
Chapter 1. Introduction to Vector Valued Functions

In this chapter we provide an informal introduction to vector-valued functions of several
variables. We describe several ways of associating a geometric object, such as a curve or
surface, to a given function. Alternatively, given a geometric object, we describe how to
represent the object analytically, that is by using equations, in various ways.

1.1 Definition: Let D ⊆ Rn. We say that f is a function or a map from D to Rm, and
we write f : D ⊆ Rn → Rm, when for every x ∈ D there is a unique point y = f(x) ∈ Rm.
The set D is called the domain of the function f .

The graph of the function f is the set

Graph(f) =
{

(x, f(x))
∣∣x ∈ D} ⊆ Rn+m.

We say the graph of f is defined explicitly by the equation y = f(x).

The null set of f is the set

Null(f) = f−1(0) =
{
x ∈ D

∣∣f(x) = 0
}
⊆ Rn.

More generally, given k ∈ Rm, the level set f−1(k), also called the inverse image of k
under f , is the set

f−1(k) =
{
x ∈ D

∣∣f(x) = k
}
⊆ Rn.

More generally still, given a subset B ⊆ Rn, the inverse image of B under f is the set

f−1(B) =
{
x ∈ D

∣∣f(x) ∈ B
}
⊆ Rn.

We say the level set f−1(k) is defined implicitly by the equation f(x) = k.

The range of f , also called the image of f , is the set

Range(f) = f(D) =
{
f(x))

∣∣x ∈ D} ⊆ Rm.

More generally, given a set A ⊆ D, the image of A under f is the set

f(A) =
{
f(x)

∣∣x ∈ A} ⊆ Rm.

We say the range of f is defined parametrically by the equation y = f(x), and for
x = (x1, x2, · · · , xn) ∈ D, the variables x1, x2, · · · , xn are called the parameters.

1.2 Note: The graph, the level sets and the range of a function f : D ⊆ Rn → Rm

are geometric objects such as points, curves, surfaces, or higher dimensional analogues of
these. In accordance with the above definitions, a curve in R2 or in R3, or a surface in R3,
can be defined explicitly, implicitly, or parametrically.

A curve in R2 can be defined explicitly as the graph of a function f : D ⊆ R→ R, implicitly
as the null set (or a level set) of a function g : D ⊆ R2 → R, or parametrically as the range
of a function α : D ⊆ R→ R2.

A curve in R3 can be defined explicitly as the graph of a function f : D ⊆ R → R2,
implicitly as the null set (or a level set) of a function g : D ⊆ R3 → R2, or parametrically
as the range of a map α : D ⊆ R→ R3.

A surface in R3 can be defined explicitly as the graph of a function f : R2 → R, implicitly
as the null set (or as a level set) of a function g : D ⊆ R3 → R, or parametrically as the
range of a function σ : D ⊆ R2 → R3.
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1.3 Example: Consider the unit circle x2 + y2 = 1 in R2. For f : [−1, 1] ⊆ R→ R given
by f(x) =

√
1− x2, the graph of f , that is the curve y = f(x), is equal to the top half of

the unit circle. For g : R2 → R given by g(x, y) = x2 + y2 − 1, the null set of g, that is the
curve x2+y2 = 1, is equal to the entire circle. For α : R→ R2 given by α(t) = (cos t, sin t),
the range of α, that is the curve (x, y) = α(t), is equal to the entire circle.

1.4 Example: Consider the ellipse which is the intersection of the cylinder x2 + y2 = 1
with the plane z = x + y in R3. The ellipse is given implicitly by the two equations
x2 + y2 = 1 and z = x + y, which can be written in vector form as the single equation(
x2 + y2 − 1 , z − x − y

)
= (0, 0), and so it is the null set of the function g : R3 → R2

given by g(x, y, z) =
(
x2 + y2 − 1 , z − x − y

)
. To obtain a parametric description of the

ellipse, note that to get x2 + y2 = 1 we can take x = cos t and y = sin t, and then to
get z = x + y we can take z = cos t + sin t, and so the ellipse is given parametrically by
(x, y, z) =

(
cos t , sin t , cos t+sin t

)
. In other words, the ellipse is the range of the function

α : R→ R3 given by α(t) =
(

cos t , sin t , cos t+sin t
)
. To obtain an explicit description for

half of the ellipse, note that the top half of the circle x2 + y2 = 1 is given by y =
√

1− x2
and then to get z = x+y we need z = x+

√
1− x2, and so the right half of the ellipse (when

the y-axis points to the right) is given explicitly by (y, z) =
(√

1− x2 , x +
√

1− x2
)
. In

other words, the right half of the ellipse is the graph of the function g : [−1, 1] ⊆ R→ R2

given by g(x) =
(√

1− x2 , x+
√

1− x2
)
.

1.5 Example: Consider the unit sphere in R3 given by x2+y2+z2 = 1. The top half of the
sphere is the graph z = f(x, y) where f : D ⊆ R2 → R is given by f(x, y) =

√
1− x2 − y2

with D =
{

(x, y) ∈ R2
∣∣x2 + y2 ≤ 1

}
. The entire sphere is the null set g(x, y, z) = 0 where

g : R3 → R is given by g(x, y, z) = x2 + y2 + z2 − 1. The top half of the sphere can be
given parametrically by x = r cos θ and y = r sin θ and z =

√
1− r2, so it is the range

(x, y, z) = σ(r, θ) where σ : D ⊆ R2 → R3 is given by σ(r, θ) =
(
r cos t , r sin t ,

√
1− r2

)
with D =

{
(r, θ) ∈ R2

∣∣0 ≤ r ≤ 1
}

.

1.6 Remark: A function is uniquely determined by its graph but not by its null set or
by its image. It follows that implicit and parametric descriptions of curves and surfaces
are not unique. For example, the parabola y = x2 can be given implicitly by g(x, y) = 0
for any of the functions g(x, y) = y − x2, g(x, y) = (y − x2)3 or g(x, y) = (y − x2)(x2 + 1),
and it can be given parametrically by (x, y) = α(t) for any of the functions α(t) = (t, t2),
α(t) = (t3, t6) or α(t) = (sinh t , sinh2 t).

1.7 Remark: Given an explicit equation for a curve or surface it is easy to obtain an
implicit or parametric equation for the curve or surface. For example the curve y = f(x)
in R2 can be given implicitly by g(x, y) = 0 where g(x, y) = y − f(x) and parametrically
by (x, y) = α(t) where α(t) =

(
t, f(t)

)
, Similarly the surface z = f(x, y) in R3 can be

given implicitly by g(x, y, z) = 0 where g(x, y, z) = z − f(x, y) and parametrically by
(x, y, z) = σ(s, t) where σ(s, t) =

(
s, t, f(s, t)

)
. On the other hand, given an implicit or a

parametric equation for a curve or a surface it can be difficult or impossible to obtain an
explicit equation.

1.8 Exercise: The helix is given explicitly by x = cos z and y = sin z. Sketch the curve
and find an implicit and a parametric equation for the curve.
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1.9 Exercise: The alpha curve is given implicitly by y2 = x3 + x2. Sketch the curve,
find explicit equations for the top and bottom halves of the curve, and find a parametric
equation for the entire curve.

1.10 Exercise: The curve which is given explicitly in polar coordinates by r = r(θ) is
given parametrically in Cartesian coordinates by (x, y) = α(t) =

(
r(t) cos t , r(t) sin t

)
.

Sketch the cardioid which is given in polar coordinates by r = r(θ) = 1 + cos θ, then find
an implicit equation for the curve.

1.11 Exercise: The twisted cubic is given parametrically by (x, y, z) = α(t) = (t, t2, t3).
Sketch the curve and find an implicit and an explicit equation for the curve.

1.12 Remark: To sketch a surface which is defined explicitly as a graph z = f(x, y) or
implicitly as a level set g(x, y, z) = k, it often helps to first sketch curves of intersection
of the surface with various planes x = c, y = c or z = c. These curves of intersection are
also sometimes called level sets. The intersection of the graph z = f(x, y) with the plane
z = c is given implicitly by f(x, y) = c. The intersection of the level set g(x, y, z) = k with
the plane z = c is given implicitly by g(x, y, c) = k

1.13 Exercise: Sketch the curve of intersection of the cylinder x2 + y2 = 1 with the
parabolic sheet z = x2 and find implicit, explicit, and parametric equations for the curve.

1.14 Exercise: Sketch the surface z = x2 + y2.

1.15 Exercise: Sketch the surface z = 4x2 − y2.

1.16 Exercise: Sketch the surface x2 + 4y2 − z2 = 0.

1.17 Exercise: Sketch the surface (x, y, z) = σ(u, v) =
(
u, v, u2 + 4v2 − 3

)
.

1.18 Exercise: Find a parametric equation (x, y, z) = σ(φ, θ) for the sphere of radius r
centred at the origin, where the parameters φ and θ are the angles of latitude and longitude.
In other words, find σ(φ, θ) so that when (x, y, z) = σ(φ, θ), φ is the angle between (0, 0, 1)
and (x, y, z) and θ is the angle from (1, 0) counterclockwise to (x, y).

1.19 Exercise: Find implicit and parametric equations for the torus which is obtained
by rotating the circle (x, z) =

(
R+ r cos θ , r sin θ

)
about the z-axis.

1.20 Definition: An affine space in Rn is a set of the form p+ V = {p+ v|v ∈ V } for
some p ∈ Rn and some vector space V ⊆ Rn. The dimension of the affine space p+ V is
the same as the dimension of V . The set p+V is called the affine space through p parallel
to V , or the affine space through p perpendicular to V ⊥, where V ⊥ is the orthogonal
complement of V , given by V ⊥ =

{
x ∈ Rn

∣∣x · v = 0 for all v ∈ V
}

.

1.21 Example: In R3, the only zero dimensional vector space is the origin {0}, the 1-
dimensional vector spaces are the lines through the origin, the 2-dimensional spaces are
the planes through the origin, and the only 3-dimensional vector space is all of R3. The
0-dimensional affine spaces are the points in R3, the 1-dimensional affine spaces are the
lines in R3, the 2-dimensional affine spaces are the planes in R3, and the only 3-dimensional
affine space is all of R3.

1.22 Definition: Let f : Rn → Rm. The function f is called linear when it is of the
form f(x) = Ax for some matrix A ∈ Mm×n(R), and f is called affine when it is of the
form f(x) = Ax+ b for some matrix A ∈Mm×n(R) and some vector b ∈ Rm.
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1.23 Note: Let A ∈ Mm×n and let f : Rn → Rm be the linear map f(x) = Ax. Let
u1, · · · , un ∈ Rm be the column vectors of A and let v1, · · · , vm ∈ Rn be the row vectors of

A so that we have A =
(
u1, · · · , un

)
=
(
v1, · · · , vm

)T
. Let c ∈ Rm be a point in the range

of f , say f(p) = c where p ∈ Rn. Then

Range(f) =
{
Ax
∣∣x ∈ Rn

}
=
{ n∑

i=1

uixi
∣∣ each xi ∈ R

}
= Span{u1, · · · , un} = Col(A),

Null(f) = Null(A) =
{
x ∈ Rn

∣∣Ax = 0
}

=
{
x ∈ Rn

∣∣vi .x = 0 for all i
}

= Row(A)⊥,

f−1(c) =
{
x ∈ Rn

∣∣Ax = c
}

=
{
x ∈ Rn

∣∣Ax = Ap
}

=
{
x ∈ Rn

∣∣A(x− p) = 0
}

=
{
p+ y ∈ Rn

∣∣Ay = 0
}

= p+ Null(A) , and

Graph(f) =

{(
x
Ax

) ∣∣∣x ∈ Rn

}
= Span

{(
e1
u1

)
,

(
e2
u2

)
, · · · ,

(
en
un

)}
= Col

(
I
A

)
.

It follows that

dim
(
Graph(f)

)
= n

dim
(
Range(f)

)
= rank(A) and

dim
(
Null(f)

)
= dim

(
f−1(c)

)
= nullity(A) = n− rank(A).

1.24 Note: Let A ∈ Mm×n(R), let b ∈ Rm and let f(x) = Ax+ b. Let c ∈ Rm be in the
range of f with say f(p) = c where p ∈ Rn. Then

Graph(f) =

{(
x

Ax+ b

) ∣∣∣∣x ∈ Rn

}
=

(
0
b

)
+ Col

(
I
A

)
,

Range(f) =
{
Ax+ b

∣∣x ∈ Rn
}

= b+ Col(A) , and

f−1(c) =
{
x ∈ Rn

∣∣Ax+ b = c = Ap+ b
}

=
{
x ∈ Rn

∣∣A(x− p) = 0
}

= p+ Null(A),

Note that if u1, u2, · · · , un ∈ Rm are the columns of A and e1, e2, · · · , en ∈ Rn are the
standard basis vectors for Rn, then we have f(0) = b and f(ei) = Aei + b = ui + b. If
v1, · · · , vm ∈ Rn are the row vectors of A, so A = (v1, · · · , vm)T , and k = c− b, then since

f(x) = c ⇐⇒ Ax+ b = c ⇐⇒ Ax = k ⇐⇒ vi .x = ki for all i,

it follows that the level set f(x) = c is the intersection of the affine spaces vi .x = ki, and
we note that the space vi .x = ki is the affine space in Rn of dimension n − 1 through p
perpendicular to vi.

1.25 Exercise: Define f : R3 → R2 by f(x, y, z) =
(
x + 3y + 2z , 2z + 5y + 3z

)
and let

(a, b) = (1, 1). Find a parametric equation for the level set f(x, y, z) = (a, b).

1.26 Exercise: Let A =

 4 1 1
1 0 2
5 2 −4

 and b =

 2
1
−1

 and let f(x) = Ax + b. Find an

implicit equation for the range of f .
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