1: (a) Find $\iint_{D} y e^{x} d A$ where D is the region in \mathbb{R}^{2} bounded by $y=0, y=x$ and $x+y=2$.
(b) Find $\iint_{D} \frac{x}{\sqrt{1+x^{2}+y^{2}}} d A$ where $D=\left\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq \frac{1}{2} x^{2}\right\}$.
(c) Find $\iiint_{D} z d V$ where $D=\left\{(x, y, z) \mid 0 \leq x, 0 \leq y \leq \sqrt{x^{2}+z^{2}}, 0 \leq z \leq \sqrt{1-x^{2}}\right\}$.

2: (a) Find $\iint_{D} \cos \left(3 x^{2}+y^{2}\right) d A$ where $D=\left\{(x, y) \left\lvert\, x^{2}+\frac{1}{3} y^{2} \leq 1\right.\right\}$.
(b) Find $\iint_{D} e^{(y-x) /(y+x)} d A$ where D is the quadrilateral with vertices at $(1,1),(2,0),(4,0),(2,2)$.
(c) Find $\iiint_{D}(x-y) z d V$ where $D=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 4, z \geq \sqrt{x^{2}+y^{2}}, x \geq 0\right\}$.

3: (a) Find the total charge in the region $D=\left\{(x, y, z) \left\lvert\, \sqrt{\frac{1}{3}\left(x^{2}+y^{2}\right)} \leq z \leq \sqrt{4-x^{2}-y^{2}}\right.\right\}$ where the charge density (charge per unit volume) is given by $f(x, y, z)=x^{2}$.
(b) Read Definition 7.13 and Note 7.14. Find the mass of the sphere $x^{2}+y^{2}+z^{2}=1$ when the density (mass per unit area) is given by $f(x, y, z)=3-z$ (this is Exercise 7.17).
(c) Find the mass of the curve of intersection of the parabolic sheet $z=x^{2}$ with the paraboloid $z=2-x^{2}-2 y^{2}$ when the density (mass per unit length) is given by $f(x, y, z)=|x y|$ (this is Exercise 7.18).

4: Let $f:[a, b] \rightarrow[c, d]$ be bijective and decreasing with $f(a)=d$ and $f(b)=c$, and let $g=f^{-1}:[c, d] \rightarrow[a, b]$.
(a) Suppose f and g are differentiable and consider the volume of the solid obtained by revolving the region $a \leq x \leq b, c \leq y \leq f(x)$ about the x-axis. Prove (using theorems from Calculus 2) that when we calculate the volume using polar coordinates for y and z, Fubini's Theorem holds so that

$$
\int_{x=a}^{b} \int_{r=c}^{f(x)} \int_{\theta=0}^{2 \pi} r d \theta d r d x=\int_{\rho=c}^{d} \int_{\varphi=0}^{2 \pi} \int_{x=a}^{g(\rho)} \rho d x d \varphi d \rho
$$

In other words, prove that we obtain the same value using the "discs method" or using the "shells method".
(b) Suppose f and g are continuous and consider the area of the region $a \leq x \leq b, c \leq y \leq f(x)$. Prove (using theorems from Calculus 2) that Fubini's Theorem holds, that is

$$
\int_{x=a}^{b} \int_{y=c}^{f(x)} 1 d y d x=\int_{y=c}^{d} \int_{x=a}^{g(y)} 1 d x d y
$$

