
I1,j = Ij = [a1,j , b1,j ] and R1 = R = I1,1 × · · · × I1,n. Recursively, we construct rectangles
R = R1 ⊇ R2 ⊇ R3 ⊇ · · ·, with Rk = Ik,1 × · · · × Ik,n where Ik,j = [ak,j , bk,j ], and

dk = diam(Rk) =
( n∑
j=1

(bk,j − ak,j)2
)1/2

= d
2k−1 , such that the open cover S does not have

a finite subset which covers any of the rectangles Rk. We do this recursive construction
as follows. Having constructed one of the rectangles Rk, we partition each of the intervals
Ik,j = [ak,j , bk,j ] into the two equal-sized subintervals [ak,j ,

ak,j+bk,j

2 ] and [
ak,j+bk,j

2 , bk,j ],
and we thereby partition the rectangle Rk into 2n equal-sized sub-rectangles. We choose
Rk+1 to be equal to one of these 2n sub-rectangles with the property that the open cover
S does not have a finite subset which covers Rk+1 (if each of the 2n sub-rectangles could
be covered by a finite subset of S then the union of theses 2n finite subsets would be a
finite subset of S which covers Rk).

By the Nested Rectangles Theorem, we can choose an element u ∈
∞⋂
k=1

Rk. Since

u ∈ R and S covers R we can choose an open set U ∈ S such that u ∈ U . Since U is open
we can choose r > 0 such that B(u, r) ⊆ U . Since dk → 0 we can choose k so that dk < r.
Since u ∈ Rk and diamRk = dk < r we have Rk ⊆ B(u, r) ⊆ U . Thus S does have a finite
subset, namely {U}, which covers Rk, giving the desired contradiction.

2.28 Theorem: Let A ⊆ K ⊆ Rn. If A is closed and K is compact then A is compact.

Proof: Suppose that A is closed in Rn and that K is compact. Let S be an open cover
of A. Let Ac = Rn \ A. Since A ⊆

⋃
S we have

⋃
S ∪ {Ac} = Rn and so S ∪ {Ac} is an

open cover of K. Since K is compact, we can choose a finite subset T ⊆ S ∪ {Ac} with
K ⊆

⋃
T . Since A ⊆ K ⊆

⋃
T we also have A ⊆

⋃(
T \ {Ac}

)
. Thus the open cover S of

A does have a finite subcover, namely T \ {Ac}, and so A is compact, as required.
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2.29 Theorem: (The Heine-Borel Theorem) Let A ⊆ Rn. Then A is compact if and only
if A is closed and bounded.

Proof: Suppose that A is compact. Suppose, for a contradiction, that A is not bounded.
For each k ∈ Z+ let Uk = B(0, k) and let S =

{
Uk

∣∣k ∈ Z+
}

. Then
⋃
S = Rn so S

is an open cover of A. Let T be any finite subset of S. If T = ∅ then
⋃
T = ∅ and

A 6⊆
⋃
T . Suppose that T 6= ∅, say T =

{
Uk1

, Uk2
, · · · , Ukm

}
with k1 < k2 < · · · < km.

Since Uk1 ⊆ Uk2 ⊆ · · · ⊆ Ukm we have
⋃
T =

⋃m
i=1 Uki = Ukm = B(0, km). Since A is not

bounded we have A 6⊆ B(0, km) and so A 6⊆
⋃
T . This shows that the open cover S has

no finite subcover T , which contradicts the fact that A is compact.
Next suppose, for a contradiction, that A is not closed. By Part (2) of Theorem 2.19,

it follows that A′ 6⊆ A. Choose a ∈ A′ with a /∈ A. For each k ∈ Z+ let Uk be the
open set Uk = B

(
a, 1k

)c
=
{
x ∈ Rn

∣∣|x − a| > 1
k

}
and let S =

{
Uk

∣∣k ∈ Z+
}

. Note that⋃
S = Rn \ {a} so S is an open cover of A. Let T be any finite subset of S. If T = ∅

then
⋃
T = ∅ so A 6⊆

⋃
T (since A is not closed so A 6= ∅). Suppose that T 6= ∅, say

T =
{
Uk1

, Uk2
, · · · , Ukm

}
with k1 < k2 < · · · < km. Since Uk1

⊆ Uk2
⊆ · · · ⊆ Ukm

we have⋃
T =

⋃m
i=1 Uki = Ukm = B

(
a, 1

km

)c
. Since a is a limit point of A we have B

(
a, 1

km

)
6= ∅

hence B
(
a, 1

km

)
∩A 6= ∅ and so A 6⊆ B

(
a, 1

km

)c
, hence A 6⊆

⋃
T . This shows that the open

cover S has no finite subcover T , which again contradicts the fact that A is compact.
Suppose, conversely, that A is closed and bounded. Since A is bounded we can choose

r > 0 so that A ⊆ B(0, r). Let R be the closed rectangle R =
{
x ∈ Rn

∣∣|xk| ≤ r for all k
}

.
Note that B(0, r) ⊆ R since when x = (x1, · · · , xn) ∈ B(0, r), for each index k we have

|xk| =
(
xk

2
)1/2 ≤ ( n∑

i=1

xi
2
)1/2

= |x| < r.

Since A is closed and A ⊆ R and R is compact, it follows that A is compact, by the above
theorem.

2.30 Definition: Let P ⊆ Rn. For a ∈ P and 0 < r ∈ R we define the open ball in P
and the closed ball in P centred at a of radius r to be the sets

BP (a, r) =
{
x ∈ P

∣∣ |x− a| < r
}

= B(a, r) ∩ P,
BP (a, r) =

{
x ∈ P

∣∣ |x− a| ≤ r} = B(a, r) ∩ P.

For A ⊆ P ⊆ Rn, we say A is open in P when for every a ∈ A there exists r > 0 such
that BP (a, r) ⊆ A, and we say A is closed in P when Ac = P \A is open in P .

2.31 Theorem: Let A ⊆ P ⊆ Rn.

(1) A is open in P if and only if there exists an open set U in Rn such that A = U ∩ P .
(2) A is closed in P if and only if there exists a closed set K in Rn such that A = K ∩ P .

Proof: To prove Part (1), suppose first that A is open in P . For each a ∈ A, choose ra > 0
so that B(a, ra) ∩ P ⊆ A, and let U =

⋃
a∈AB(a, ra). Since U is equal to the union of

a set of open sets in Rn, it follows that U is open in Rn. Note that A ⊆ U ∩ P and,

since B(a, ra) ∩ P ⊆ A for every a ∈ A, we also have U ∩ P =
(⋃

a∈U B(a, ra)
)
∩ P =⋃

a∈A
(
B(a, ra) ∩ P

)
⊆ A. Thus A = U ∩ P , as required.

Suppose, conversely, that A = U ∩ P with U open in Rn. Let a ∈ A. Since a ∈ A =
U ∩ P , we also have a ∈ U . Since a ∈ U and U is open in Rn we can choose r > 0 so that
B(a, r) ⊆ U . Since B(a, r) ⊆ U and U ∩ P = A we have B(a, r) ∩ P ⊆ U ∩ P = A, as
required.
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To prove Part (2), suppose first that A is closed in P . Let B be the complement of
A in P , that is B = P \ A. Then B is open in P . Choose an open set U in Rn such that
B = U ∩ P . Let K be the complement of U in Rn, that is K = Rn \ U . Then A = K ∩ P
since for x ∈ Rn we have x ∈ A ⇐⇒

(
x ∈ P and x /∈ B

)
⇐⇒

(
x ∈ P and x /∈ U ∩ P

)
⇐⇒

(
x ∈ P and x /∈ U

)
⇐⇒

(
x ∈ P and x ∈ K

)
⇐⇒ x ∈ K ∩ P .

Suppose, conversely, that K is a closed set in P with A = K ∩ P . Let B be the
complement of A in P , that is B = P \ A, and let U be the complement of K in P ,
that is U = P \ K, and note that U is open in P . Then we have B = U ∩ P since
for x ∈ P we have x ∈ B ⇐⇒

(
x ∈ P and x /∈ A

)
⇐⇒

(
x ∈ P and x /∈ K ∩ P

)
⇐⇒

(
x ∈ P and x /∈ K

)
⇐⇒

(
x ∈ P and x ∈ U

)
⇐⇒ x ∈ U ∩ P . Since U is open in

P and B = U ∩ P we know that B is open in P . Since B is open in P , its complement
A = P \B is closed in P .

2.32 Theorem: Let A ⊆ P ⊆ Rn. Define A to be connected in P when there do not
exists sets E,F ⊆ P which are open in P and which separate A. Define A to be compact
in P when for every set S of open sets in P such that A ⊆

⋃
S there exists a finite subset

T ⊆ S such that A ⊆
⋃
T . Then

(1) A is connected in P if and only if A is connected in Rn, and
(2) A is compact in P if and only if A is compact in Rn.

Proof: We prove. Part (1) and leave the proof of Part (2) as an exercise. Suppose that
A is not connected in Rn. Choose open sets U and V in Rn which separate A, that is
U ∩A 6= ∅, V ∩A 6= ∅, U ∩ V = ∅ and A ⊆ U ∪ V . Let E = U ∩ P and F = V ∩ P . Note
that E and F are open in P and E and F separate A.

Suppose, conversely, that there exist sets E,F ⊆ P which are open in P and which
separate A, that is A ∩ E 6= ∅, A ∩ F 6= ∅, E ∩ F = ∅ and A ⊆ E ∪ F . Choose open sets
U, V ⊆ Rn such that E = U ∩ P and F = V ∩ P . Note that it is possible that U ∩ V 6= ∅
and so U and V might not separate A in Rn. For this reason, we shall construct open
subsets U0 ⊆ U and V0 ⊆ V which do separate A in Rn. For each a ∈ E choose ra > 0
such that B(a, 2ra) ⊆ U and then let U0 =

⋃
a∈E B(a, ra). Note that U0 is open in Rn

(since it is a union of open sets in Rn) and that we have E ⊆ U0 ⊆ U . Similarly, for each
b ∈ F choose sb > 0 so that B(b, 2sb) ⊆ V , and then let V0 =

⋃
b∈F B(b, sb). Note that

V0 is open in Rn and F ⊆ V0 ⊆ V . We claim that the open sets U0 and V0 separate A in
Rn. Since E ⊆ U0 and F ⊆ V0 we have ∅ 6= A ∩ E ⊆ A ∩ U0, ∅ 6= A ∩ F ⊆ A ∩ V0 and
A ⊆ E ∪ F ⊆ U0 ∪ V0. It remains to show that U0 ∩ V0 = ∅. Suppose, for a contradiction,
that U0 ∩V0 6= ∅. Choose x ∈ U0 ∩V0. Since x ∈ U0 =

⋃
a∈E B(a, ra) we can choose a ∈ E

such that x ∈ B(a, ra). Similarly, we can choose b ∈ F so that x ∈ B(b, sb). Suppose
that ra ≥ sb (the case that sb ≥ ra is similar). By the Triangle Inequality, it follows that
|b − a| ≤ |b − x| + |x − a| < sb + ra ≤ 2ra and so we have b ∈ B(a, 2ra) ⊆ U . Since
b ∈ F ⊆ P and b ∈ U we have b ∈ U ∩ P = E. Thus we have b ∈ E ∩ F which contradicts
the fact that E ∩ F = ∅, and so U0 ∩ V0 = ∅, as required.

2.33 Corollary: A set A ⊆ Rn is connected (in Rn) if and only if the only subsets of A
which are both open and closed in A are the sets ∅ and A.

Proof: We leave it as an exercise to show that this follows from the above theorem by
taking A = P .
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