- 1: Find a parametric equation for the tangent line at $(\sqrt{3}, 2, -1)$ to the curve of intersection of the two paraboloids $z = 6 x^2 y^2$ and $z = x^2 + y^2 4y$ using the following two methods:
 - (a) Find a parametric equation for the curve of intersection of the two paraboloids.

(b) Find the tangent plane at $(\sqrt{3}, 2, -1)$ to each of the two paraboloids, then find the line of intersection of these two planes.

- **2:** Find an implicit equation (of the form ax + by + cz = d) for the tangent plane to the parametric surface $(x, y, z) = f(\theta, \phi) = (\sin 2\theta \cos \phi, \sin 2\theta \sin \phi, \cos \theta)$ at the point $f(\frac{\pi}{6}, \frac{\pi}{3})$ using the following two methods:
 - (a) Find a parametric equation for the tangent plane, then convert it to an implicit equation.
 - (b) Find an implicit equation for the surface and use it to obtain an equation for the tangent plane.
- 3: Read Theorem 4.20 (the Chain Rule) and Definition 4.24 (the directional derivative), then solve the following.
 (a) Let (u, v) = g(z) = (√(z-1), 5 ln z), where z = f(x, y) = 4x² 8xy + 5y². Use the Chain Rule to find ^{∂u}/_{∂x}, ^{∂u}/_{∂y}, ^{∂v}/_{∂x} and ^{∂v}/_{∂y} at the point (2,1) (this is Exercise 4.21 in the Lecture Notes).

(b) Let $(x, y) = f(r, \theta) = (r \cos \theta, r \sin \theta)$, let z = g(x, y) and let $z = h(r, \theta) = g(f(r, \theta))$. Suppose that $h(r, \theta) = r^2 e^{\sqrt{3}(\theta - \frac{\pi}{6})}$. Find $Dg(\sqrt{3}, 1)$ (this is Exercise 4.22).

(c) Let $f(x, y, z) = x \sin(y^2 - 2xz)$ and let $\alpha(t) = (\sqrt{t}, \frac{1}{2}t, e^{(t-4)/4})$. Find the rate of change of f as we move along the curve $\alpha(t)$ when t = 4 (this is Exercise 4.25).

4: Read Theorem 4.26 then solve the following.

(a) Consider the surface z = f(x, y) where $f(x, y) = \frac{4}{2 + x^4 + x^2 + y^2}$. An ant walks counterclockwise around the curve of intersection of the above surface z = f(x, y) with the cylinder $(x - 2)^2 + y^2 = 5$. Find the value of $\tan \theta$, where θ is the angle (from the horizontal) at which the ant is ascending when it is at the point $(1, 2, \frac{1}{2})$.

(b) Consider the surface z = f(x, y) where $f(x, y) = \frac{6x}{1 + x^2 + y^2}$. Show that any circle which passes through the points (1, 0) and (-1, 0) is a curve of steepest descent, that is for any point (x, y) on any circle C through the two points (-1, 0) and (1, 0), the slope of C at (x, y) is equal to the slope of the gradient vector $\nabla f(x, y)$.