
MATH 247 Calculus 3, Solutions to Assignment 4

1: (a) Define f : R2 → R by f(0, 0) = 0 and f(x, y) = x3−xy2
x2+y2 for (x, y) 6= (0, 0). Determine whether f is

differentiable at (0, 0).

Solution: We claim that f is not differentiable at (0, 0). When α(t) = (t, 0) and g(t) = f(α(t)) = t, we have
∂f
∂x (0, 0) = g′(0) = 1. When β(t) = (0, t) and h(t) = f(β(t)) = 0, we have ∂f

∂y (0, 0) = h′(0) = 0. When

γ(t) = (t, t) and k(t) = f(γ(t)) = 0, if f was differentiable at (0, 0), then by the Chain Rule we would have
k′(0) = Df(0, 0)γ′(0) = (1 0)

(
1
1

)
= 1, but instead we have k′(0) = 0.

(b) Suppose f : U ⊆ Rn → R is differentiable and f has a local maximum at a ∈ U . Show that Df(a) = O
(this is Exercise 6.15 in the lecture notes).

Solution: Suppose, for a contradiction, that Df(a) 6= O. Choose 0 6= u ∈ Rn such that Df(a)u 6= 0. By
replacing u by −u if necessary, we may assume that Df(a)u = c > 0. Let α(t) = a + tu, choose δ1 > 0
small enough so that α(t) ∈ U for all |t| < δ1, and let g(t) = f(α(t)) for |t| < δ1. By the Chain Rule we

have g′(t) = Df(α(t))α′(t) so that, in particular, g′(0) = Df(a)u = c > 0. Since c = g′(0) = lim
t→0

g(t)−g(0)
t ,

we can choose δ with 0 < δ < δ1 such that when 0 < |t| < δ we have
∣∣ g(t)−g(0)

t − c
∣∣ < c

2 , and hence
c
2 <

g(t)−g(0)
t < 3c

2 . For 0 < t < δ we have g(t)− g(0) > ct
2 > 0 so that g(t) > g(0). Thus f(a+ tu) > f(a)

for all 0 < t < δ, and so f does not have a local maximum at a.

(c) Let f : U ⊆ Rn → Rm. Suppose the partial derivatives ∂fk
∂x`

(x) exist and are bounded in U . Prove that
f is continuous.

Solution: We imitate the proof of Theorem 5.13. Let ε > 0. Choose M ≥ 0 so that
∣∣∂fk
∂x`

(x)
∣∣ ≤ M for all

indices k, ` and all x ∈ U and choose δ with 0 < δ < ε
Mnm so that B(a, δ) ⊆ U . Let x ∈ B(a, δ). For

0 ≤ ` ≤ n, let u` = (x1, · · · , x`, a`+1, · · · , an), with u0 = a and un = x, and note that each u`∈B(a, δ). For
1≤ `≤n, let α`(t) = (x1, · · · , x`−1, t, a`+1, · · · , an) for t between a` and x`. For 1≤ k≤m and 1≤ `≤n, let
gk,`(t) = fk

(
α`(t)

)
so that g′k,`(t) = ∂fk

∂x`

(
α`(t)

)
. By the Mean Value Theorem, we can choose sk,` between a`

and x` so g′k,`(sk,`)(x`−a`) = gk,`(x`)−gk,`(a`) or, equivalently, so ∂fk
∂x`

(
α`(sk,`)

)
(x`−a`) = fk(u`)−fk(u`−1).

Then

fk(x)− fk(a) = fk(un)− fk(u0) =
n∑̀
=1

(
fk(u`)− fk(u`−1)

)
=

n∑̀
=1

∂fk
∂x`

(
α`(sk,`)

)
(x` − a`),

so that
∣∣fk(x)− fk(a)

∣∣ ≤M n∑̀
=1

∣∣x` − a`∣∣ ≤Mn |x− a|. Thus

∣∣f(x)− f(a)
∣∣ =

( m∑
k=1

∣∣fk(x)− fk(a)
∣∣2)1/2 ≤ ( m∑

k=1

n2M2|x− a|2
)1/2

= Mnm |x− a| < Mnmδ < ε.



2: (a) Let (u, v) = f(x, y) =
(
x ln(y−x4),

(
2 + y

x

)3/2 )
. Explain why f is locally invertible in a neighbourhood

of (1, 2) and find the linearization of its inverse at (0, 8).

Solution: Note that f(1, 2) = (0, 8). Also

DF (x, y) =

(
ux uy
vx vy

)
=

(
ln(y − x4)− 4x2

y−x4
x

y−x4

− 3y
2x2

(
2 + y

x

)1/2 3
2x

(
2 + y

x

)1/2
)

, so DF (1, 2) =

(
−4 1
−6 3

)
.

F is locally invertible near (1, 2) because the matrix DF (1, 2) is invertible, and the partial derivatives ux,
uy, vx and vy are all continuous near (1, 2). Since F (1, 2) = (0, 8) we have F−1(0, 8) = (1, 2), and we have

DF−1(0, 8) = F (1, 2)−1 =

(
−4 1
−6 3

)−1
= 1

6

(
3 −1
6 −4

)
and so the linearization of F−1 at (0, 8) is

L(0,8)F
−1
(
x
y

)
=

(
1
2

)
+ 1

6

(
3 −1
6 −4

)(
x− 0
y − 8

)
.

(b) Define f : R2 → R by f(x, y) = 2x3 − 3x2 + 2y3 + 3y2 and let C = Null(f). Use the Implicit Function
Theorem to find all the points on C at which C is locally equal to the graph of a function y = g(x), or locally
equal to the graph of a function x = h(y).

Solution: By the Implicit Function Theorem, C is locally equal to the graph of a smooth function y = g(x) at
all points on C except (possibly) where ∂f

∂y = 0. We have ∂f
∂y = 6y2+6y = 6y(y+1) and so ∂f

∂y = 0 ⇐⇒ y = 0

or y = −1. For (x, y) ∈ C we have (x+ y)(2x2 − 2xy + 2y2 − 3x+ 3y) = 0 so

y = 0 =⇒ x(2x2 − 3x) = 0 =⇒ x2(2x− 3) = 0 =⇒ x = 0 or 3
2 ,

y = −1 =⇒ (x− 1)(2x2 − x− 1) = 0 =⇒ (x− 1)2(2x+ 1) = 0 =⇒ x = 1 or − 1
2 .

Thus C is locally equal to the graph of a smooth function y = g(x) except (possibly) at the points
(
0, 0
)
,(

3
2 , 0
)
,
(
1,−1

)
and

(
− 1

2 ,−1
)
. A similar calculation shows that ∂f

∂x = 6x(x− 1) and that for (x, y) ∈ C we
have x = 0 =⇒ y = 0 or − 3

2 and x = 1 =⇒ y = −1 or 1
2 , and so C is locally equal to the graph of a smooth

function x = h(y) except (possibly) at each of the points
(
0, 0
)
,
(
0,− 3

2

)
,
(
1,−1

)
and

(
1, 12
)
.



3: Define f : R2 → R2 by (u, v) = f(x, y) =
(
x+ y, xy

)
.

(a) Sketch the level sets u = 0,±2,±4 and the level sets v = 0,±1,±4 (all on the same grid).

Solution: The level set u = a is the line x + y = a and the level set v = b is the hyperbola xy = b (when
b = 0 we obtain the degenerate hyperbola xy = 0, which is the union of the two coordinate axes). The lines
x+ y = a for a = 0,±2,±4 are whown below in blue, and the hyperbolas xy = b for b = ±1,±4 are shown
in green.

(b) Sketch the image under f of each of the lines x = 0,± 1
2 ,±1,± 3

2 ,±2 (all on the same grid).

Solution: The level set x = c is given parametrically by (x, y) = (c, t) and it is mapped under f to the curve
(u, v) = f(c, t) = (c+ t, ct). When u = c+ t and v = ct we have cu = c2 + ct = c2 + v and so the image of the
curve x = c is the line cu = c2 + v. The lines v = cu− c2 for c = 0,± 1

2 ,±1,± 3
2 ,±2 are shown below in blue.

(c) Let A =
{

(x, y)
∣∣det

(
f ′(x, y)

)
= 0

}
and B = f(A). Find a function y = y(x) whose graph is A and a

function v = v(u) whose graph is B. Add A to your sketch in Part (a) and add B to your sketch in Part (b).

Solution: We have

f ′(x, y) =

( ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
=

(
1 1
y x

)
and so A =

{
(x, y)

∣∣ det f ′(x, y) = 0
}

=
{

(x, y)
∣∣x− y = 0

}
which is equal to the line y = x, shown in orange

on the plot in Part (a). The line y = x is given parametrically by (x, y) = (t, t) and it is sent by f to the
curve (u, v) = f(t, t) = (2t, t2). When u = 2t and v = t2 we have 4v = 4t2 = (2t)2 = u2 and so the image of
the line y = x under f is the parabola 4v = u2, which is shown in orange on the Plot in Part (b).



(d) Show that for U =
{

(x, y)
∣∣y < x

}
and V =

{
(u, v)

∣∣4v < u2
}

the map f : U → V is invertible and find a
formula for g = f−1 : V → U .

Solution: Note that

(u, v) = (x+ y, xy) =⇒
(
u = x+ y and v = xy

)
=⇒

(
y = u− x and v = xy = x(u− x)

)
=⇒ x2 − ux+ v = 0 =⇒ x =

u±
√
u2−4v
2

and similarly

(u, v) = (x+ y, xy) =⇒
(
u = x+ y and v = xy

)
=⇒

(
x = u− y and v = xy = (u− y)y

)
=⇒ y2 − uy + v = 0 =⇒ y =

u±
√
u2−4v
2 .

To get y < x we need x =
u+
√
u2−4v
2 and y =

u−
√
u2−4v
2 , and so we define g : V → R2 by

(x, y) = g(u, v) =
(
u+
√
u2−4v
2 ,

u−
√
u2−4v
2

)
.

Note the g(u, v) is well defined when 4v < u, that is when (u, v) ∈ V . Let us verify that g is indeed the
inverse of the restriction of f to U . For y < x we have

g
(
f(x, y)

)
= g(x+ y, xy) =

(
(x+y)+

√
(x+y)2−4xy
2 ,

(x+y)−
√

(x+y)2−4xy
2

)
=
(

(x+y)+
√

(x−y)2
2 ,

(x+y)−
√

(x−y)2
2

)
=
(

(x+y)+(x−y)
2 , (x+y)−(x−y)2

)
= (x, y)

and when 4v < u2 we have

f
(
g(u, v)

)
= f

(
u+
√
u2−4v
2 ,

u−
√
u2−4v
2

)
=
(
u+
√
u2−4v
2 +

u−
√
u2−4v
2 ,

u+
√
u2−4v
2 · u−

√
u2−4v
2

)
=
(
u ,

u2−(u2−4v)
4

)
= (u, v).

(e) Note that f(2, 1) = (3, 2). Find g′(3, 2) in two ways: first use the Inverse Function Theorem, then use
your formula for g from Part (d).

Solution: Using the Inverse Function Theorem, we have

f ′(x, y) =

(
1 1
y x

)
, f ′(2, 1) =

(
1 1
1 2

)
, g′(3, 2) = f ′(2, 1)−1 =

(
2 −1
−1 1

)
.

Using the formula g(u, v) = 1
2

(
u+
√
u2 − 4v , u−

√
u2 − 4v

)
we have

g′(u, v) =

( ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
= 1

2

(
1 + u√

u2−4v
−2√
u2−4v

1− u√
u2−4v

2√
u2−4v

)
, g′(3, 2) = 1

2

(
1+3 −2
1−3 2

)
=

(
2 −1
−1 1

)
.



4: (a) Let U =
{

(x, y) ∈ R2
∣∣x2 > y2

}
. Find the 2nd Taylor polynomial of the map f : U → R given by

f(x, y) =
√
x2 − y2 at the point (5, 4).

Solution: We have ∂f
∂x = x√

x2−y2
, ∂f
∂y = −y√

x2−y2
, ∂2f
∂x2 =

√
x2−y2− x2√

x2−y2

x2−y2 = −y2
(x2−y2)3/2 , ∂2f

∂x∂y = xy
(x2−yy2)3/2 ,

and ∂2f
∂y2 =

−
√
x2−y2− y2

√
x2−y2

x2−y2 = −x2

(x2−y2)3/2 , so that f(5, 4) = 3, ∂f∂x (5, 4) = 5
3 , ∂f∂y (5, 4) = − 4

3 , ∂
2f
∂x2 (5, 4) = − 16

27 ,

∂2f
∂x∂y (5, 4) = 20

27 and ∂2f
∂y2 (5, 4) = − 25

27 , and hence the 2nd Taylor polynomial of f at (5, 4) is

T (x, y) = 3 + 5
3 (x− 5)−

4
3 (y − 4)− 8

27 (x− 5)2 + 20
27 (x− 5)(y − 4)− 25

54 (y − 4)2.

(b) Define f : R2 → R by f(x, y) = 2x + x2 + y2 − xy2. Find the absolute maximum and minimum values
of f(x, y) in the region D =

{
(x, y)

∣∣y2 − 4 ≤ 2x ≤ 4
}

.

Solution: Since D is compact, f does attain its maximum and minimum values in D, and these values
are either attained in Do or on ∂D. If f attains a maximum or minimum value in Do then it must do
so at a critical point. Note that Df(x, y) =

(
2 + 2x − y2 , 2y − 2xy

)
. To have Df(x, y) = (0, 0) we need

0 = 2y − 2xy = 2y(1 − x) so that either y = 0 or x = 1, and we need 2 + 2x = y2. When y = 0 we have
2 + 2x = y2 =⇒ 2 + 2x = 0 =⇒ x = −1, and when x = 1 we have 2 + 2x = y2 =⇒ y2 = 4 =⇒ y = ±2.
Thus the critical points are (−1, 0) and (1,±2), which all lie in Do, and we have f(−1, 0) = −2 + 1 = −1
and f(1,±2) = 2 + 1 + 4− 4 = 3. Let us determine the maximum and minimum values on ∂D.

The region D is bounded by the parabola y2 − 4 = 2x and the line 2x = 4 that is x = 2. The parabola
and the line intersect when x = 2 and y2 = 2x+ 4 = 8, that is at the points (x, y) = (2,±

√
8). When x = 2

with −
√

8 ≤ y ≤
√

8, we have

f(x, y) = 2x+ x2 + y2 − xy2 = 4 + 4 + y2 − 2y2 = 8− y2

which has maximum value 8 when y = 0 and minimum value 0 when y = ±
√

8. When y2 − 4 = 2x with
−
√

8 ≤ y ≤
√

8, we have y2 = 2x+ 4 with −2 ≤ x ≤ 2 so

f(x, y) = 2x+ x2 + y2 − xy2 = 2x+ x2 + (2x+ 4)− x(2x+ 4) = 4− x2

which has maximum value 4 when x = 0 and minimum value 0 when x = ±2.
Taking all of the above into account, the absolute maximum value of f(x, y) on D is f(2, 0) = 8 and

the absolute minimum value is f(−1, 0) = −1.


