MATH 247 Calculus 3, Solutions to Assignment 4

1: (a) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(0,0)=0$ and $f(x, y)=\frac{x^{3}-x y^{2}}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$. Determine whether f is differentiable at $(0,0)$.
Solution: We claim that f is not differentiable at $(0,0)$. When $\alpha(t)=(t, 0)$ and $g(t)=f(\alpha(t))=t$, we have $\frac{\partial f}{\partial x}(0,0)=g^{\prime}(0)=1$. When $\beta(t)=(0, t)$ and $h(t)=f(\beta(t))=0$, we have $\frac{\partial f}{\partial y}(0,0)=h^{\prime}(0)=0$. When $\gamma(t)=(t, t)$ and $k(t)=f(\gamma(t))=0$, if f was differentiable at $(0,0)$, then by the Chain Rule we would have $k^{\prime}(0)=D f(0,0) \gamma^{\prime}(0)=\left(\begin{array}{ll}1 & 0\end{array}\right)\binom{1}{1}=1$, but instead we have $k^{\prime}(0)=0$.
(b) Suppose $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable and f has a local maximum at $a \in U$. Show that $D f(a)=O$ (this is Exercise 6.15 in the lecture notes).
Solution: Suppose, for a contradiction, that $D f(a) \neq O$. Choose $0 \neq u \in \mathbb{R}^{n}$ such that $D f(a) u \neq 0$. By replacing u by $-u$ if necessary, we may assume that $D f(a) u=c>0$. Let $\alpha(t)=a+t u$, choose $\delta_{1}>0$ small enough so that $\alpha(t) \in U$ for all $|t|<\delta_{1}$, and let $g(t)=f(\alpha(t))$ for $|t|<\delta_{1}$. By the Chain Rule we have $g^{\prime}(t)=D f(\alpha(t)) \alpha^{\prime}(t)$ so that, in particular, $g^{\prime}(0)=D f(a) u=c>0$. Since $c=g^{\prime}(0)=\lim _{t \rightarrow 0} \frac{g(t)-g(0)}{t}$, we can choose δ with $0<\delta<\delta_{1}$ such that when $0<|t|<\delta$ we have $\left|\frac{g(t)-g(0)}{t}-c\right|<\frac{c}{2}$, and hence $\frac{c}{2}<\frac{g(t)-g(0)}{t}<\frac{3 c}{2}$. For $0<t<\delta$ we have $g(t)-g(0)>\frac{c t}{2}>0$ so that $g(t)>g(0)$. Thus $f(a+t u)>f(a)$ for all $0<t<\delta$, and so f does not have a local maximum at a.
(c) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Suppose the partial derivatives $\frac{\partial f_{k}}{\partial x_{\ell}}(x)$ exist and are bounded in U. Prove that f is continuous.
Solution: We imitate the proof of Theorem 5.13. Let $\epsilon>0$. Choose $M \geq 0$ so that $\left|\frac{\partial f_{k}}{\partial x_{\ell}}(x)\right| \leq M$ for all indices k, ℓ and all $x \in U$ and choose δ with $0<\delta<\frac{\epsilon}{M n m}$ so that $B(a, \delta) \subseteq U$. Let $x \in B(a, \delta)$. For $0 \leq \ell \leq n$, let $u_{\ell}=\left(x_{1}, \cdots, x_{\ell}, a_{\ell+1}, \cdots, a_{n}\right)$, with $u_{0}=a$ and $u_{n}=x$, and note that each $u_{\ell} \in B(a, \delta)$. For $1 \leq \ell \leq n$, let $\alpha_{\ell}(t)=\left(x_{1}, \cdots, x_{\ell-1}, t, a_{\ell+1}, \cdots, a_{n}\right)$ for t between a_{ℓ} and x_{ℓ}. For $1 \leq k \leq m$ and $1 \leq \ell \leq n$, let $g_{k, \ell}(t)=f_{k}\left(\alpha_{\ell}(t)\right)$ so that $g_{k, \ell}^{\prime}(t)=\frac{\partial f_{k}}{\partial x_{\ell}}\left(\alpha_{\ell}(t)\right)$. By the Mean Value Theorem, we can choose $s_{k, \ell}$ between a_{ℓ} and x_{ℓ} so $g_{k, \ell}^{\prime}\left(s_{k, \ell}\right)\left(x_{\ell}-a_{\ell}\right)=g_{k, \ell}\left(x_{\ell}\right)-g_{k, \ell}\left(a_{\ell}\right)$ or, equivalently, so $\frac{\partial f_{k}}{\partial x_{\ell}}\left(\alpha_{\ell}\left(s_{k, \ell}\right)\right)\left(x_{\ell}-a_{\ell}\right)=f_{k}\left(u_{\ell}\right)-f_{k}\left(u_{\ell-1}\right)$. Then

$$
f_{k}(x)-f_{k}(a)=f_{k}\left(u_{n}\right)-f_{k}\left(u_{0}\right)=\sum_{\ell=1}^{n}\left(f_{k}\left(u_{\ell}\right)-f_{k}\left(u_{\ell-1}\right)\right)=\sum_{\ell=1}^{n} \frac{\partial f_{k}}{\partial x_{\ell}}\left(\alpha_{\ell}\left(s_{k, \ell}\right)\right)\left(x_{\ell}-a_{\ell}\right)
$$

so that $\left|f_{k}(x)-f_{k}(a)\right| \leq M \sum_{\ell=1}^{n}\left|x_{\ell}-a_{\ell}\right| \leq M n|x-a|$. Thus

$$
|f(x)-f(a)|=\left(\sum_{k=1}^{m}\left|f_{k}(x)-f_{k}(a)\right|^{2}\right)^{1 / 2} \leq\left(\sum_{k=1}^{m} n^{2} M^{2}|x-a|^{2}\right)^{1 / 2}=M n m|x-a|<M n m \delta<\epsilon
$$

2: (a) Let $(u, v)=f(x, y)=\left(x \ln \left(y-x^{4}\right),\left(2+\frac{y}{x}\right)^{3 / 2}\right)$. Explain why f is locally invertible in a neighbourhood of $(1,2)$ and find the linearization of its inverse at $(0,8)$.
Solution: Note that $f(1,2)=(0,8)$. Also

$$
D F(x, y)=\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)=\left(\begin{array}{cc}
\ln \left(y-x^{4}\right)-\frac{4 x^{2}}{y-x^{4}} & \frac{x}{y-x^{4}} \\
-\frac{3 y}{2 x^{2}}\left(2+\frac{y}{x}\right)^{1 / 2} & \frac{3}{2 x}\left(2+\frac{y}{x}\right)^{1 / 2}
\end{array}\right), \text { so } \quad D F(1,2)=\left(\begin{array}{ll}
-4 & 1 \\
-6 & 3
\end{array}\right) .
$$

F is locally invertible near $(1,2)$ because the matrix $D F(1,2)$ is invertible, and the partial derivatives u_{x}, u_{y}, v_{x} and v_{y} are all continuous near $(1,2)$. Since $F(1,2)=(0,8)$ we have $F^{-1}(0,8)=(1,2)$, and we have

$$
D F^{-1}(0,8)=F(1,2)^{-1}=\left(\begin{array}{ll}
-4 & 1 \\
-6 & 3
\end{array}\right)^{-1}=\frac{1}{6}\left(\begin{array}{ll}
3 & -1 \\
6 & -4
\end{array}\right)
$$

and so the linearization of F^{-1} at $(0,8)$ is

$$
L_{(0,8)} F^{-1}\binom{x}{y}=\binom{1}{2}+\frac{1}{6}\left(\begin{array}{ll}
3 & -1 \\
6 & -4
\end{array}\right)\binom{x-0}{y-8}
$$

(b) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=2 x^{3}-3 x^{2}+2 y^{3}+3 y^{2}$ and let $C=\operatorname{Null}(f)$. Use the Implicit Function Theorem to find all the points on C at which C is locally equal to the graph of a function $y=g(x)$, or locally equal to the graph of a function $x=h(y)$.
Solution: By the Implicit Function Theorem, C is locally equal to the graph of a smooth function $y=g(x)$ at all points on C except (possibly) where $\frac{\partial f}{\partial y}=0$. We have $\frac{\partial f}{\partial y}=6 y^{2}+6 y=6 y(y+1)$ and so $\frac{\partial f}{\partial y}=0 \Longleftrightarrow y=0$ or $y=-1$. For $(x, y) \in C$ we have $(x+y)\left(2 x^{2}-2 x y+2 y^{2}-3 x+3 y\right)=0$ so

$$
\begin{aligned}
y=0 & \Longrightarrow x\left(2 x^{2}-3 x\right)=0 \Longrightarrow x^{2}(2 x-3)=0 \Longrightarrow x=0 \text { or } \frac{3}{2} \\
y=-1 & \Longrightarrow(x-1)\left(2 x^{2}-x-1\right)=0 \Longrightarrow(x-1)^{2}(2 x+1)=0 \Longrightarrow x=1 \text { or }-\frac{1}{2}
\end{aligned}
$$

Thus C is locally equal to the graph of a smooth function $y=g(x)$ except (possibly) at the points $(0,0)$, $\left(\frac{3}{2}, 0\right),(1,-1)$ and $\left(-\frac{1}{2},-1\right)$. A similar calculation shows that $\frac{\partial f}{\partial x}=6 x(x-1)$ and that for $(x, y) \in C$ we have $x=0 \Longrightarrow y=0$ or $-\frac{3}{2}$ and $x=1 \Longrightarrow y=-1$ or $\frac{1}{2}$, and so C is locally equal to the graph of a smooth function $x=h(y)$ except (possibly) at each of the points $(0,0),\left(0,-\frac{3}{2}\right),(1,-1)$ and $\left(1, \frac{1}{2}\right)$.

3: Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $(u, v)=f(x, y)=(x+y, x y)$.
(a) Sketch the level sets $u=0, \pm 2, \pm 4$ and the level sets $v=0, \pm 1, \pm 4$ (all on the same grid).

Solution: The level set $u=a$ is the line $x+y=a$ and the level set $v=b$ is the hyperbola $x y=b$ (when $b=0$ we obtain the degenerate hyperbola $x y=0$, which is the union of the two coordinate axes). The lines $x+y=a$ for $a=0, \pm 2, \pm 4$ are whown below in blue, and the hyperbolas $x y=b$ for $b= \pm 1, \pm 4$ are shown in green.

(b) Sketch the image under f of each of the lines $x=0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2$ (all on the same grid).

Solution: The level set $x=c$ is given parametrically by $(x, y)=(c, t)$ and it is mapped under f to the curve $(u, v)=f(c, t)=(c+t, c t)$. When $u=c+t$ and $v=c t$ we have $c u=c^{2}+c t=c^{2}+v$ and so the image of the curve $x=c$ is the line $c u=c^{2}+v$. The lines $v=c u-c^{2}$ for $c=0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2$ are shown below in blue.

(c) Let $A=\left\{(x, y) \mid \operatorname{det}\left(f^{\prime}(x, y)\right)=0\right\}$ and $B=f(A)$. Find a function $y=y(x)$ whose graph is A and a function $v=v(u)$ whose graph is B. Add A to your sketch in Part (a) and add B to your sketch in Part (b).
Solution: We have

$$
f^{\prime}(x, y)=\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
y & x
\end{array}\right)
$$

and so $A=\left\{(x, y) \mid \operatorname{det} f^{\prime}(x, y)=0\right\}=\{(x, y) \mid x-y=0\}$ which is equal to the line $y=x$, shown in orange on the plot in Part (a). The line $y=x$ is given parametrically by $(x, y)=(t, t)$ and it is sent by f to the curve $(u, v)=f(t, t)=\left(2 t, t^{2}\right)$. When $u=2 t$ and $v=t^{2}$ we have $4 v=4 t^{2}=(2 t)^{2}=u^{2}$ and so the image of the line $y=x$ under f is the parabola $4 v=u^{2}$, which is shown in orange on the Plot in Part (b).
(d) Show that for $U=\{(x, y) \mid y<x\}$ and $V=\left\{(u, v) \mid 4 v<u^{2}\right\}$ the map $f: U \rightarrow V$ is invertible and find a formula for $g=f^{-1}: V \rightarrow U$.
Solution: Note that

$$
\begin{aligned}
(u, v)=(x+y, x y) & \Longrightarrow(u=x+y \text { and } v=x y) \Longrightarrow(y=u-x \text { and } v=x y=x(u-x)) \\
& \Longrightarrow x^{2}-u x+v=0 \Longrightarrow x=\frac{u \pm \sqrt{u^{2}-4 v}}{2}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
(u, v)=(x+y, x y) & \Longrightarrow(u=x+y \text { and } v=x y) \Longrightarrow(x=u-y \text { and } v=x y=(u-y) y) \\
& \Longrightarrow y^{2}-u y+v=0 \Longrightarrow y=\frac{u \pm \sqrt{u^{2}-4 v}}{2}
\end{aligned}
$$

To get $y<x$ we need $x=\frac{u+\sqrt{u^{2}-4 v}}{2}$ and $y=\frac{u-\sqrt{u^{2}-4 v}}{2}$, and so we define $g: V \rightarrow \mathbb{R}^{2}$ by

$$
(x, y)=g(u, v)=\left(\frac{u+\sqrt{u^{2}-4 v}}{2}, \frac{u-\sqrt{u^{2}-4 v}}{2}\right) .
$$

Note the $g(u, v)$ is well defined when $4 v<u$, that is when $(u, v) \in V$. Let us verify that g is indeed the inverse of the restriction of f to U. For $y<x$ we have

$$
\begin{aligned}
g(f(x, y)) & =g(x+y, x y)=\left(\frac{(x+y)+\sqrt{(x+y)^{2}-4 x y}}{2}, \frac{(x+y)-\sqrt{(x+y)^{2}-4 x y}}{2}\right) \\
& =\left(\frac{(x+y)+\sqrt{(x-y)^{2}}}{2}, \frac{(x+y)-\sqrt{(x-y)^{2}}}{2}\right)=\left(\frac{(x+y)+(x-y)}{2}, \frac{(x+y)-(x-y)}{2}\right)=(x, y)
\end{aligned}
$$

and when $4 v<u^{2}$ we have

$$
\begin{aligned}
f(g(u, v)) & =f\left(\frac{u+\sqrt{u^{2}-4 v}}{2}, \frac{u-\sqrt{u^{2}-4 v}}{2}\right)=\left(\frac{u+\sqrt{u^{2}-4 v}}{2}+\frac{u-\sqrt{u^{2}-4 v}}{2}, \frac{u+\sqrt{u^{2}-4 v}}{2} \cdot \frac{u-\sqrt{u^{2}-4 v}}{2}\right) \\
& =\left(u, \frac{u^{2}-\left(u^{2}-4 v\right)}{4}\right)=(u, v)
\end{aligned}
$$

(e) Note that $f(2,1)=(3,2)$. Find $g^{\prime}(3,2)$ in two ways: first use the Inverse Function Theorem, then use your formula for g from Part (d).
Solution: Using the Inverse Function Theorem, we have

$$
f^{\prime}(x, y)=\left(\begin{array}{ll}
1 & 1 \\
y & x
\end{array}\right), f^{\prime}(2,1)=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), g^{\prime}(3,2)=f^{\prime}(2,1)^{-1}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)
$$

Using the formula $g(u, v)=\frac{1}{2}\left(u+\sqrt{u^{2}-4 v}, u-\sqrt{u^{2}-4 v}\right)$ we have

$$
g^{\prime}(u, v)=\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
1+\frac{u}{\sqrt{u^{2}-4 v}} & \frac{-2}{\sqrt{u^{2}-4 v}} \\
1-\frac{u}{\sqrt{u^{2}-4 v}} & \frac{2}{\sqrt{u^{2}-4 v}}
\end{array}\right), g^{\prime}(3,2)=\frac{1}{2}\left(\begin{array}{rr}
1+3 & -2 \\
1-3 & 2
\end{array}\right)=\left(\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right)
$$

4: (a) Let $U=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}>y^{2}\right\}$. Find the $2^{\text {nd }}$ Taylor polynomial of the map $f: U \rightarrow \mathbb{R}$ given by $f(x, y)=\sqrt{x^{2}-y^{2}}$ at the point $(5,4)$.
Solution: We have $\frac{\partial f}{\partial x}=\frac{x}{\sqrt{x^{2}-y^{2}}}, \frac{\partial f}{\partial y}=\frac{-y}{\sqrt{x^{2}-y^{2}}}, \frac{\partial^{2} f}{\partial x^{2}}=\frac{\sqrt{x^{2}-y^{2}}-\frac{x^{2}}{\sqrt{x^{2}-y^{2}}}}{x^{2}-y^{2}}=\frac{-y^{2}}{\left(x^{2}-y^{2}\right)^{3 / 2}}, \frac{\partial^{2} f}{\partial x \partial y}=\frac{x y}{\left(x^{2}-y y^{2}\right)^{3 / 2}}$, and $\frac{\partial^{2} f}{\partial y^{2}}=\frac{-\sqrt{x^{2}-y^{2}}-\frac{y^{2}}{\sqrt{x^{2}-y^{2}}}}{x^{2}-y^{2}}=\frac{-x^{2}}{\left(x^{2}-y^{2}\right)^{3 / 2}}$, so that $f(5,4)=3, \frac{\partial f}{\partial x}(5,4)=\frac{5}{3}, \frac{\partial f}{\partial y}(5,4)=-\frac{4}{3}, \frac{\partial^{2} f}{\partial x^{2}}(5,4)=-\frac{16}{27}$, $\frac{\partial^{2} f}{\partial x \partial y}(5,4)=\frac{20}{27}$ and $\frac{\partial^{2} f}{\partial y^{2}}(5,4)=-\frac{25}{27}$, and hence the $2^{\text {nd }}$ Taylor polynomial of f at $(5,4)$ is

$$
T(x, y)=3+\frac{5}{3}(x-5)_{-} \frac{4}{3}(y-4)-\frac{8}{27}(x-5)^{2}+\frac{20}{27}(x-5)(y-4)-\frac{25}{54}(y-4)^{2} .
$$

(b) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=2 x+x^{2}+y^{2}-x y^{2}$. Find the absolute maximum and minimum values of $f(x, y)$ in the region $D=\left\{(x, y) \mid y^{2}-4 \leq 2 x \leq 4\right\}$.
Solution: Since D is compact, f does attain its maximum and minimum values in D, and these values are either attained in D^{o} or on ∂D. If f attains a maximum or minimum value in D^{o} then it must do so at a critical point. Note that $D f(x, y)=\left(2+2 x-y^{2}, 2 y-2 x y\right)$. To have $D f(x, y)=(0,0)$ we need $0=2 y-2 x y=2 y(1-x)$ so that either $y=0$ or $x=1$, and we need $2+2 x=y^{2}$. When $y=0$ we have $2+2 x=y^{2} \Longrightarrow 2+2 x=0 \Longrightarrow x=-1$, and when $x=1$ we have $2+2 x=y^{2} \Longrightarrow y^{2}=4 \Longrightarrow y= \pm 2$. Thus the critical points are $(-1,0)$ and $(1, \pm 2)$, which all lie in D^{o}, and we have $f(-1,0)=-2+1=-1$ and $f(1, \pm 2)=2+1+4-4=3$. Let us determine the maximum and minimum values on ∂D.

The region D is bounded by the parabola $y^{2}-4=2 x$ and the line $2 x=4$ that is $x=2$. The parabola and the line intersect when $x=2$ and $y^{2}=2 x+4=8$, that is at the points $(x, y)=(2, \pm \sqrt{8})$. When $x=2$ with $-\sqrt{8} \leq y \leq \sqrt{8}$, we have

$$
f(x, y)=2 x+x^{2}+y^{2}-x y^{2}=4+4+y^{2}-2 y^{2}=8-y^{2}
$$

which has maximum value 8 when $y=0$ and minimum value 0 when $y= \pm \sqrt{8}$. When $y^{2}-4=2 x$ with $-\sqrt{8} \leq y \leq \sqrt{8}$, we have $y^{2}=2 x+4$ with $-2 \leq x \leq 2$ so

$$
f(x, y)=2 x+x^{2}+y^{2}-x y^{2}=2 x+x^{2}+(2 x+4)-x(2 x+4)=4-x^{2}
$$

which has maximum value 4 when $x=0$ and minimum value 0 when $x= \pm 2$.
Taking all of the above into account, the absolute maximum value of $f(x, y)$ on D is $f(2,0)=8$ and the absolute minimum value is $f(-1,0)=-1$.

