MATH 247 Calculus 3, Solutions to Assignment 4

: (a) Define f : R — R by f(0,0) = 0 and f(z,y) = "”;2_4_1;‘”22 for (z,y) # (0,0). Determine whether f is
differentiable at (0, 0).

Solution: We claim that f is not differentiable at (0,0). When «(t) = (¢,0) and g(t) = f(«(t)) = t, we have
52(0,0) = ¢’(0) = 1. When B(t) = (0,¢) and h(t) = f(B(t)) = 0, we have 5£(0,0) = 1'(0) = 0. When
~v(t) = (t,t) and k(t) = f(v(t)) = 0, if f was differentiable at (0,0), then by the Chain Rule we would have
k'(0) = Df(0,0)'(0) = (1 0)(}) = 1, but instead we have &’(0) = 0.

(b) Suppose f: U C R" — R is differentiable and f has a local maximum at a € U. Show that Df(a) = O
(this is Exercise 6.15 in the lecture notes).

Solution: Suppose, for a contradiction, that Df(a) # O. Choose 0 # u € R™ such that Df(a)u # 0. By
replacing u by —u if necessary, we may assume that Df(a)u = ¢ > 0. Let «(t) = a + tu, choose §; > 0
small enough so that a(t) € U for all [¢{| < 01, and let g(t) = f(a(t)) for |[t| < ;. By the Chain Rule we

have ¢'(t) = Df(a(t))d/(t) so that, in particular, ¢’(0) = Df(a)u = ¢ > 0. Since ¢ = ¢'(0) = }iH(l) M,
e

we can choose ¢ with 0 < § < §; such that when 0 < [t| < § we have |M —¢| < &, and hence
5 < M < 3¢ For 0 < t < & we have g(t) — g(0) > £ > 0 so that g(t) > g(0). Thus f(a+ tu) > f(a)
for all 0 <t < §, and so f does not have a local maximum at a.

(c) Let f: U CR™ — R™. Suppose the partial derivatives g—i’;(x) exist and are bounded in U. Prove that

f is continuous.
Solution: We imitate the proof of Theorem 5.13. Let ¢ > 0. Choose M > 0 so that |g—£’z(x)| < M for all
indices k,¢ and all z € U and choose § with 0 < ¢ < 45— so that B(a,d) C U. Let z € B(a,d). For

0<?¢<n,let up = (21, +,2p,ap41, *,an), with ug = a and u,, = z, and note that each u, € B(a, ). For
1<l<n,let ap(t)=(x1, -+, xp—1,t,ap41, -+, ay) for t between ap and z,. For 1 <k<m and 1<{<n, let
9re(t) = fi (ozg(t)) so that gfw(t) = g—i’; (ag(t)). By the Mean Value Theorem, we can choose s, ¢ between ay

and x, so g;v’g(shg)(ngag) = gk e(xe)—gr,e(ar) or, equivalently, so %(az(sk,g)) (xo—ap) = fr(we)— fr(uwe—1).

Then

3

Fu(@) = fi(a) = fiulun) — feluo) = 3 (fulue) — filue—y)) =

g%}; (O‘Z(Sk,é))(l’z —ay),
=1 i=1

so that | fr(z) — fr(a)] < M Y |z — ag| < Mn |z — a|. Thus
=1

50 = @) = (£ 1) = @) < (£ earle =) = dwmle —a] < aums < .



2: (a) Let (u,v) = f(z,y) = (:c In(y — %), (2 + %)3/2 ) Explain why f is locally invertible in a neighbourhood
of (1,2) and find the linearization of its inverse at (0, 8).

Solution: Note that f(1,2) = (0,8). Also

In(y — 24) — 422, e —
DF(z,y) = (uz uy> (" : yf/:624 v 12 | »s0 DF(1,2) = ( . 1) :
A S A -5 3
F' is locally invertible near (1,2) because the matrix DF(1,2) is invertible, and the partial derivatives u,,
Uy, vy and vy are all continuous near (1,2). Since F(1,2) = (0,8) we have F~1(0,8) = (1,2), and we have

DF1(0,8)=F(172)1:<:§ §,>_1=é(2 ;11)

and so the linearization of F~1 at (0,8) is

roor ()= (2) 4 (5 ) (528)

(b) Define f : R? — R by f(z,y) = 223 — 322 + 2y + 3y? and let C' = Null(f). Use the Implicit Function
Theorem to find all the points on C' at which C is locally equal to the graph of a function y = g(z), or locally
equal to the graph of a function z = h(y).

Solution: By the Implicit Function Theorem, C'is locally equal to the graph of a smooth function y = g(z) at
all points on C' except (possibly) where g—}y‘ = 0. We have % = 6y?+6y = 6y(y+1) and so % =0 <= y=0

or y = —1. For (z,y) € C we have (z +y)(22% — 22y + 2y*> — 32 + 3y) = 0 so
y=0= (222 —32) =0=22(22—3)=0=z=0o0r 3,
y=-1l=(z-1)222-2-1)=0= (z—1)?(2Qz+1)=0=2=1or — 3.

Thus C is locally equal to the graph of a smooth function y = g(z) except (possibly) at the points (O,O)7

(%, O), (1, —1) and (— %, —1). A similar calculation shows that % = 6z(z — 1) and that for (z,y) € C we

havex =0=y =0o0r — % andr=1=y=—-1or %, and so C is locally equal to the graph of a smooth

function x = h(y) except (possibly) at each of the points (O, O), (0, —%), (1, —1) and (17 %)



3: Define f: R* = R? by (u,v) = f(z,y) = (z +y, zy).
(a) Sketch the level sets u = 0,£2, +4 and the level sets v = 0, £1, £4 (all on the same grid).

Solution: The level set u = a is the line  + y = a and the level set v = b is the hyperbola xy = b (when
b = 0 we obtain the degenerate hyperbola xy = 0, which is the union of the two coordinate axes). The lines
x+y =a for a = 0,42, £4 are whown below in blue, and the hyperbolas xy = b for b = +1,+4 are shown
in green.

X X
B

(b) Sketch the image under f of each of the lines 2 = 0, i%, +1, i%, +2 (all on the same grid).

Solution: The level set & = ¢ is given parametrically by (z,y) = (¢, t) and it is mapped under f to the curve
(u,v) = f(e,t) = (c+t,ct). When u = c+t and v = ct we have cu = c? + ct = ¢ +v and so the image of the
curve z = c is the line cu = ¢? +v. The lines v = cu — ¢? for ¢ = 0, :I:%, +1, :I:%7 42 are shown below in blue.

(c) Let A = {(z,y)|det (f'(z,y)) =0} and B = f(A). Find a function y = y(z) whose graph is A and a
function v = v(u) whose graph is B. Add A to your sketch in Part (a) and add B to your sketch in Part (b).

ou ou

9z ou 1 1
ren=(5 2)=(, 1)

ox oy Y

and so A = {(m,y)’ det f/(z,y) =0} = {(m,y)‘x —y =0} which is equal to the line y = z, shown in orange
on the plot in Part (a). The line y = x is given parametrically by (z,y) = (¢,t) and it is sent by f to the
curve (u,v) = f(t,t) = (2t,t?). When u = 2t and v = #? we have 4v = 4t? = (2t)? = »? and so the image of
the line y = 2 under f is the parabola 4v = u2, which is shown in orange on the Plot in Part (b).

Solution: We have



(d) Show that for U = {(x,y)|y < x} and V = {(u7v)|4v < u2} the map f: U — V is invertible and find a
formula for g = f~1:V — U.
Solution: Note that

(w,v) =(z+y,2y) = (u=z+yandv=ay) = (y=u—x and v =2y = (v — 7))

utvu2—4v
2

= —uwrtv=0= 1=

and similarly

(u,v):(x+y,xy):>(uzaz—i—yandv:xy):>(x:u—yandv:xy=(u—y)y)

:>y2—uy+v:O=>y:“i7 “;2_4“.
v ET W
2

To get y < x we need x = and y = “5—" and so we define g : V — R? by

u u2—4v u—vu2—4v
(2,y) = glu,v) = (LG VT,

Note the g(u,v) is well defined when 4v < u, that is when (u,v) € V. Let us verify that g is indeed the
inverse of the restriction of f to U. For y < = we have

T T 24z T —+/(z 24z
9(f(z,y) =gz +y,zy) = (( +y)+\/(2+y)7y7 (zty)—v (2 +v) y)

_ (<m+y>+ (@) <z+y>—m) _ (<r+y>+<mfy> (Hy),(x,y)) — (2,y)
= 2 B 2 — 2 bl 2 - 7y

and when 4v < u? we have
f(g(u,v)) _f<u+\/1;2—4'u u—\/';2—4v) _ (u+\/12bz—4v + u—vuZ—4v  ut+vuZ—4dv u—\/u2—4v)

- ) 2 ) 2 ’ 2

() ),

(e) Note that f(2,1) = (3,2). Find ¢'(3,2) in two ways: first use the Inverse Function Theorem, then use
your formula for g from Part (d).

Solution: Using the Inverse Function Theorem, we have

ren=(, 1) ren=(1 ) sea-rent=(3 7).

Using the formula g(u,v) = 3 (v + vVu? — 4v, u — Vu? — 4v) we have

ox ox _uw =2
duv)=(9 9 )=1 1+\/uzuf4v Vii—4dv '(3,2) = 1 143 =2\ _(2 -1
) 9y 9y 2 1— v 2 y 99, 3 1-3 9 1 1 .
Ou  dv Vi—dv  Vur—dv



4: (a) Let U = {(m,y) € R2| % > yz}. Find the 2°¢ Taylor polynomial of the map f : U — R given by

flz,y) = /22 — y? at the point (5,4).

of of — orp _ V" \/7 —? o @
Solution: We have 5y = = y oy Y y P2z — T 3 Y 3739 r00 — (22 y2 372
/22 —y2 Y /22 —y2 x z2—y? T (22—y?) Oxdy (z2—yy?)
2
& VB —g? d d
and ayg = T = z JTy7T s SO that f(5,4) = 3, a£(5 4) =3, 35(5 4) = -3, azz L(5,4) = —29
2 2
aigy(f),él) =2J and %(5,4) —25 and hence the 2" Taylor polynomial of f at (5,4) is

T(x,y) =3+ 3@ —5)_35(y—4)— 3@ -5+ 2@ -5)(y—4) - Hy—4>

(b) Define f : R? — R by f(z,y) = 2z + 22 + y? — xy?. Find the absolute maximum and minimum values
of f(x,y) in the region D = {(x,y)‘yz —4 <2z <4}

Solution: Since D is compact, f does attain its maximum and minimum values in D, and these values
are either attained in D° or on 9D. If f attains a maximum or minimum value in D then it must do
so at a critical point. Note that Df(z,y) = (2 + 22 —y?, 2y — 2xy). To have Df (z,y) = (0,0) we need
0 = 2y — 2zy = 2y(1 — x) so that either y = 0 or z = 1, and we need 2 + 2z = y?. When y = 0 we have
24+2r =9y = 2+22=0= 2 = —1, and when z = 1 we have 2 + 21 = y? = 3? = 4 = y = £2.
Thus the critical points are (—1,0) and (1,+£2), which all lie in D°, and we have f(—1,0) = -2+ 1= —1
and f(1,£2) =2+ 1+4 —4 =3. Let us determine the maximum and minimum values on 9D.

The region D is bounded by the parabola y2 — 4 = 2z and the line 2z = 4 that is x = 2. The parabola
and the line intersect when x = 2 and y? = 2z + 4 = 8, that is at the points (z,y) = (2, +v/8). When 2 = 2
with —v/8 < y < /8, we have

flry)=20+a®+y? —ay? =4+44+9° -2 =8 — 3
which has maximum value 8 when y = 0 and minimum value 0 when y = 4+1/8. When y? — 4 = 2z with
—\/ggygx/g,wehavey2:2m+4with—2§m§2so
flxy) =20+ +y* —ay? =20 +2° + (22 +4) —x(2x +4) =4 — 22

which has maximum value 4 when z = 0 and minimum value 0 when x = £2.
Taking all of the above into account, the absolute maximum value of f(z,y) on D is f(2,0) = 8 and
the absolute minimum value is f(—1,0) = —



