Chapter 2. Topological Properties of Sets in Euclidean Space

2.1 Definition: For vectors $x, y \in \mathbb{R}^n$ we define the **dot product** of x and y to be

$$x \cdot y = y^T x = \sum_{i=1}^n x_i y_i$$

2.2 Theorem: (Properties of the Dot Product) For all $x, y, z \in \mathbb{R}^n$ and all $t \in \mathbb{R}$ we have

- (1) (Bilinearity) $(x + y) \cdot z = x \cdot z + y \cdot z$, $(tx) \cdot y = t(x \cdot y)$ $x \cdot (y+z) = x \cdot y + x \cdot z , \ x \cdot (ty) = t(x \cdot y),$
- (2) (Symmetry) $x \cdot y = y \cdot x$, and
- (3) (Positive Definiteness) $x \cdot x \ge 0$ with $x \cdot x = 0$ if and only if x = 0.

Proof: The proof is left as an exercise.

2.3 Definition: For a vector $x \in \mathbb{R}^n$, we define the **norm** (or **length**) of x to be

$$|x| = \sqrt{x \cdot x} = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

We say that x is a **unit vector** when |x| = 1.

2.4 Theorem: (Properties of the Norm) Let $x, y \in \mathbb{R}^n$ and let $t \in \mathbb{R}$. Then

- (1) (Positive Definiteness) |x| > 0 with |x| = 0 if and only if x = 0,
- (2) (Scaling) |tx| = |t||x|,
- (3) $|x \pm y|^2 = |x|^2 \pm 2(x \cdot y) + |y|^2$.
- (4) (The Polarization Identities) $x \cdot y = \frac{1}{2} (|x+y|^2 |x|^2 |y|^2) = \frac{1}{4} (|x+y|^2 |x-y|^2),$ (5) (The Cauchy-Schwarz Inequality) $|x \cdot y| \le |x| |y|$ with $|x \cdot y| = |x| |y|$ if and only if the
- set $\{x, y\}$ is linearly dependent, and
- (6) (The Triangle Inequality) $|x + y| \le |x| + |y|$.

Proof: We leave the proofs of Parts (1), (2) and (3) as an exercise, and we note that (4) follows immediately from (3). To prove part (5), suppose first that $\{x, y\}$ is linearly dependent. Then one of x and y is a multiple of the other, say y = tx with $t \in \mathbb{R}$. Then

$$|x \cdot y| = |x \cdot (tx)| = |t(x \cdot x)| = |t| |x|^2 = |x| |tx| = |x| |y|.$$

Suppose next that $\{x, y\}$ is linearly independent. Then for all $t \in \mathbb{R}$ we have $x + ty \neq 0$ and so

$$0 \neq |x + ty|^{2} = (x + ty) \cdot (x + ty) = |x|^{2} + 2t(x \cdot y) + t^{2}|y|^{2}.$$

Since the quadratic on the right is non-zero for all $t \in \mathbb{R}$, it follows that the discriminant of the quadratic must be negative, that is

$$4(x \cdot y)^2 - 4|x|^2|y|^2 < 0.$$

Thus $(x \cdot y)^2 < |x|^2 |y|^2$ and hence $|x \cdot y| < |x| |y|$. This proves part (5).

Using part (5) note that

 $|x+y|^{2} = |x|^{2} + 2(x \cdot y) + |y|^{2} < |x+y|^{2} + 2|x \cdot y| + |y|^{2} < |x|^{2} + 2|x||y| + |y|^{2} = (|x|+|y|)^{2}$ and so |x + y| < |x| + |y|, which proves part (6).

2.5 Definition: For points $a, b \in \mathbb{R}^n$, we define the **distance** between a and b to be

$$\operatorname{dist}(a,b) = |b-a|$$

2.6 Theorem: (Properties of Distance) Let $a, b, c \in \mathbb{R}^n$. Then

- (1) (Positive Definiteness) dist $(a, b) \ge 0$ with dist(a, b) = 0 if and only if a = b,
- (2) (Symmetry) dist(a, b) = dist(b, a), and

(3) (The Triangle Inequality) $dist(a, c) \leq dist(a, b) + dist(b, c)$.

Proof: The proof is left as an exercise.

2.7 Definition: For nonzero vectors $0 \neq u, v \in \mathbb{R}^n$, we define the **angle between** u and v to be $\theta(u, v) = \cos^{-1} \frac{u \cdot v}{|u| |v|} \in [0, \pi]$. We say that u and v are **orthogonal** when $u \cdot v = 0$. As an exercise, determine (with proof) some properties of angles.

2.8 Definition: For $a \in \mathbb{R}^n$ and $0 < r \in \mathbb{R}$, the **sphere**, the **open ball**, the **closed ball**, and the (open) **punctured ball** in \mathbb{R}^n centered at *a* of radius *r* are defined to be the sets

$$S(a,r) = \{x \in \mathbb{R}^n | \operatorname{dist}(x,a) = r\} = \{x \in \mathbb{R}^n | |a-x| = r\},\$$

$$B(a,r) = \{x \in \mathbb{R}^n | \operatorname{dist}(x,a) < r\} = \{x \in \mathbb{R}^n | |a-x| < r\},\$$

$$\overline{B}(a,r) = \{x \in \mathbb{R}^n | \operatorname{dist}(x,a) \le r\} = \{x \in \mathbb{R}^n | |a-x| \le r\},\$$

$$B^*(a,r) = \{x \in \mathbb{R}^n | 0 < \operatorname{dist}(x,a) < r\} = \{x \in \mathbb{R}^n | 0 < |a-x| < r\},\$$

2.9 Definition: Let $A \subseteq \mathbb{R}^n$. We say that A is **bounded** when $A \subseteq B(a, r)$ for some $a \in \mathbb{R}^n$ and some $0 < r \in \mathbb{R}$. As an exercise, verify that A is bounded if and only if $A \subseteq B(0, r)$ for some r > 0.

2.10 Definition: For a set $A \subseteq \mathbb{R}^n$, we say that A is **open** (in \mathbb{R}^n) when for every $a \in A$ there exists r > 0 such that $B(a, r) \subseteq A$, and we say that A is **closed** (in \mathbb{R}^n) when its complement $A^c = \mathbb{R}^n \setminus A$ is open in \mathbb{R}^n .

2.11 Exercise: Show that open intervals in \mathbb{R} are open in \mathbb{R} and closed intervals in \mathbb{R} are closed in \mathbb{R} .

2.12 Example: Show that for $a \in \mathbb{R}^n$ and $0 < r \in \mathbb{R}$, the set B(a, r) is open and the set $\overline{B}(a, r)$ is closed.

Solution: Let $a \in \mathbb{R}^n$ and let r > 0. We claim that B(a, r) is open. We need to show that for all $b \in B(a, r)$ there exists s > 0 such that $B(b, s) \subseteq B(a, r)$. Let $b \in B(a, r)$ and note that |b - a| < r. Let s = r - |b - a| and note that s > 0. Let $x \in B(b, s)$, so we have |x - b| < s. Then, by the Triangle Inequality, we have

$$|x - a| = |x - b + b - a| \le |x - b| + |b - a| < s + |b - a| = r$$

and so $x \in B(a, r)$. This shows that $B(b, s) \subseteq B(a, r)$ and hence B(a, r) is open.

Next we claim that $\overline{B}(a, r)$ is closed, that is $\overline{B}(a, r)^c$ is open. Let $b \in \overline{B}(a, r)^c$, that is let $b \in \mathbb{R}^n$ with $b \notin \overline{B}(a, r)$. Since $b \notin \overline{B}(a, r)$ we have |b - a| > r. Let s = |b - a| - r > 0. Let $x \in B(b, s)$ and note that |x - b| < s. Then we have

$$|b-a| = |b-x+x-a| \le |b-x| + |x-a| < s + |x-a|$$

and so |x-a| > |b-a| - s = r. Since |x-a| > r we have $x \notin \overline{B}(a,r)$ and so $x \in \overline{B}(a,r)^c$. This shows that $B(b,s) \subseteq \overline{B}(a,r)^c$ and it follows that $\overline{B}(a,r)^c$ is open and hence that $\overline{B}(a,r)$ is closed.

2.13 Theorem: (Basic Properties of Open Sets)

(1) The sets \emptyset and \mathbb{R}^n are open in \mathbb{R}^n .

(2) If S is a set of open sets then the union $\bigcup S = \bigcup U$ is open.

(3) If S is a finite set of open sets then the intersection $\bigcap S = \bigcap_{U \in S} U$ is open.

Proof: The empty set is open because any statement of the form "for all $x \in \emptyset$ F" (where F is any statement) is considered to be true (by convention). The set \mathbb{R}^n is open because given $a \in \mathbb{R}^n$ we can choose any value of r > 0 and then we have $B(a, r) \subseteq \mathbb{R}^n$ by the definition of B(a, r). This proves Part (1).

To prove Part (2), let S be any set of open sets. Let $a \in \bigcup S = \bigcup_{U \in S} U$. Choose an open set $U \in S$ such that $a \in U$. Since U is open we can choose r > 0 such that $B(a,r) \subseteq U$. Since $U \in S$ we have $U \subseteq \bigcup S$. Since $B(a,r) \subseteq U$ and $U \subseteq \bigcup S$ we have $B(a,r) \subseteq \bigcup S$. Thus $\bigcup S$ is open, as required.

To prove Part (3), let S be a finite set of open sets. If $S = \emptyset$ then we use the convention that $\bigcap S = \mathbb{R}^n$, which is open. Suppose that $S \neq \emptyset$, say $S = \{U_1, U_2, \dots, U_m\}$ where each U_k is an open set. Let $a \in \bigcap S = \bigcap_{k=1}^m U_k$. For each index k, since $a \in U_k$ we can choose $r_k > 0$ so that $B(a, r_k) \subseteq U_k$. Let $r = \min\{r_1, r_2, \dots, r_m\}$. Then for each index k we have $B(a, r) \subseteq B(a, r_k) \subseteq U_k$. Since $B(a, r) \subseteq U_k$ for every index k, it follows that $B(a, r) \subseteq \bigcap_{k=1}^m U_k = \bigcap S$. Thus $\bigcap S$ is open, as required.

2.14 Theorem: (Basic Properties of Closed Sets)

(1) The sets \emptyset and \mathbb{R}^n are closed in \mathbb{R}^n .

(2) If S is a set of closed sets then the intersection $\bigcap S = \bigcap K$ is closed.

(3) If S is a finite set of closed sets then the union $\bigcup S = \bigcup_{K \in S} K$ is closed.

Proof: The proof is left as an exercise

2.15 Definition: Let $A \subseteq \mathbb{R}^n$. The **interior** and the **closure** of A (in \mathbb{R}^n) are the sets

$$A^{0} = \bigcup \{ U \subseteq \mathbb{R}^{n} | U \text{ is open, and } U \subseteq A \},\$$

$$\overline{A} = \bigcap \{ K \subseteq \mathbb{R}^{n} | K \text{ is closed and } A \subseteq K \}.$$

2.16 Theorem: Let $A \subseteq \mathbb{R}^n$.

(1) The interior of A is the largest open set which is contained in A. In other words, $A^0 \subseteq A$ and A^0 is open, and for every open set U with $U \subseteq A$ we have $U \subseteq A^0$.

(2) The closure of A is the smallest closed set which contains A. In other words, $A \subseteq \overline{A}$ and \overline{A} is closed, and for every closed set K with $A \subseteq K$ we have $\overline{A} \subseteq K$.

Proof: Note that A^0 is open by Part (2) of Theorem 2.13, because A^0 is equal to the union of a set of open sets. Also note that $A^0 \subseteq A$ because A^0 is equal to the union of a set of subsets of A. Finally note that for any open set U with $U \subseteq A$ we have $U \in S$ so that $U \subseteq \bigcup S = A^0$. This completes the proof of Part (1), and the proof of Part (2) is similar.

2.17 Corollary: Let $A \subseteq \mathbb{R}^n$. (1) $(A^0)^0 = A^0$ and $\overline{\overline{A}} = \overline{A}$. (2) A is open if and only if $A = A^0$

(3) A is closed if and only if $A = \overline{A}$.

Proof: The proof is left as an exercise.

2.18 Definition: Let $A \subseteq \mathbb{R}^n$. An interior point of A is a point $a \in A$ such that for some r > 0 we have $B(a, r) \subseteq A$. A limit point of A is a point $a \in \mathbb{R}^n$ such that for every r > 0 we have $B^*(a, r) \cap A \neq \emptyset$. An isolated point of A is a point $a \in A$ which is not a limit point of A. A boundary point of A is a point $a \in \mathbb{R}^n$ such that for every r > 0 we have $B(a, r) \cap A \neq \emptyset$ and $B(a, r) \cap A^c \neq \emptyset$. The set of limit points of A is denoted by A'. The boundary of A, denoted by ∂A , is the set of all boundary points of A.

2.19 Theorem: (Properties of Interior, Limit and Boundary Points) Let $A \subseteq \mathbb{R}^n$. (1) A^0 is equal to the set of all interior points of A.

(2) A is closed if and only if $A' \subseteq A$.

A

 $(3) \ \overline{A} = A \cup A'.$

(4) $\partial A = \overline{A} \setminus A^0$.

Proof: We leave the proofs of Parts (1) and (4) as exercises. To prove Part (2) note that when $a \notin A$ we have $B(a, r) \cap A = B^*(a, r) \cap A$ and so

is closed
$$\iff A^c$$
 is open
 $\iff \forall a \in A^c \ \exists r > 0 \ B(a,r) \subseteq A^c$
 $\iff \forall a \in \mathbb{R}^n \ (a \notin A \Longrightarrow \exists r > 0 \ B(a,r) \subseteq A^c$
 $\iff \forall a \in \mathbb{R}^n \ (a \notin A \Longrightarrow \exists r > 0 \ B(a,r) \cap A = \emptyset)$
 $\iff \forall a \in \mathbb{R}^n \ (a \notin A \Longrightarrow \exists r > 0 \ B^*(a,r) \cap A = \emptyset)$
 $\iff \forall a \in \mathbb{R}^n \ (\forall r > 0 \ B^*(a,r) \cap A \neq \emptyset \Longrightarrow a \in A)$
 $\iff \forall a \in \mathbb{R}^n \ (a \in A' \Longrightarrow a \in A)$
 $\iff A' \subseteq A.$

To prove Part (3) we shall prove that $A \cup A'$ is the smallest closed set which contains A. It is clear that $A \cup A'$ contains A. We claim that $A \cup A'$ is closed, that is $(A \cup A')^c$ is open. Let $a \in (A \cup A')^c$, that is let $a \in \mathbb{R}^n$ with $a \notin A$ and $a \notin A'$. Since $a \notin A'$ we can choose r > 0 so that $B(a, r) \cap A = \emptyset$. We claim that because $B(a, r) \cap A = \emptyset$ it follows that $B(a, r) \cap A' = \emptyset$. Suppose, for a contradiction, that $B(a, r) \cap A' \neq \emptyset$. Choose $b \in B(a, r) \cap A'$. Since $b \in B(a, r)$ and B(a, r) is open, we can choose s > 0 so that $B(b, s) \subseteq B(a, r)$. Since $b \in A'$ it follows that $B(b, s) \cap A \neq \emptyset$. Choose $x \in B(b, s) \cap A$. Then we have $x \in B(b, s) \subseteq B(a, r)$ and $x \in A$ and so $x \in B(a, r) \cap A$, which contradicts the fact that $B(a, r) \cap A = \emptyset$. Thus $B(a, r) \cap A' = \emptyset$, as claimed. Since $B(a, r) \cap A = \emptyset$ and $B(a, r) \cap A' = \emptyset$ it follows that $B(a, r) \cap (A \cup A') = \emptyset$ hence $B(a, r) \subseteq (A \cup A')^c$. Thus proves that $(A \cup A')^c$ is open, and hence $A \cup A'$ is closed.

It remains to show that for every closed set K with $A \subseteq K$ we have $A \cup A' \subseteq K$. Let K be a closed set in \mathbb{R}^n with $A \subseteq K$. Note that since $A \subseteq K$ it follows that $A' \subseteq K'$ because if $a \in A'$ then for all r > 0 we have $B(a, r) \cap A \neq \emptyset$ hence $B(a, r) \cap K \neq \emptyset$ and so $a \in K'$. Since K is closed we have $K' \subseteq K$ by Part (2). Since $A' \subseteq K'$ and $K' \subseteq K$ we have $A' \subseteq K$. Since $A \subseteq K$ and $A' \subseteq K$ we have $A \cup A' \subseteq K$, as required. This completes the proof of Part (3).

2.20 Definition: Let $A \subseteq \mathbb{R}^n$. For sets $U, V \subseteq \mathbb{R}^n$, we say that U and V separate A when

$$U \cap A \neq \emptyset$$
, $V \cap A \neq \emptyset$, $U \cap V = \emptyset$ and $A \subseteq U \cup V$.

We say that A is **connected** when there do not exist open sets U and V in \mathbb{R}^n which separate A. We say that A is **disconnected** when it is not connected, that is when there do exist open sets U and V in \mathbb{R}^n which separate A. **2.21 Theorem:** The connected sets in \mathbb{R} are the intervals, that is the sets of one of the forms

 $(a,b), [a,b), (a,b], [a,b], (a,\infty), [a,\infty), (-\infty,b), (-\infty,b], (-\infty,\infty)$

for some $a, b \in \mathbb{R}$ with $a \leq b$. We include the case that a = b in order to include the degenerate intervals $\emptyset = (a, a)$ and $\{a\} = [a, a]$.

Proof: We use the fact that the intervals in \mathbb{R} are the sets with the intermediate value property (a set $A \subseteq \mathbb{R}$ has **the intermediate value property** when for all $a, b, \in A$ and all $x \in \mathbb{R}$, if a < x < b then $x \in A$). Let $A \subseteq \mathbb{R}$. Suppose that A is not an interval. Then A does not have the intermediate value property so we can choose $a, b \in A$ and $u \in \mathbb{R}$ with a < u < b. Then $U = (-\infty, u)$ and $V = (u, \infty)$ separate A and so A is disconnected.

Suppose, conversely, that A is disconnected. Choose open sets U and V which separate A. Choose $a \in U$ and $b \in V$. Note that $a \neq b$ since $U \cap V = \emptyset$. Suppose that a < b (the case that b < a is similar). Let $u = \sup (U \cap [a, b])$. Note that $u \neq a$ since we can choose $\delta > 0$ such that $[a, a+\delta) \subseteq U \cap [a, b]$ and then we have $u = \sup (U \cap [a, b]) \ge a + \delta$. Note that $u \neq b$ since we can choose $\delta > 0$ such that $(b-\delta, b] \subseteq V \cap [a, b]$ and then we have $u = \sup (U \cap [a, b]) \ge a + \delta$. Note that $u \neq b$ since we can choose $\delta > 0$ such that $(b-\delta, b] \subseteq V \cap [a, b]$ and then we have $u = \sup (U \cap [a, b]) \le b - \delta$ since $U \cap V = \emptyset$. Thus we have a < u < b. Note that $u \notin U$ since if we had $u \in U$ we could choose $\delta > 0$ such that $(u-\delta, u+\delta) \subseteq U \cap [a, b]$ which contradicts the fact that $u = \sup (U \cap [a, b])$. Note that $u \notin V$ since if we had $u \in V$ then we could choose $\delta > 0$ such that $(u-\delta, u+\delta) \subseteq U \cap [a, b]$ which contradicts the fact that $u = \sup (U \cap [a, b])$. Note that $u \notin V$ and $A \subseteq U \cap V$ we have $u \notin A$, so A does not have the intermediate value property, and so A is not an interval.

2.22 Definition: Let $A \subseteq \mathbb{R}^n$. An **open cover** of A is a set S of open sets in \mathbb{R}^n such that $A \subseteq \bigcup S$. A **subcover** of an open cover S of A is a subset $T \subseteq S$ such that $A \subseteq \bigcup T$. We say that A is **compact** when every open cover of A has a finite subcover.

2.23 Exercise: Show that the set $A = \left\{\frac{1}{n} | n \in \mathbb{Z}^+\right\}$ is not compact, but that the set $B = A \cup \{0\}$ is compact.

2.24 Theorem: (The Nested Interval Theorem) Let I_0, I_1, I_2, \cdots be nonempty, closed bounded intervals in \mathbb{R} . Suppose that $I_0 \supseteq I_1 \supset I_2 \supset \cdots$. Then $\bigcap_{k=0}^{\infty} I_k \neq \emptyset$.

Proof: For each $k \ge 1$, let $I_k = [a_k, b_k]$ with $a_k < b_k$. For each k, since $I_{k+1} \subseteq I_k$ we have $a_k \le a_{k+1} < b_{k+1} \le b_{k+1}$. Since $a_k \ge a_{k+1}$ for all k, the sequence (a_k) is increasing. Since $a_k < b_k \le b_{k-1} \le \cdots \le b_1$ for all k, the sequence (a_k) is bounded above by b_1 . Since (a_k) is increasing and bounded above, it converges. Let $a = \sup\{a_k\} = \lim_{k \to \infty} a_k$. Similarly, (b_k) is decreasing and bounded below by a_1 , and so it converges. Let $b = \inf\{b_k\} = \lim_{k \to \infty} b_k$. Fix $m \ge 1$. For all $k \ge m$ we have $a_m < b_m \le b_{m+1} \le \cdots \le b_k$. Since $a_k \le b_k$ for all k, by the Comparison Theorem we have $a \le b$, and so the interval [a, b] is not empty. Since (a_k) is increasing with $a_k \to a$, it follows (we leave the proof as an exercise) that $a_k \le a$ for all $k \ge 1$. Similarly, we have $b_k \ge b$ for all $k \ge 1$ and so $[a, b] \subseteq [a_k, b_k] = I_k$. Thus $[a, b] \subseteq \bigcap_{k=1}^{\infty} I_k$, and so $\bigcap_{k=1}^{\infty} I_k \ne \emptyset$.

2.25 Definition: A closed rectangle in \mathbb{R}^n is a set of the form

$$R = [a_1, b_1] \times [a_2, b_2] \times \dots \times [a_n, b_n]$$

= { (x₁, x₂, ..., x_n) $\in \mathbb{R}^n | a_j \le x_j \le b_j$ for all j }.

2.26 Theorem: (Nested Rectangles) Let R_1, R_2, R_3, \cdots be closed rectangles in \mathbb{R}^n with $R_1 \supseteq R_2 \supseteq R_3 \supseteq \cdots$. Then

$$\bigcap_{k=1}^{\infty} R_k \neq \emptyset.$$

Proof: Let $R_k = [a_{k,1}, b_{k,1}] \times [a_{k,2}, b_{k,2}] \times \cdots \times [a_{k,n}, b_{k,n}]$. Since $R_1 \supseteq R_2 \supseteq \cdots$ it follows that for each index j with $1 \le j \le n$ we have $[a_{1,j}, b_{1,j}] \supseteq [a_{2,j}, b_{2,j}] \supseteq \cdots$. By the Nested Interval Theorem, for each index j we can choose $u_j \in \bigcap_{k=1}^{\infty} [a_{k,j}, b_{k,j}]$. Then for

$$u = (u_1, u_2, \cdots, u_n)$$
 we have $u \in \bigcap_{k=1}^{\infty} R_k$.

2.27 Theorem: (Compactness of Rectangles) Every closed rectangle in \mathbb{R}^n is compact.

Proof: Let $R = I_1 \times I_2 \times \cdots \times I_n$ where $I_j = [a_j, b_j]$ with $a_j \leq b_j$. Let d be the diameter of R, that is $d = \operatorname{diam}(R) = \left(\sum_{j=1}^n (b_j - a_j)^2\right)^{1/2}$. Let S be an open cover of R. Suppose, for a contradiction, that S does not have a finite subset which covers R. Let $a_{1,j} = a_j, b_{1,j} = b_j$, $I_{1,j} = I_j = [a_{1,j}, b_{1,j}]$ and $R_1 = R = I_{1,1} \times \cdots \times I_{1,n}$. Recursively, we construct rectangles $R = R_1 \supseteq R_2 \supseteq R_3 \supseteq \cdots$, with $R_k = I_{k,1} \times \cdots \times I_{k,n}$ where $I_{k,j} = [a_{k,j}, b_{k,j}]$, and $d_k = \operatorname{diam}(R_k) = \left(\sum_{j=1}^n (b_{k,j} - a_{k,j})^2\right)^{1/2} = \frac{d}{2^{k-1}}$, such that the open cover S does not have

a finite subset which covers any of the rectangles R_k . We do this recursive construction as follows. Having constructed one of the rectangles R_k , we partition each of the intervals $I_{k,j} = [a_{k,j}, b_{k,j}]$ into the two equal-sized subintervals $[a_{k,j}, \frac{a_{k,j}+b_{k,j}}{2}]$ and $[\frac{a_{k,j}+b_{k,j}}{2}, b_{k,j}]$, and we thereby partition the rectangle R_k into 2^n equal-sized sub-rectangles. We choose R_{k+1} to be equal to one of these 2^n sub-rectangles with the property that the open cover S does not have a finite subset which covers R_{k+1} (if each of the 2^n sub-rectangles could be covered by a finite subset of S then the union of theses 2^n finite subsets would be a finite subset of S which covers R_k).

By the Nested Rectangles Theorem, we can choose an element $u \in \bigcap_{k=1}^{\infty} R_k$. Since $u \in R$ and S covers R we can choose an open set $U \in S$ such that $u \in U$. Since U is open we can choose r > 0 such that $B(u, r) \subseteq U$. Since $d_k \to 0$ we can choose k so that $d_k < r$. Since $u \in R_k$ and diam $R_k = d_k < r$ we have $R_k \subseteq B(u, r) \subseteq U$. Thus S does have a finite subset, namely $\{U\}$, which covers R_k , giving the desired contradiction.

2.28 Theorem: Let $A \subseteq K \subseteq \mathbb{R}^n$. If A is closed and K is compact then A is compact.

Proof: Suppose that A is closed in \mathbb{R}^n and that K is compact. Let S be an open cover of A. Let $A^c = \mathbb{R}^n \setminus A$. Since $A \subseteq \bigcup S$ we have $\bigcup S \cup \{A^c\} = \mathbb{R}^n$ and so $S \cup \{A^c\}$ is an open cover of K. Since K is compact, we can choose a finite subset $T \subseteq S \cup \{A^c\}$ with $K \subseteq \bigcup T$. Since $A \subseteq K \subseteq \bigcup T$ we also have $A \subseteq \bigcup (T \setminus \{A^c\})$. Thus the open cover S of A does have a finite subcover, namely $T \setminus \{A^c\}$, and so A is compact, as required.

2.29 Theorem: (The Heine-Borel Theorem) Let $A \subseteq \mathbb{R}^n$. Then A is compact if and only if A is closed and bounded.

Proof: Suppose that A is compact. Suppose, for a contradiction, that A is not bounded. For each $k \in \mathbb{Z}^+$ let $U_k = B(0,k)$ and let $S = \{U_k | k \in \mathbb{Z}^+\}$. Then $\bigcup S = \mathbb{R}^n$ so S is an open cover of A. Let T be any finite subset of S. If $T = \emptyset$ then $\bigcup T = \emptyset$ and $A \not\subseteq \bigcup T$. Suppose that $T \neq \emptyset$, say $T = \{U_{k_1}, U_{k_2}, \dots, U_{k_m}\}$ with $k_1 < k_2 < \dots < k_m$. Since $U_{k_1} \subseteq U_{k_2} \subseteq \dots \subseteq U_{k_m}$ we have $\bigcup T = \bigcup_{i=1}^m U_{k_i} = U_{k_m} = B(0, k_m)$. Since A is not bounded we have $A \not\subseteq B(0, k_m)$ and so $A \not\subseteq \bigcup T$. This shows that the open cover S has no finite subcover T, which contradicts the fact that A is compact.

Next suppose, for a contradiction, that A is not closed. By Part (2) of Theorem 2.19, it follows that $A' \not\subseteq A$. Choose $a \in A'$ with $a \notin A$. For each $k \in \mathbb{Z}^+$ let U_k be the open set $U_k = \overline{B}(a, \frac{1}{k})^c = \{x \in \mathbb{R}^n | |x - a| > \frac{1}{k}\}$ and let $S = \{U_k | k \in \mathbb{Z}^+\}$. Note that $\bigcup S = \mathbb{R}^n \setminus \{a\}$ so S is an open cover of A. Let T be any finite subset of S. If $T = \emptyset$ then $\bigcup T = \emptyset$ so $A \not\subseteq \bigcup T$ (since A is not closed so $A \neq \emptyset$). Suppose that $T \neq \emptyset$, say $T = \{U_{k_1}, U_{k_2}, \dots, U_{k_m}\}$ with $k_1 < k_2 < \dots < k_m$. Since $U_{k_1} \subseteq U_{k_2} \subseteq \dots \subseteq U_{k_m}$ we have $\bigcup T = \bigcup_{i=1}^m U_{k_i} = U_{k_m} = \overline{B}(a, \frac{1}{k_m})^c$. Since a is a limit point of A we have $B(a, \frac{1}{k_m}) \neq \emptyset$ hence $\overline{B}(a, \frac{1}{k_m}) \cap A \neq \emptyset$ and so $A \not\subseteq \overline{B}(a, \frac{1}{k_m})^c$, hence $A \not\subseteq \bigcup T$. This shows that the open cover S has no finite subcover T, which again contradicts the fact that A is compact.

Suppose, conversely, that A is closed and bounded. Since A is bounded we can choose r > 0 so that $A \subseteq B(0, r)$. Let R be the closed rectangle $R = \{x \in \mathbb{R}^n | |x_k| \le r \text{ for all } k\}$. Note that $B(0, r) \subseteq R$ since when $x = (x_1, \dots, x_n) \in B(0, r)$, for each index k we have

$$|x_k| = (x_k^2)^{1/2} \le \left(\sum_{i=1}^n x_i^2\right)^{1/2} = |x| < r.$$

Since A is closed and $A \subseteq R$ and R is compact, it follows that A is compact, by the above theorem.

2.30 Definition: Let $P \subseteq \mathbb{R}^n$. For $a \in P$ and $0 < r \in \mathbb{R}$ we define the **open ball in** P and the **closed ball in** P centred at a of radius r to be the sets

$$B_P(a,r) = \left\{ x \in P \mid |x-a| < r \right\} = B(a,r) \cap P,$$

$$\overline{B}_P(a,r) = \left\{ x \in P \mid |x-a| \le r \right\} = \overline{B}(a,r) \cap P.$$

For $A \subseteq P \subseteq \mathbb{R}^n$, we say A is **open in** P when for every $a \in A$ there exists r > 0 such that $B_P(a, r) \subseteq A$, and we say A is **closed in** P when $A^c = P \setminus A$ is open in P.

2.31 Theorem: Let $A \subseteq P \subseteq \mathbb{R}^n$.

(1) A is open in P if and only if there exists an open set U in \mathbb{R}^n such that $A = U \cap P$. (2) A is closed in P if and only if there exists a closed set K in \mathbb{R}^n such that $A = K \cap P$.

Proof: To prove Part (1), suppose first that A is open in P. For each $a \in A$, choose $r_a > 0$ so that $B(a, r_a) \cap P \subseteq A$, and let $U = \bigcup_{a \in A} B(a, r_a)$. Since U is equal to the union of a set of open sets in \mathbb{R}^n , it follows that U is open in \mathbb{R}^n . Note that $A \subseteq U \cap P$ and, since $B(a, r_a) \cap P \subseteq A$ for every $a \in A$, we also have $U \cap P = \left(\bigcup_{a \in U} B(a, r_a)\right) \cap P = \bigcup_{a \in A} \left(B(a, r_a) \cap P\right) \subseteq A$. Thus $A = U \cap P$, as required.

Suppose, conversely, that $A = U \cap P$ with U open in \mathbb{R}^n . Let $a \in A$. Since $a \in A = U \cap P$, we also have $a \in U$. Since $a \in U$ and U is open in \mathbb{R}^n we can choose r > 0 so that $B(a,r) \subseteq U$. Since $B(a,r) \subseteq U$ and $U \cap P = A$ we have $B(a,r) \cap P \subseteq U \cap P = A$, as required.

To prove Part (2), suppose first that A is closed in P. Let B be the complement of A in P, that is $B = P \setminus A$. Then B is open in P. Choose an open set U in \mathbb{R}^n such that $B = U \cap P$. Let K be the complement of U in \mathbb{R}^n , that is $K = \mathbb{R}^n \setminus U$. Then $A = K \cap P$ since for $x \in \mathbb{R}^n$ we have $x \in A \iff (x \in P \text{ and } x \notin B) \iff (x \in P \text{ and } x \notin U \cap P)$ $\iff (x \in P \text{ and } x \notin U) \iff (x \in P \text{ and } x \in K) \iff x \in K \cap P.$

Suppose, conversely, that K is a closed set in P with $A = K \cap P$. Let B be the complement of A in P, that is $B = P \setminus A$, and let U be the complement of K in P, that is $U = P \setminus K$, and note that U is open in P. Then we have $B = U \cap P$ since for $x \in P$ we have $x \in B \iff (x \in P \text{ and } x \notin A) \iff (x \in P \text{ and } x \notin K \cap P)$ $\iff (x \in P \text{ and } x \notin K) \iff (x \in P \text{ and } x \in U) \iff x \in U \cap P$. Since U is open in P and $B = U \cap P$ we know that B is open in P. Since B is open in P, its complement $A = P \setminus B$ is closed in P.

2.32 Theorem: Let $A \subseteq P \subseteq \mathbb{R}^n$. Define A to be **connected in** P when there do not exists sets $E, F \subseteq P$ which are open in P and which separate A. Define A to be **compact in** P when for every set S of open sets in P such that $A \subseteq \bigcup S$ there exists a finite subset $T \subseteq S$ such that $A \subseteq \bigcup T$. Then

(1) A is connected in P if and only if A is connected in \mathbb{R}^n , and

(2) A is compact in P if and only if A is compact in \mathbb{R}^n .

Proof: We prove. Part (1) and leave the proof of Part (2) as an exercise. Suppose that A is not connected in \mathbb{R}^n . Choose open sets U and V in \mathbb{R}^n which separate A, that is $U \cap A \neq \emptyset, V \cap A \neq \emptyset, U \cap V = \emptyset$ and $A \subseteq U \cup V$. Let $E = U \cap P$ and $F = V \cap P$. Note that E and F are open in P and E and F separate A.

Suppose, conversely, that there exist sets $E, F \subseteq P$ which are open in P and which separate A, that is $A \cap E \neq \emptyset$, $A \cap F \neq \emptyset$, $E \cap F = \emptyset$ and $A \subseteq E \cup F$. Choose open sets $U, V \subseteq \mathbb{R}^n$ such that $E = U \cap P$ and $F = V \cap P$. Note that it is possible that $U \cap V \neq \emptyset$ and so U and V might not separate A in \mathbb{R}^n . For this reason, we shall construct open subsets $U_0 \subseteq U$ and $V_0 \subseteq V$ which do separate A in \mathbb{R}^n . For each $a \in E$ choose $r_a > 0$ such that $B(a, 2r_a) \subseteq U$ and then let $U_0 = \bigcup_{a \in E} B(a, r_a)$. Note that U_0 is open in \mathbb{R}^n (since it is a union of open sets in \mathbb{R}^n) and that we have $E \subseteq U_0 \subseteq U$. Similarly, for each $b \in F$ choose $s_b > 0$ so that $B(b, 2s_b) \subseteq V$, and then let $V_0 = \bigcup_{b \in F} B(b, s_b)$. Note that V_0 is open in \mathbb{R}^n and $F \subseteq V_0 \subseteq V$. We claim that the open sets U_0 and V_0 separate A in \mathbb{R}^n . Since $E \subseteq U_0$ and $F \subseteq V_0$ we have $\emptyset \neq A \cap E \subseteq A \cap U_0$, $\emptyset \neq A \cap F \subseteq A \cap V_0$ and $A \subseteq E \cup F \subseteq U_0 \cup V_0$. It remains to show that $U_0 \cap V_0 = \emptyset$. Suppose, for a contradiction, that $U_0 \cap V_0 \neq \emptyset$. Choose $x \in U_0 \cap V_0$. Since $x \in U_0 = \bigcup_{a \in E} B(a, r_a)$ we can choose $a \in E$ such that $x \in B(a, r_a)$. Similarly, we can choose $b \in F$ so that $x \in B(b, s_b)$. Suppose that $r_a \ge s_b$ (the case that $s_b \ge r_a$ is similar). By the Triangle Inequality, it follows that $|b-a| \leq |b-x| + |x-a| < s_b + r_a \leq 2r_a$ and so we have $b \in B(a, 2r_a) \subseteq U$. Since $b \in F \subseteq P$ and $b \in U$ we have $b \in U \cap P = E$. Thus we have $b \in E \cap F$ which contradicts the fact that $E \cap F = \emptyset$, and so $U_0 \cap V_0 = \emptyset$, as required.

2.33 Corollary: A set $A \subseteq \mathbb{R}^n$ is connected (in \mathbb{R}^n) if and only if the only subsets of A which are both open and closed in A are the sets \emptyset and A.

Proof: We leave it as an exercise to show that this follows from the above theorem by taking A = P.