MATH 247 Calculus 3, Solutions to Assignment 4

1: (a) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by f(0,0) = 0 and $f(x,y) = \frac{x^3 - xy^2}{x^2 + y^2}$ for $(x,y) \neq (0,0)$. Determine whether f is differentiable at (0,0).

Solution: We claim that f is not differentiable at (0,0). When $\alpha(t) = (t,0)$ and $g(t) = f(\alpha(t)) = t$, we have $\frac{\partial f}{\partial x}(0,0) = g'(0) = 1$. When $\beta(t) = (0,t)$ and $h(t) = f(\beta(t)) = 0$, we have $\frac{\partial f}{\partial y}(0,0) = h'(0) = 0$. When $\gamma(t) = (t,t)$ and $k(t) = f(\gamma(t)) = 0$, if f was differentiable at (0,0), then by the Chain Rule we would have $k'(0) = Df(0,0)\gamma'(0) = (1\ 0) \begin{pmatrix} 1\\ 1 \end{pmatrix} = 1$, but instead we have k'(0) = 0.

(b) Suppose $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ is differentiable and f has a local maximum at $a \in U$. Show that Df(a) = O (this is Exercise 6.15 in the lecture notes).

Solution: Suppose, for a contradiction, that $Df(a) \neq O$. Choose $0 \neq u \in \mathbb{R}^n$ such that $Df(a)u \neq 0$. By replacing u by -u if necessary, we may assume that Df(a)u = c > 0. Let $\alpha(t) = a + tu$, choose $\delta_1 > 0$ small enough so that $\alpha(t) \in U$ for all $|t| < \delta_1$, and let $g(t) = f(\alpha(t))$ for $|t| < \delta_1$. By the Chain Rule we have $g'(t) = Df(\alpha(t))\alpha'(t)$ so that, in particular, g'(0) = Df(a)u = c > 0. Since $c = g'(0) = \lim_{t \to 0} \frac{g(t) - g(0)}{t}$, we can choose δ with $0 < \delta < \delta_1$ such that when $0 < |t| < \delta$ we have $\left|\frac{g(t) - g(0)}{t} - c\right| < \frac{c}{2}$, and hence $\frac{c}{2} < \frac{g(t) - g(0)}{t} < \frac{3c}{2}$. For $0 < t < \delta$ we have $g(t) - g(0) > \frac{ct}{2} > 0$ so that g(t) > g(0). Thus f(a + tu) > f(a) for all $0 < t < \delta$, and so f does not have a local maximum at a.

(c) Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m$. Suppose the partial derivatives $\frac{\partial f_k}{\partial x_\ell}(x)$ exist and are bounded in U. Prove that f is continuous.

Solution: We imitate the proof of Theorem 5.13. Let $\epsilon > 0$. Choose $M \ge 0$ so that $\left|\frac{\partial f_k}{\partial x_\ell}(x)\right| \le M$ for all indices k, ℓ and all $x \in U$ and choose δ with $0 < \delta < \frac{\epsilon}{Mnm}$ so that $B(a, \delta) \subseteq U$. Let $x \in B(a, \delta)$. For $0 \le \ell \le n$, let $u_\ell = (x_1, \cdots, x_\ell, a_{\ell+1}, \cdots, a_n)$, with $u_0 = a$ and $u_n = x$, and note that each $u_\ell \in B(a, \delta)$. For $1 \le \ell \le n$, let $\alpha_\ell(t) = (x_1, \cdots, x_{\ell-1}, t, a_{\ell+1}, \cdots, a_n)$ for t between a_ℓ and x_ℓ . For $1 \le k \le m$ and $1 \le \ell \le n$, let $g_{k,\ell}(t) = f_k(\alpha_\ell(t))$ so that $g'_{k,\ell}(t) = \frac{\partial f_k}{\partial x_\ell}(\alpha_\ell(t))$. By the Mean Value Theorem, we can choose $s_{k,\ell}$ between a_ℓ and x_ℓ so $g'_{k,\ell}(s_{k,\ell})(x_\ell - a_\ell) = g_{k,\ell}(x_\ell) - g_{k,\ell}(a_\ell)$ or, equivalently, so $\frac{\partial f_k}{\partial x_\ell}(\alpha_\ell(s_{k,\ell}))(x_\ell - a_\ell) = f_k(u_\ell) - f_k(u_{\ell-1})$. Then

$$f_k(x) - f_k(a) = f_k(u_n) - f_k(u_0) = \sum_{\ell=1}^n \left(f_k(u_\ell) - f_k(u_{\ell-1}) \right) = \sum_{\ell=1}^n \frac{\partial f_k}{\partial x_\ell} \left(\alpha_\ell(s_{k,\ell}) \right) (x_\ell - a_\ell),$$

so that $\left|f_k(x) - f_k(a)\right| \le M \sum_{\ell=1}^n \left|x_\ell - a_\ell\right| \le M n |x - a|$. Thus

$$\left|f(x) - f(a)\right| = \left(\sum_{k=1}^{m} \left|f_k(x) - f_k(a)\right|^2\right)^{1/2} \le \left(\sum_{k=1}^{m} n^2 M^2 |x - a|^2\right)^{1/2} = Mnm \, |x - a| < Mnm \, \delta < \epsilon.$$

2: (a) Let $(u, v) = f(x, y) = \left(x \ln(y - x^4), \left(2 + \frac{y}{x}\right)^{3/2}\right)$. Explain why f is locally invertible in a neighbourhood of (1, 2) and find the linearization of its inverse at (0, 8).

Solution: Note that f(1,2) = (0,8). Also

$$DF(x,y) = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \begin{pmatrix} \ln(y - x^4) - \frac{4x^2}{y - x^4} & \frac{x}{y - x^4} \\ -\frac{3y}{2x^2} \left(2 + \frac{y}{x}\right)^{1/2} & \frac{3}{2x} \left(2 + \frac{y}{x}\right)^{1/2} \end{pmatrix} \text{, so } DF(1,2) = \begin{pmatrix} -4 & 1 \\ -6 & 3 \end{pmatrix}$$

F is locally invertible near (1,2) because the matrix DF(1,2) is invertible, and the partial derivatives u_x , u_y , v_x and v_y are all continuous near (1,2). Since F(1,2) = (0,8) we have $F^{-1}(0,8) = (1,2)$, and we have

$$DF^{-1}(0,8) = F(1,2)^{-1} = \begin{pmatrix} -4 & 1\\ -6 & 3 \end{pmatrix}^{-1} = \frac{1}{6} \begin{pmatrix} 3 & -1\\ 6 & -4 \end{pmatrix}$$

and so the linearization of F^{-1} at (0, 8) is

$$L_{(0,8)}F^{-1}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}1\\2\end{pmatrix} + \frac{1}{6}\begin{pmatrix}3&-1\\6&-4\end{pmatrix}\begin{pmatrix}x-0\\y-8\end{pmatrix}$$

(b) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = 2x^3 - 3x^2 + 2y^3 + 3y^2$ and let C = Null(f). Use the Implicit Function Theorem to find all the points on C at which C is locally equal to the graph of a function y = g(x), or locally equal to the graph of a function x = h(y).

Solution: By the Implicit Function Theorem, C is locally equal to the graph of a smooth function y = g(x) at all points on C except (possibly) where $\frac{\partial f}{\partial y} = 0$. We have $\frac{\partial f}{\partial y} = 6y^2 + 6y = 6y(y+1)$ and so $\frac{\partial f}{\partial y} = 0 \iff y = 0$ or y = -1. For $(x, y) \in C$ we have $(x + y)(2x^2 - 2xy + 2y^2 - 3x + 3y) = 0$ so

$$y = 0 \Longrightarrow x(2x^2 - 3x) = 0 \Longrightarrow x^2(2x - 3) = 0 \Longrightarrow x = 0 \text{ or } \frac{3}{2},$$

$$y = -1 \Longrightarrow (x - 1)(2x^2 - x - 1) = 0 \Longrightarrow (x - 1)^2(2x + 1) = 0 \Longrightarrow x = 1 \text{ or } -\frac{1}{2}.$$

Thus C is locally equal to the graph of a smooth function y = g(x) except (possibly) at the points (0,0), $(\frac{3}{2},0)$, (1,-1) and $(-\frac{1}{2},-1)$. A similar calculation shows that $\frac{\partial f}{\partial x} = 6x(x-1)$ and that for $(x,y) \in C$ we have $x = 0 \Longrightarrow y = 0$ or $-\frac{3}{2}$ and $x = 1 \Longrightarrow y = -1$ or $\frac{1}{2}$, and so C is locally equal to the graph of a smooth function x = h(y) except (possibly) at each of the points (0,0), $(0,-\frac{3}{2})$, (1,-1) and $(1,\frac{1}{2})$.

3: Define $f : \mathbb{R}^2 \to \mathbb{R}^2$ by (u, v) = f(x, y) = (x + y, xy).

(a) Sketch the level sets $u = 0, \pm 2, \pm 4$ and the level sets $v = 0, \pm 1, \pm 4$ (all on the same grid).

Solution: The level set u = a is the line x + y = a and the level set v = b is the hyperbola xy = b (when b = 0 we obtain the degenerate hyperbola xy = 0, which is the union of the two coordinate axes). The lines x + y = a for $a = 0, \pm 2, \pm 4$ are whown below in blue, and the hyperbolas xy = b for $b = \pm 1, \pm 4$ are shown in green.

(b) Sketch the image under f of each of the lines $x = 0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2$ (all on the same grid).

Solution: The level set x = c is given parametrically by (x, y) = (c, t) and it is mapped under f to the curve (u, v) = f(c, t) = (c + t, ct). When u = c + t and v = ct we have $cu = c^2 + ct = c^2 + v$ and so the image of the curve x = c is the line $cu = c^2 + v$. The lines $v = cu - c^2$ for $c = 0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2$ are shown below in blue.

(c) Let $A = \{(x, y) | \det (f'(x, y)) = 0\}$ and B = f(A). Find a function y = y(x) whose graph is A and a function v = v(u) whose graph is B. Add A to your sketch in Part (a) and add B to your sketch in Part (b). Solution: We have

$$f'(x,y) = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ y & x \end{pmatrix}$$

and so $A = \{(x, y) | \det f'(x, y) = 0\} = \{(x, y) | x - y = 0\}$ which is equal to the line y = x, shown in orange on the plot in Part (a). The line y = x is given parametrically by (x, y) = (t, t) and it is sent by f to the curve $(u, v) = f(t, t) = (2t, t^2)$. When u = 2t and $v = t^2$ we have $4v = 4t^2 = (2t)^2 = u^2$ and so the image of the line y = x under f is the parabola $4v = u^2$, which is shown in orange on the Plot in Part (b). (d) Show that for $U = \{(x, y) | y < x\}$ and $V = \{(u, v) | 4v < u^2\}$ the map $f : U \to V$ is invertible and find a formula for $g = f^{-1} : V \to U$.

Solution: Note that

$$(u,v) = (x+y,xy) \Longrightarrow (u = x+y \text{ and } v = xy) \Longrightarrow (y = u-x \text{ and } v = xy = x(u-x))$$
$$\implies x^2 - ux + v = 0 \Longrightarrow x = \frac{u \pm \sqrt{u^2 - 4v}}{2}$$

and similarly

$$(u,v) = (x+y,xy) \Longrightarrow (u = x+y \text{ and } v = xy) \Longrightarrow (x = u-y \text{ and } v = xy = (u-y)y)$$
$$\implies y^2 - uy + v = 0 \Longrightarrow y = \frac{u \pm \sqrt{u^2 - 4v}}{2}.$$

To get y < x we need $x = \frac{u + \sqrt{u^2 - 4v}}{2}$ and $y = \frac{u - \sqrt{u^2 - 4v}}{2}$, and so we define $g: V \to \mathbb{R}^2$ by $(x, y) = g(u, v) = \left(\frac{u + \sqrt{u^2 - 4v}}{2}, \frac{u - \sqrt{u^2 - 4v}}{2}\right).$

Note the g(u, v) is well defined when 4v < u, that is when $(u, v) \in V$. Let us verify that g is indeed the inverse of the restriction of f to U. For y < x we have

$$g(f(x,y)) = g(x+y,xy) = \left(\frac{(x+y)+\sqrt{(x+y)^2-4xy}}{2}, \frac{(x+y)-\sqrt{(x+y)^2-4xy}}{2}\right)$$
$$= \left(\frac{(x+y)+\sqrt{(x-y)^2}}{2}, \frac{(x+y)-\sqrt{(x-y)^2}}{2}\right) = \left(\frac{(x+y)+(x-y)}{2}, \frac{(x+y)-(x-y)}{2}\right) = (x,y)$$

and when $4v < u^2$ we have

$$f(g(u,v)) = f\left(\frac{u+\sqrt{u^2-4v}}{2}, \frac{u-\sqrt{u^2-4v}}{2}\right) = \left(\frac{u+\sqrt{u^2-4v}}{2} + \frac{u-\sqrt{u^2-4v}}{2}, \frac{u+\sqrt{u^2-4v}}{2} \cdot \frac{u-\sqrt{u^2-4v}}{2}\right)$$
$$= \left(u, \frac{u^2-(u^2-4v)}{4}\right) = (u,v).$$

(e) Note that f(2,1) = (3,2). Find g'(3,2) in two ways: first use the Inverse Function Theorem, then use your formula for g from Part (d).

Solution: Using the Inverse Function Theorem, we have

$$f'(x,y) = \begin{pmatrix} 1 & 1 \\ y & x \end{pmatrix} , \ f'(2,1) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} , \ g'(3,2) = f'(2,1)^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}.$$

Using the formula $g(u, v) = \frac{1}{2} \left(u + \sqrt{u^2 - 4v}, u - \sqrt{u^2 - 4v} \right)$ we have

$$g'(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 + \frac{u}{\sqrt{u^2 - 4v}} & \frac{-2}{\sqrt{u^2 - 4v}} \\ 1 - \frac{u}{\sqrt{u^2 - 4v}} & \frac{2}{\sqrt{u^2 - 4v}} \end{pmatrix} , \ g'(3,2) = \frac{1}{2} \begin{pmatrix} 1 + 3 & -2 \\ 1 - 3 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}.$$

4: (a) Let $U = \{(x,y) \in \mathbb{R}^2 | x^2 > y^2\}$. Find the 2nd Taylor polynomial of the map $f : U \to \mathbb{R}$ given by $f(x,y) = \sqrt{x^2 - y^2}$ at the point (5,4).

Solution: We have $\frac{\partial f}{\partial x} = \frac{x}{\sqrt{x^2 - y^2}}, \ \frac{\partial f}{\partial y} = \frac{-y}{\sqrt{x^2 - y^2}}, \ \frac{\partial^2 f}{\partial x^2} = \frac{\sqrt{x^2 - y^2} - \frac{x^2}{\sqrt{x^2 - y^2}}}{x^2 - y^2} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{xy}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{xy}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{xy}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial x \partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac{\partial^2 f}{\partial y} = \frac{-y^2}{(x^2 - y^2)^{3/2}}, \ \frac$

(b) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = 2x + x^2 + y^2 - xy^2$. Find the absolute maximum and minimum values of f(x, y) in the region $D = \{(x, y) | y^2 - 4 \le 2x \le 4\}$.

Solution: Since D is compact, f does attain its maximum and minimum values in D, and these values are either attained in D^o or on ∂D . If f attains a maximum or minimum value in D^o then it must do so at a critical point. Note that $Df(x,y) = (2 + 2x - y^2, 2y - 2xy)$. To have Df(x,y) = (0,0) we need 0 = 2y - 2xy = 2y(1-x) so that either y = 0 or x = 1, and we need $2 + 2x = y^2$. When y = 0 we have $2 + 2x = y^2 \implies 2 + 2x = 0 \implies x = -1$, and when x = 1 we have $2 + 2x = y^2 \implies y^2 = 4 \implies y = \pm 2$. Thus the critical points are (-1,0) and $(1,\pm 2)$, which all lie in D^o , and we have f(-1,0) = -2 + 1 = -1 and $f(1,\pm 2) = 2 + 1 + 4 - 4 = 3$. Let us determine the maximum and minimum values on ∂D .

The region D is bounded by the parabola $y^2 - 4 = 2x$ and the line 2x = 4 that is x = 2. The parabola and the line intersect when x = 2 and $y^2 = 2x + 4 = 8$, that is at the points $(x, y) = (2, \pm\sqrt{8})$. When x = 2 with $-\sqrt{8} \le y \le \sqrt{8}$, we have

$$f(x,y) = 2x + x^{2} + y^{2} - xy^{2} = 4 + 4 + y^{2} - 2y^{2} = 8 - y^{2}$$

which has maximum value 8 when y = 0 and minimum value 0 when $y = \pm \sqrt{8}$. When $y^2 - 4 = 2x$ with $-\sqrt{8} \le y \le \sqrt{8}$, we have $y^2 = 2x + 4$ with $-2 \le x \le 2$ so

$$f(x,y) = 2x + x^{2} + y^{2} - xy^{2} = 2x + x^{2} + (2x + 4) - x(2x + 4) = 4 - x^{2}$$

which has maximum value 4 when x = 0 and minimum value 0 when $x = \pm 2$.

Taking all of the above into account, the absolute maximum value of f(x, y) on D is f(2, 0) = 8 and the absolute minimum value is f(-1, 0) = -1.