1: (a) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(0,0)=0$ and $f(x, y)=\frac{x^{3}-x y^{2}}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$. Determine whether f is differentiable at $(0,0)$.
(b) Suppose $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable and f has a local maximum at $a \in U$. Show that $D f(a)=O$ (this is Exercise 6.15 in the lecture notes).
(c) Let $f: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Suppose the partial derivatives $\frac{\partial f_{k}}{\partial x_{\ell}}(x)$ exist and are bounded in U. Prove that f is continuous.

2: (a) Let $(u, v)=f(x, y)=\left(x \ln \left(y-x^{4}\right),\left(2+\frac{y}{x}\right)^{3 / 2}\right)$. Explain why f is locally invertible in a neighbourhood of $(1,2)$ and find the linearization of its inverse at $(0,8)$.
(b) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=2 x^{3}-3 x^{2}+2 y^{3}+3 y^{2}$ and let $C=\operatorname{Null}(f)$. Use the Implicit Function Theorem to find all the points on C at which C is locally equal to the graph of a function $y=g(x)$, or locally equal to the graph of a function $x=h(y)$.

3: Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $(u, v)=f(x, y)=(x+y, x y)$.
(a) Sketch the level sets $u=0, \pm 2, \pm 4$ and the level sets $v=0, \pm 1, \pm 4$ (all on the same grid).
(b) Sketch the image under f of each of the lines $x=0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2$ (all on the same grid).
(c) Let $A=\{(x, y) \mid \operatorname{det}(D f(x, y))=0\}$ and $B=f(A)$. Find a function $y=y(x)$ whose graph is A and a function $v=v(u)$ whose graph is B. Add A to your sketch in Part (a) and add B to your sketch in Part (b).
(d) Show that for $U=\{(x, y) \mid y<x\}$ and $V=\left\{(u, v) \mid 4 v<u^{2}\right\}$ the map $f: U \rightarrow V$ is invertible and find a formula for $g=f^{-1}: V \rightarrow U$.
(e) Note that $f(2,1)=(3,2)$. Find $D g(3,2)$ in two ways: first use the Inverse Function Theorem, then use your formula for g from Part (d).

4: (a) Let $U=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}>y^{2}\right\}$. Find the $2^{\text {nd }}$ Taylor polynomial of the map $f: U \rightarrow \mathbb{R}$, which is given by $f(x, y)=\sqrt{x^{2}-y^{2}}$, at the point $(5,4)$.
(b) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=2 x+x^{2}+y^{2}-x y^{2}$. Find the absolute maximum and minimum values of $f(x, y)$ in the region $D=\left\{(x, y) \mid y^{2}-4 \leq 2 x \leq 4\right\}$.

