MATH 247 Calculus 3, Solutions to Assignment 5

: (a) Find // ye® dA where D is the region in R? bounded by y =0, y = 2 and = +y = 2.
D

Solution: We have

2—y 1 2—y 1
// ye®dA = / / yedrdy = / {yem} dy = fy:OyeQ_y —ye¥ dy
z=y y=0 r=y

- [—(y—&-l)eQ_y—(y—1)69}1 =e?—2e—1.

y=0

b) Find// #dAWhereD:{(x,y)|0§x§2,0§y§%:EQ}.
D 1+ 2% +y?
Solution: Note that we can also write D = {(z,y) |0 <y <2, 2y <z <2} and so

Vit

x=1/2y

|| = [ ——
p/1+a22+y? y=0Ja=yzg 1+ 22 + 2 y=0
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y= y=
Using the substitution v/5tan = y so that v/5sect = mand V5sec? 0 df = dy, we have
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(where d = ¢ — 21n5). Thus
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c) Find/// deWhereD:{(Ly,z)‘OSx,0§y§\/x2+22,0§z§\/1—x2}.
D

Solution: We have
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2: (a) Find // cos(3z” + y*) dA where D = {(z,y)|2* + §y* < 1}.
D

Solution: The change of variables map (z,y) = g(r,0) = (rcos6, v/3r sin6) sends C = [0,1] x [0, 2] to the
given region D, and we have Dg = \/%Ossiflé \71;‘8;2590 so that det Dg = v/3r, and when (z,y) = g(r, 6)

we have 322 + y2 = 3r2 cos? 0 4 3r?sin? § = 312, and so

1
// cos(32% + y?) dA = / / cos(3r2)V/3r db dr —/ 231 cos(3r?) dr
r=0J6 r=0

= {\7/% sin(3r2 )] = Lg sin 3.

(b) Find // eW=2)/W+) g A where D is the quadrilateral with vertices at (1,1), (2,0), (4,0), (2,2).
D

Solution: When v =y + z and v = y — x we have y = and z = “5* and the lines v +y = 2, x +y = 4,
yt = 0 and y = & (which form the boundary of D) are given by u =2, v =4, u+v =0 and v = 0. So the
change of variables map (z,y) = g(u,v) = (“3%,“$%) sends the set C = {(u,v)[2<u <4, —u < v <0}
to the given region D. We have Dg = 3 (7} ) so that det Dg = %, and so

u+v
2

4

0
// =2/ (+2) g4 = / / eV dv du = / [% 6”/“] du
D u=2 Jov=—u u=2 v=—u

= [ - Ha=[Ea-n], =302

=2

(c) Find /// (z —y)zdV where D = {(z,y,2) |2? + y* + 22 <4, 2> /2> + 32,z > 0}.

Solution: The region D can be described in spherical coordinates by 0 < r < 2 0<p<F,and0 <0 <7 In
other words, the spherical coordinates map sends the set C = { r, @, 0 ‘ <2,0 § <p <7 2,0<60< 7r}
to the given region D. Thus we have

2 ks ™
/// (x—y)de:/ /4 / (rsintpcos@—rsingosin@)(rcosgo)rQSingo do de dr
D r=0 6=0
/ / / -sin? @ cos ¢ - (cos @ — sin @) df dy dr
r=0 6=0

= (/T_Or‘*dr)(/i sin? ¢ cos @ dgo)(/oio(cosﬁ—SlnG) d9>

2 ™ . V3
= [ér‘r’LZO[ésm ]q; O[sin@—i—cos@} :%~i-2:—16152.
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3: (a) Find the total charge in the region D = { T,Y, 2 ‘,/ (2+y?)<z<\4—a2—y } where the charge

density (charge per unit volume) is given by f(z,vy,z2) = x?
Solution: We use spherical coordinates (z,y,z) = (r sin ¢ cos 6, r sin ¢ sin 6, r cos ¢). Some students will see

immediately that the cone z = /4 (22 + y?) is given in spherical coordinates by ¢ = %. If you do not see
this immediately, then you can verify this algebraically as follows. We have

2?2 +y? = (rsingcos)? + (rsin ¢sin0)? = r?sin? ¢ (cos? 6 + sin? §) = r?sin? ¢
and so (since r > 0 and sin ¢ > 0)
z = %(x2+y2) <~ rcos¢ = ,/§T281n2q5 frsmgb = tangp =3 <= ¢ =

Thus the region D is described in spherical coordinates by 0 <r < 2,0 < ¢ < % and 0 < 0 < 27. Thus the
total charge is

w/3
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r=0J¢= 6
/3 2 /3
/ / / r4sin® ¢ cos? 0 dﬁdqbdrz/ / mrtsin® ¢ dodr
r=0 J¢= 0= r=0 J¢$=0
2 /3
/ / 1—cos @) sin ¢ d¢dr—/ 7Tr4[—cos¢—|— cos (;5} dr
r=0J¢=0 r=0 $=0
2
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(b) Read Definition 7.13 and Note 7.14. Find the mass of the sphere 2% 4+ y? + 2% = 1 when the density
(mass per unit area) is given by f(z,y,2) = 3 — z (this is Exercise 7.17).

Solution: The sphere is the image of the map o : [0,7] x [0,27] — R?® given by (x,9,2) = o(p,0) =
(sing@cos@, sin psin 6§, cos go). We have

cospcosf —sinpsinf sin? o
Do = (0(‘9,09) = | cosysinf singpcosf and o, X o9 = sin? psin @
—singp 0 sin ¢ cos ¢
and hence |J¢ X Jg| = | sin |v/sin? ¢ cos? 0 + sin® psin® 6 + cos? ¢ = | sin ¢| = sin ¢ (since 0 < ¢ < 7). Thus
the mass is given by
T
M = / / 3 —cosy)sinp d&d(p_Zw/ 3siny —singcos p dp = 127.
2 ©=0

(c) Find the mass of the curve of intersection of the parabolic sheet 2 = 22 with the paraboloid z = 2—x2 —2y?
when the density (mass per unit length) is given by f(z,y, z) = |zy| (this is Exercise 7.18).

Solution: Let us ﬁnd a parametric equation for the curve C of intersection. To get z = 22 and 2z = 2—x2 232,
we need x2 = 2 — 22 — 2y?, that is 2 + y? = 1. Thus we can write (z,y) = (cost,sint) with ¢ € [0,27]. We
also need 2z = 22, so the curve C is given parametrically by (z,y, z) = a(t) = (cos t,sint, cos? t). We have

o/ (t) = (—sint, cost, —2sint cost) and |o/(t)| = /sin?t + cos2 t + 4dsin®tcos? t = /1 + sin?(2t). Using the
substitution u = cos(2t) so du = —2sin(2t) dt, the mass is given by

2
M = |costsmt|\/1+sm (2t) dt = / |3 sin(2t) |\/1+sm (2t) dt—S/ 1sin(2t)(/1 + sin®(2t) dt

t=0
/2

:/ 4sin(2t)\/2—0052(2t)dt:/ —2¢/2 —u? du:2/ V2—u2=%+1
t=0 u=1 u=0

(the final value was obtained by noticing that the integral fol V2 — u? du measures the area of a region
consisting of one eighth of the disc of radius /2 along with a triangle of base 1 and height 1).



4: Let f : [a,b] — [c,d] be bijective and decreasing with f(a) = d and f(b) = c, and let g = f~! : [c,d] — [a, b].

(a) Suppose f and g are differentiable and consider the volume of the solid obtained by revolving the region
a<xz<b c<y< f(x) about the z-axis. Prove (using theorems from Calculus 2) that when we calculate
the volume using polar coordinates for y and z, Fubini’s Theorem holds so that

b d 2 rg(p)
/ / / rd@drdx:/ / / p dx dpdp.
r=a 0= p=c J =0 Jx=a

In other words, prove that we obtain the same value using the “discs method” or using the “shells method”.

Solution: Make the substitution y = f(x) and integrate by parts using u = m(z — a) and v = f(x)? so that
du =mdx and dv = 2f(x)f'(x) dz to get

a

d g(d)
/ 2y (g(y) — a) dy = / 21 f(2) (9(f(2)) — a) () da = / 2 f(2)(z — a) '(x) da

=c z=g(c) z=b

= [re- a)f(z)Z]a - / 7 f(2)2 de = —m(b— a)f(b)? + /b 7 f(z)? do

=b r=a

fw(bfa)CQJr/ ﬂf(x)zdx—/b 7r02dx+/b Wf(x)Qd:v—/b m(f(z)? — ) da.

— —a

(b) Suppose f and g are continuous and consider the area of the region a < z < b, ¢ < y < f(x). Prove
(using theorems from Calculus 2) that Fubini’s Theorem holds, that is

f(z) 9(v)
/ / 1 dydx = / / 1 dxdy
Solution: We need to show that

b d b d
f dx — dy = dx — dy = c(b — —a(d — ¢) = bc — ad.
/H (z) da /y_cg<y> y /: v /_ y=c(b—a)—a(d—c)=be—a

Let € > 0 be arbitrary. Choose §; > 0 so that for every partition X of [a,b] with |X| < §; we have
’S — f; f’ < %6 for every Riemann sum S for f on X, and choose d > 0 such that for every partition Y

of [¢,d] with Y| < 6, we have |S — fcdg‘ < %€ for every Riemann sum S for g on Y. Choose a partition
Xy of [a,b] with | Xy| < 01 and choose a partition Yy of [¢,d] with |Yp| < d2. Let X = X U g(Yp) and let
Y=Yy U f(Xp). Then we have | X|<d; and |Y|<da. Write X ={x¢, 21, -, 2zn}, whith the xj in increasing
order as usual, and note that, since f is decreasing, we have Y ={yo, 91, -, yn} where y,= f(z,—¢) for all £.
Since f and g are decreasing, the lower Riemann sums are equal to the sums using the right endpoints.
Making the substitution £k = n — £ in one of the sums below and £k =n — £+ 1 in another, we have
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= > anf(zr) = 20 wpaf(@e) — D wpf(oe) + 32 w1 f(zk)
k=1 k=1 k=0 k=1

= 2nf(xn) — zof(x0)xg = be— ad.

By the Triangle Inequality

‘(/abf(x)dx_/cg(y)dy) _(bc_“d)‘ = ’/bf(@dw—/bcg(y)dy—L(f,X)+L(g,Y)

‘/f Ydr — L(f, X ‘ ’/ y)dy — Lg,Y)‘ st+5=c¢

Since € > 0 was arbitrary, it follows that / f(z)dx — / 9(y) dy = be — ad, as required.
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