MATH 247 Calculus 3, Solutions to Assignment 2

1: (a) Prove that $\overline{B(a, r)}=\bar{B}(a, r)$ for all $a \in \mathbb{R}^{n}$ and all $r>0$.
Solution: Let $a \in \mathbb{R}^{n}$ and let $r>0$. Since $\bar{B}(a, r)$ is closed and $B(a, r) \subseteq \bar{B}(a, r)$, we have $\overline{B(a, r)} \subseteq \bar{B}(a, r)$. We need to show that $\bar{B}(a, r) \subseteq \overline{B(a, r)}$. Let $b \in \bar{B}(a, r)$, that is let $b \in \mathbb{R}^{n}$ with $|b-a| \leq r$. If $|b-a|<r$ then we have $b \in B(a, r)$ and hence $b \in \overline{B(a, r)}$. Suppose that $|b-a|=r$. For each $n \in \mathbb{Z}^{+}$, let $x_{n}=\frac{1}{n} a+\frac{n-1}{n} b$. Note that $x_{n}-a=\frac{n-1}{n}(b-a)$ and hence $\left|x_{n}-a\right|=\frac{n-1}{n} r<r$ so that $x_{n} \in B(a, r)$. Also note that $x_{n}-b=\frac{1}{n}(a-b)$ so that $\left|x_{n}-b\right|=\frac{1}{n} r$, so that $x_{n} \neq b$ and $x_{n} \rightarrow b$ in \mathbb{R}^{n}. Since each $x_{n} \in B(a, r)$ and $x_{n} \neq b$ and $x_{n} \rightarrow b$, it follows that $b \in B(a, r)^{\prime}$ (that is, b is a limit point of $B(a, r)$), and hence $b \in \overline{B(a, r)}$. Thus $\bar{B}(a, r) \subseteq \overline{B(a, r)}$, as required.
(b) Determine whether for every subset $P \subseteq \mathbb{R}^{n}$, we have $\overline{B_{P}(a, r)}=\bar{B}_{P}(a, R)$ for all $a \in P$ and all $r>0$.

Solution: This is not true. For example, when $a, b \in \mathbb{R}^{n}$ with $a \neq b$, and $P=\{a, b\}$, and $r=|b-a|$, we have $B_{P}(a, r)=\{a\}$ which is closed (both in P and in \mathbb{R}^{n}) so that $\overline{B_{P}(a, r)}=\{a\}$, but we have $\bar{B}_{P}(a, r)=\{a, b\}$.
(c) Let $A \subseteq P \subseteq \mathbb{R}^{n}$. Prove that A is compact in P if and only if A is compact in \mathbb{R}^{n}.

Solution: Suppose that A is compact in P. Let T be an open cover for A in \mathbb{R}^{n}. For each $V \in T$, let $U_{V}=V \cap P$. By Theorem 2.31, each set U_{V} is open in P. Since $A \subseteq P$ and $A \subseteq \bigcup_{V \in T} V$, we also have $A \subseteq \bigcup_{V \in T}(V \cap P)=\bigcup_{V \in T} U_{V}$. Thus the set $S=\left\{U_{V} \mid V \in T\right\}$ is an open cover for A in P. Since A is compact in P we can choose a finite subcover, say $\left\{U_{V_{1}}, \cdots U_{V_{n}}\right\}$ of S, where each $V_{i} \in T$. Since $A \subseteq \bigcup_{i=1}^{n} U_{V_{i}}=\bigcup_{i=1}^{n}\left(V_{i} \cap P\right)$, we also have $A \subseteq \bigcup_{i=1}^{n} V_{i}$ and so $\left\{V_{1}, \cdots, V_{n}\right\}$ is a finite subcover of T.

Suppose, conversely, that A is compact in \mathbb{R}^{n}. Let S be an open cover for A in P. For each $U \in S$, by Theorem 2.31, we can choose an open set V_{U} in \mathbb{R}^{n} such that $U=V_{U} \cap P$. Then $T=\left\{V_{U} \mid U \in S\right\}$ is an open cover of A in \mathbb{R}^{n}. Since A is compact in \mathbb{R}^{n} we can choose a finite subcover, say $\left\{V_{U_{1}}, \cdots, V_{U_{n}}\right\}$ of T, where each $U_{i} \in S$. Then $A \subseteq \bigcup_{i=1}^{n}\left(V_{U_{i}} \cap P\right)=\bigcup_{i=1}^{n} U_{i}$ and so $\left\{U_{1}, \cdots, U_{n}\right\}$ is a finite subcover of S in P.

2: (a) Let $A \subseteq \mathbb{R}^{n}$ be compact and let S be an open cover of A. Show that there exists $r>0$ such that for every $a \in A$ there exists $U \in S$ such that $B(a, r) \subseteq U$.
Solution: For each $p \in A$, since S is an open cover for A we can choose $U_{p} \in S$ with $p \in U_{p}$ and then, since U_{p} is open we can choose $r_{p}>0$ so that $B\left(p, 2 r_{p}\right) \subseteq U_{p}$. Note that the set $T=\left\{B\left(p, r_{p}\right) \mid p \in A\right\}$ is an open cover for A. Since A is compact, we can choose a finite subcover, say $\left\{B\left(p_{1}, r_{p_{1}}\right), \cdots, B\left(p_{\ell}, r_{p_{\ell}}\right)\right\}$ of T for A, with each $p_{k} \in A$. Let $r=\min \left\{r_{p_{1}}, \cdots, r_{p_{\ell}}\right\}$. We claim that for every $a \in A$ there exists $U \in S$ such that $B(a, r) \subseteq U$. Let $a \in A$. Choose an index k such that $a \in B\left(p_{k}, r_{p_{k}}\right)$, and let $U=U_{p_{k}} \in S$. For all $x \in B(a, r)$ we have $\left|x-p_{k}\right| \leq|x-a|+\left|a-p_{k}\right| \leq r+r_{p_{k}} \leq 2 r_{p_{k}}$ and hence $x \in B\left(p_{k}, 2 r_{p_{k}}\right) \subseteq U_{p_{k}}=U$. This shows that $B(a, r) \subseteq U$, as required.
(b) Let $C_{1}, C_{2}, C_{3}, \cdots$ be non-empty closed sets in \mathbb{R}^{n} with $C_{1} \supseteq C_{2} \supseteq C_{3} \supseteq \cdots$. Show that if each set C_{k} is compact then $\bigcap_{k=1}^{\infty} C_{k} \neq \emptyset$, and find an example where the sets C_{k} are not compact and we have $\bigcap_{k=1}^{\infty} C_{k}=\emptyset$. Solution: Suppose that each set C_{k} is compact, and suppose, for a contradiction, that $\bigcap_{k=1}^{\infty} C_{k}=\emptyset$. Then

$$
\mathbb{R}^{n}=\emptyset^{c}=\left(\bigcap_{k=1}^{\infty} C_{k}\right)^{c}=\bigcup_{k=1}^{\infty} C_{k}^{c}=C_{1}{ }^{c} \cup \bigcup_{k=2}^{\infty} C_{k}^{c}
$$

It follows that $C_{1} \subseteq \bigcup_{k=2}^{\infty} C_{k}{ }^{c}$ since given $a \in C_{1}$ we have $a \in C_{1}{ }^{c} \cup \bigcup_{k=2}^{\infty} C_{k}{ }^{c}$ but $a \notin C_{1}{ }^{c}$, and so $a \in \bigcup_{k=2}^{\infty} C_{k}{ }^{c}$. Thus $S=\left\{C_{2}{ }^{c}, C_{3}{ }^{c}, C_{4}{ }^{c}, \cdots\right\}$ is an open cover for C_{1}. Since C_{1} is compact, we can choose a finite sub-cover $T=\left\{C_{k_{1}}{ }^{c}, C_{k_{2}}{ }^{c}, \cdots, C_{k_{\ell}}{ }^{c}\right\}$ say with $2 \leq k_{1}<k_{2}<\cdots<k_{\ell}$. Since T covers C_{1} we have $C_{1} \subseteq \bigcup_{i=1}^{\ell} C_{k_{i}}{ }^{c}$. Since $C_{k_{1}} \supseteq C_{k_{2}} \supset \cdots \supset C_{k_{\ell}}$ we have $C_{k_{1}}{ }^{c} \subseteq C_{k_{2}}{ }^{c} \subseteq \cdots \subseteq C_{k_{\ell}}{ }^{c}$ and hence $\bigcup_{i=1}^{\ell} C_{k_{i}}{ }^{c}=C_{k_{\ell}}{ }^{c}$. Thus we obtain $C_{1} \subseteq C_{k_{\ell}}{ }^{c}$, or equivalently $C_{1} \cap C_{k_{\ell}}=\emptyset$. But this is not possible since $C_{1} \stackrel{i=1}{\cap} C_{k_{\ell}}=C_{k_{\ell}} \neq \emptyset$.

Note that the sets $C_{k}=\mathbb{R}^{m} \backslash B(0, n)$ are closed in \mathbb{R}^{m} with $C_{1} \supseteq C_{2} \supseteq \cdots$, but $\bigcap_{k=1}^{\infty} C_{k}=\emptyset$.

3: Note that $\mathbb{C}=\mathbb{R}^{2}$ so a sequence in \mathbb{C} is a sequence in \mathbb{R}^{2}.
(a) For $k \geq 0$, let $x_{k}=\left(\frac{3+i \sqrt{3}}{4}\right)^{k} \in \mathbb{C}$, and for $n \geq 0$, let $s_{n}=\sum_{k=0}^{n} x_{k} \in \mathbb{C}$. Use the definition of the limit (for a sequence in \mathbb{R}^{2}) to find $a, b \in \mathbb{R}$ such that $\lim _{n \rightarrow \infty} s_{n}=a+i b$.
Solution: From the formula for the sum of a geometric series, or by noting that $s_{n}=\sum_{k=0}^{n}\left(\frac{3+i \sqrt{3}}{4}\right)^{k}$ and $\left(\frac{3+i \sqrt{3}}{4}\right) s_{n}=\sum_{k=0}^{n}\left(\frac{3+i \sqrt{4}}{4}\right)^{k+1}$, so that $s_{n}-\left(\frac{3+i \sqrt{3}}{4}\right) s_{n}=1-\left(\frac{3+i \sqrt{3}}{4}\right)^{n+1}$, we have

$$
s_{n}=\frac{1-\left(\frac{3+i \sqrt{3}}{4}\right)^{n+1}}{1-\frac{3+i \sqrt{3}}{4}}=\frac{1-\left(\frac{3+i \sqrt{3}}{4}\right)^{n+1}}{\frac{1-i \sqrt{3}}{4}} \cdot \frac{1+i \sqrt{3}}{1+i \sqrt{3}}=(1+i \sqrt{3})\left(1-\left(\frac{3+i \sqrt{3}}{4}\right)^{n+1}\right)
$$

and hence

$$
\left|s_{n}-(1+i \sqrt{3})\right|=|1+i \sqrt{3}|\left|\frac{3+i \sqrt{3}}{4}\right|^{n+1}=2 \cdot\left(\frac{\sqrt{3}}{2}\right)^{n+1}
$$

It follows that $\lim _{n \rightarrow \infty} s_{n}=1+i \sqrt{3}$: indeed given $\epsilon>0$ we can choose $m \in \mathbb{N}$ so that $\left(\frac{\sqrt{3}}{2}\right)^{m}<\frac{\epsilon}{2}$, and then when $n \geq m$ we have $\left|s_{n}-(1+i \sqrt{3})\right|=2 \cdot\left(\frac{\sqrt{3}}{2}\right)^{n} \leq 2 \cdot\left(\frac{\sqrt{3}}{2}\right)^{m}<\epsilon$.
(b) Let $c=\frac{2-i}{8} \in \mathbb{C}$. Let $\left(z_{n}\right)_{n \geq 0}$ be the sequence in \mathbb{C} given by $z_{0}=0$ and $z_{n+1}=z_{n}{ }^{2}+c$ for $n \geq 0$. Determine whether $\left(z_{n}\right)_{n \geq 0}$ converges in \mathbb{C} and, if so, find $\lim _{n \rightarrow \infty} z_{n}$ in \mathbb{C}.

Solution: If $\left(z_{n}\right)$ converges with $z_{n} \rightarrow w$ in \mathbb{C}, then taking the limit on each side of the equality $z_{n+1}=z_{n}^{2}+c$ gives $w=w^{2}+c$. By the Quadratic Formula, we have $w=w^{2}+c \Longleftrightarrow w^{2}-w+c=0 \Longleftrightarrow w=\frac{1 \pm \sqrt{1-4 c}}{2}$, (where $\sqrt{1-4 c}$ is one of the two square roots of $1-4 c$ in \mathbb{C}). Note that $1-4 c=1-\frac{2-i}{2}=\frac{i}{2}=\left(\frac{1+i}{2}\right)^{2}$, so we must have $w=\frac{1 \pm \frac{1+i}{2}}{2}=\frac{2 \pm(1+i)}{4}$, that is $w=\frac{3+i}{4}$ or $w=\frac{1-i}{4}$.

Let $w=\frac{1-i}{4}$. We claim that $z_{n} \rightarrow w$. Note that $z_{0}-w=0-w=\frac{-1+i}{4}$ so that $\left|z_{0}-w\right|=\frac{1}{2 \sqrt{2}}$ and $z_{1}-w=c-w=\frac{2-i}{8}-\frac{1-i}{4}=\frac{i}{8}$ so that $\left|z_{1}-w\right|=\frac{1}{8}$. Let $n \geq 1$ and suppose, inductively, that $\left|z_{n}-w\right| \leq \frac{1}{8}$ and that $\left|z_{n}-w\right| \leq \frac{1}{8}\left(\frac{5}{4 \sqrt{2}}\right)^{n-1}$. We have

$$
z_{n+1}-w=z_{n}^{2}+c-w=z_{n}^{2}+\frac{i}{8}=z_{n}^{2}-w^{2}=\left(z_{n}-w\right)\left(z_{n}+w\right)=\left(z_{n}-w\right)\left(\left(z_{n}-w\right)+2 w\right)
$$

so that

$$
\left|z_{n+1}-w\right| \leq\left|z_{n}-w\right|\left(\left|z_{n}-w\right|+|2 w|\right)=\left|z_{n}-w\right|\left(\left|z_{n}-w\right|+\frac{1}{\sqrt{2}}\right)
$$

Using the first induction hypotheses gives

$$
\left|z_{n+1}-w\right| \leq\left|z_{n}-w\right|\left(\frac{1}{8}+\frac{1}{\sqrt{2}}\right) \leq\left|z_{n}-w\right|\left(\frac{1}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}\right)=\frac{5}{4 \sqrt{2}}\left|z_{n}-w\right|
$$

Using this with the first induction hypothesis again gives $\left|z_{n+1}-w\right| \leq \frac{5}{4 \sqrt{2}}\left|z_{n}-w\right| \leq\left|z_{n}-w\right| \leq \frac{1}{8}$, and using it with the second induction hypothesis gives $\left|z_{n+1}-w\right| \leq \frac{5}{4 \sqrt{2}}\left|z_{n}-w\right| \leq \frac{5}{4 \sqrt{2}} \cdot \frac{1}{8}\left(\frac{5}{\sqrt{2}}\right)^{n-1}=\frac{1}{8}\left(\frac{5}{4 \sqrt{2}}\right)^{n}$. Thus, by induction, we have $\left|z_{n}-w\right| \leq \frac{1}{8}\left(\frac{5}{4 \sqrt{2}}\right)^{n-1}$ for all $n \geq 1$.

It follows that $z_{n} \rightarrow w$, as claimed: indeed given $\epsilon>0$, since $\frac{5}{4 \sqrt{2}}<1$ so that $\left(\frac{5}{4 \sqrt{2}}\right)^{n-1} \rightarrow 0$, we can choose $m \in \mathbb{Z}^{+}$so that $\left(\frac{5}{4 \sqrt{2}}\right)^{m-1}<8 \epsilon$ and then for $n \geq m$ we have

$$
\left|z_{n}-w\right| \leq \frac{1}{8}\left(\frac{5}{4 \sqrt{2}}\right)^{n-1} \leq \frac{1}{8}\left(\frac{5}{4 \sqrt{2}}\right)^{m-1}<\epsilon
$$

4: Let \mathbb{R}^{ω} be the set of all sequences in \mathbb{R}, that is $\mathbb{R}^{\omega}=\left\{x=\left(x_{j}\right)_{j \geq 1} \mid\right.$ each $\left.x_{j} \in \mathbb{R}\right\}$ and let \mathbb{R}^{∞} be the set of eventually zero sequences in \mathbb{R}, that is $\mathbb{R}^{\infty}=\left\{x=\left(x_{j}\right)_{j \geq 1} \in \mathbb{R}^{\omega} \mid \exists m \in \mathbb{Z}^{+} \forall j \in \mathbb{Z}^{+}\left(j \geq m \Longrightarrow x_{j}=0\right)\right\}$. For $x, y \in \mathbb{R}^{\infty}$, define $x \cdot y=\sum_{n=1}^{\infty} x_{n} y_{n}$ and $|x|=(x \cdot x)^{1 / 2}$.
When $\left(x_{n}\right)_{n \geq 1}$ is a sequence in \mathbb{R}^{∞}, each $x_{n} \in \mathbb{R}^{\infty}$, and we can write $x_{n}=\left(x_{n, j}\right)_{j \geq 1}=\left(x_{n, 1}, x_{n, 2}, x_{n, 3}, \cdots\right)$. For a sequence $\left(x_{n}\right)_{n \geq 1}$ in \mathbb{R}^{∞} and an element $a \in \mathbb{R}^{\infty}$, we say the sequence $\left(x_{n}\right)_{n \geq 1}$ converges to a in \mathbb{R}^{∞}, and we write $x_{n} \rightarrow a$ in \mathbb{R}^{∞} or $\lim _{n \rightarrow \infty} x_{n}=a$ in \mathbb{R}^{∞}, when $\forall \epsilon>0 \exists m \in \mathbb{Z}^{+} \forall n \in \mathbb{Z}^{+}\left(n \geq m \Longrightarrow\left|x_{n}-a\right|<\epsilon\right)$, we say that $\left(x_{n}\right)_{n \geq 1}$ is bounded when $\exists r \geq 0 \forall n \in \mathbb{Z}^{+}\left|x_{n}\right| \leq r$, and we say that $\left(x_{n}\right)_{n \geq 1}$ is Cauchy when $\forall \epsilon>0 \exists m \in Z^{+} \forall k, \ell \in \mathbb{Z}^{+}\left(k, \ell \geq m \Longrightarrow\left|x_{k}-x_{\ell}\right|<\epsilon\right)$.
(a) Prove that for all sequences $\left(x_{n}\right)_{n \geq 1}$ in \mathbb{R}^{∞}, and all $a \in \mathbb{R}^{\infty}$, if $\lim _{n \rightarrow \infty} x_{n}=a$ in \mathbb{R}^{∞} then $\lim _{n \rightarrow \infty} x_{n, j}=a_{j}$ for all $j \in \mathbb{Z}^{+}$, but that the converse does not hold.
Solution: Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in \mathbb{R}^{∞} and let $a \in \mathbb{R}^{\infty}$. Suppose that $\lim _{n \rightarrow \infty} x_{n}=a$ in \mathbb{R}^{∞}. We claim that $\lim _{n \rightarrow \infty} x_{n, j}=a_{j}$ for all $j \in \mathbb{Z}^{+}$. Let $j \in \mathbb{Z}^{+}$. Note that $\left|x_{n, j}-a_{j}\right|^{2} \leq \sum_{i=1}^{\infty}\left(x_{n, i}^{n \rightarrow \infty}-a_{i}\right)^{2}=\left|x_{n}-a\right|^{2}$. Since $\left|x_{n, j}-a_{j}\right| \leq\left|x_{n}-a\right|$ and $\lim _{n \rightarrow \infty} x_{n}=a$ in \mathbb{R}^{∞}, it follows that $\lim _{n \rightarrow \infty} x_{n, j}=a_{k}$ in \mathbb{R} : indeed given $\epsilon>0$, we can choose $m \in \mathbb{Z}^{+}$so that $n \geq m \Longrightarrow\left|x_{n}-a\right|<\epsilon$, and then, for $n \geq m$, we have $\left|x_{n, j}-a_{j}\right| \leq\left|x_{n}-a\right|<\epsilon$. To see that the converse does not hold, for each $n \in \mathbb{Z}^{+}$, let $x_{n}=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} e_{k}=\left(\frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}}, 0,0, \cdots\right)$, where $e_{k}=(0,0, \cdots, 0,1,0,0, \cdots)$ is the $k^{\text {th }}$ standard basis vector for \mathbb{R}^{∞}. For each index $j \in \mathbb{Z}^{+}$we have $x_{n, j}=\frac{1}{\sqrt{n}}$ for all $n \geq j$ so that $\lim _{n \rightarrow \infty} x_{n, j}=0$ in \mathbb{R}. But for $a=0=(0,0,0, \cdots)$ we do not have $\lim _{n \rightarrow \infty} x_{n}=a$ in \mathbb{R}^{∞} because $\left|x_{n}-0\right|=\left|x_{n}\right|=1$ for all $n \in \mathbb{Z}^{+}$.
(b) Prove that for all sequences $\left(x_{n}\right)_{n \geq 1}$ in \mathbb{R}^{∞}, if the sequence $\left(x_{n}\right)_{n \geq 1}$ converges in \mathbb{R}^{∞} (to some $a \in \mathbb{R}^{\infty}$) then it is Cauchy, but that the converse does not hold.

Solution: Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in \mathbb{R}^{∞}. Suppose that $\left(x_{n}\right)_{n \geq 1}$ converges in \mathbb{R}^{∞} and let $a=\lim _{n \rightarrow \infty} x_{n}$ in \mathbb{R}^{∞}. Let $\epsilon>0$. Choose $m \in \mathbb{Z}^{+}$so that $n \geq m \Longrightarrow\left|x_{n}-a\right|<\frac{\epsilon}{2}$. Then when $k, \ell \geq m$ we have $\left|x_{k}-x_{\ell}\right|=\left|\left(x_{k}-a\right)-\left(x_{\ell}-a\right)\right| \leq\left|x_{k}-a\right|+\left|x_{\ell}-a\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. Thus $\left(x_{n}\right)_{n \geq 1}$ is Cauchy.

To see that the converse does not hold, for each $n \in \mathbb{Z}^{+}$let $x_{n}=\sum_{k=1}^{n} \frac{1}{2^{k}} e_{k}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots, \frac{1}{2^{n}}, 0,0, \cdots\right)$. We claim that $\left(x_{n}\right)_{n \geq 1}$ is Cauchy. Let $\epsilon>0$. Choose $m \in \mathbb{Z}^{+}$so that $\frac{1}{2^{m}}<\epsilon$. Let $k, \ell \in \mathbb{Z}^{+}$with $m \leq k<\ell$. Then we have $\left|x_{k}-x_{\ell}\right|^{2}=\left|\sum_{j=k+1}^{\ell} \frac{1}{2^{j}} e_{j}\right|^{2}=\sum_{j=k+1}^{\ell} \frac{1}{4^{j}} \leq \sum_{j=k+1}^{\infty} \frac{1}{4^{j}}=\frac{1}{4^{k}}$ so that $\left|x_{k}-x_{\ell}\right| \leq \frac{1}{2^{k}} \leq \frac{1}{2^{m}}<\epsilon$. Thus $\left(x_{n}\right)_{n \geq 1}$ is Cauchy, as claimed. Suppose, for a contradiction, that $\left(x_{n}\right)_{n \geq 1}$ converges in \mathbb{R}^{∞} and let $a=\lim _{n \rightarrow \infty} x_{n} \in \mathbb{R}^{\infty}$. Note that for each $j \in \mathbb{Z}^{+}$, we have $x_{n, j}=\frac{1}{2^{j}}$ for all $n \geq j$ so that $\lim _{n \rightarrow \infty} x_{n, j}=\frac{1}{2^{j}}$. By Part (a), for each $j \in \mathbb{Z}^{+}$we must have $a_{j}=\lim _{n \rightarrow \infty} x_{n, j}=\frac{1}{2^{j}}$ so that $a=\sum_{j=1}^{\infty} \frac{1}{2^{j}} e_{j}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \cdots\right)$. But then $a \notin \mathbb{R}^{\infty}$, which gives the desired contradiction.
(c) Determine whether every bounded sequence $\left(x_{n}\right)_{n \geq 1}$ in \mathbb{R}^{∞} has a convergent subsequence $\left(x_{n_{k}}\right)_{k \geq 1} \mathbb{R}^{\infty}$.

Solution: This is not true. For example, consider the sequence $x_{n}=e_{n}=(0, \cdots, 0,1,0, \cdots)$ for $n \in \mathbb{Z}^{+}$. Note that $\left(x_{n}\right)_{n \geq 1}$ is bounded since $\left|x_{n}\right|=1$ for all $n \in \mathbb{Z}^{+}$. Let $\left(x_{n_{k}}\right)_{k \geq 1}$ be any subsequence. Note that for $k, \ell \in \mathbb{Z}^{+}$with $k \neq \ell$ we have $\left|x_{n_{k}}-x_{n_{\ell}}\right|=\left|e_{n_{k}}-e_{n_{\ell}}\right|=\sqrt{2}$, and so the sequence $\left(x_{n_{k}}\right)_{k \geq 1}$ is not Cauchy (if it was Cauchy, then we would be able to choose $k, \ell \in \mathbb{Z}^{+}$with $k<\ell$ such that $\left|x_{n_{k}}-x_{n_{\ell}}\right|<\sqrt{2}$). Since $\left(x_{n_{k}}\right)_{k \geq 1}$ is not Cauchy, it does not converge, by Part (b).

