
MATH 247 Calculus 3, Solutions to Assignment 2

1: (a) Prove that B(a, r) = B(a, r) for all a ∈ Rn and all r > 0.

Solution: Let a ∈ Rn and let r > 0. Since B(a, r) is closed and B(a, r) ⊆ B(a, r), we have B(a, r) ⊆ B(a, r).
We need to show that B(a, r) ⊆ B(a, r). Let b ∈ B(a, r), that is let b ∈ Rn with |b−a| ≤ r. If |b−a| < r then
we have b ∈ B(a, r) and hence b ∈ B(a, r). Suppose that |b− a| = r. For each n ∈ Z+, let xn = 1

n a+ n−1
n b.

Note that xn − a = n−1
n (b − a) and hence |xn − a| = n−1

n r < r so that xn ∈ B(a, r). Also note that
xn − b = 1

n (a − b) so that |xn − b| = 1
n r, so that xn 6= b and xn → b in Rn. Since each xn ∈ B(a, r) and

xn 6= b and xn → b, it follows that b ∈ B(a, r)′ (that is, b is a limit point of B(a, r)), and hence b ∈ B(a, r).
Thus B(a, r) ⊆ B(a, r), as required.

(b) Determine whether for every subset P ⊆ Rn, we have BP (a, r) = BP (a,R) for all a ∈ P and all r > 0.

Solution: This is not true. For example, when a, b ∈ Rn with a 6= b, and P = {a, b}, and r = |b− a|, we have
BP (a, r) = {a} which is closed (both in P and in Rn) so that BP (a, r) = {a}, but we have BP (a, r) = {a, b}.

(c) Let A ⊆ P ⊆ Rn. Prove that A is compact in P if and only if A is compact in Rn.

Solution: Suppose that A is compact in P . Let T be an open cover for A in Rn. For each V ∈ T , let
UV = V ∩ P . By Theorem 2.31, each set UV is open in P . Since A ⊆ P and A ⊆

⋃
V ∈T V , we also have

A ⊆
⋃
V ∈T (V ∩ P ) =

⋃
V ∈T UV . Thus the set S =

{
UV
∣∣V ∈ T} is an open cover for A in P . Since

A is compact in P we can choose a finite subcover, say
{
UV1 , · · ·UVn

}
of S, where each Vi ∈ T . Since

A ⊆
⋃n
i=1 UVi

=
⋃n
i=1(Vi ∩ P ), we also have A ⊆

⋃n
i=1 Vi and so {V1, · · · , Vn} is a finite subcover of T .

Suppose, conversely, that A is compact in Rn. Let S be an open cover for A in P . For each U ∈ S, by
Theorem 2.31, we can choose an open set VU in Rn such that U = VU ∩ P . Then T =

{
VU
∣∣U ∈S} is an

open cover of A in Rn. Since A is compact in Rn we can choose a finite subcover, say
{
VU1

, · · · , VUn

}
of T ,

where each Ui ∈ S. Then A ⊆
⋃n
i=1(VUi

∩ P ) =
⋃n
i=1 Ui and so {U1, · · · , Un} is a finite subcover of S in P .



2: (a) Let A ⊆ Rn be compact and let S be an open cover of A. Show that there exists r > 0 such that for
every a ∈ A there exists U ∈ S such that B(a, r) ⊆ U .

Solution: For each p ∈ A, since S is an open cover for A we can choose Up ∈ S with p ∈ Up and then, since
Up is open we can choose rp > 0 so that B(p, 2rp) ⊆ Up. Note that the set T =

{
B(p, rp)

∣∣p ∈ A} is an open

cover for A. Since A is compact, we can choose a finite subcover, say
{
B(p1, rp1), · · · , B(p`, rp`)

}
of T for

A, with each pk ∈ A. Let r = min{rp1 , · · · , rp`}. We claim that for every a ∈ A there exists U ∈ S such
that B(a, r) ⊆ U . Let a ∈ A. Choose an index k such that a ∈ B(pk, rpk), and let U = Upk ∈ S. For all
x ∈ B(a, r) we have |x − pk| ≤ |x − a| + |a − pk| ≤ r + rpk ≤ 2rpk and hence x ∈ B(pk, 2rpk) ⊆ Upk = U .
This shows that B(a, r) ⊆ U , as required.

(b) Let C1, C2, C3, · · · be non-empty closed sets in Rn with C1 ⊇ C2 ⊇ C3 ⊇ · · ·. Show that if each set Ck is

compact then
∞⋂
k=1

Ck 6= ∅, and find an example where the sets Ck are not compact and we have
∞⋂
k=1

Ck = ∅.

Solution: Suppose that each set Ck is compact, and suppose, for a contradiction, that
∞⋂
k=1

Ck = ∅. Then

Rn = ∅ c =
( ∞⋂
k=1

Ck
)c

=
∞⋃
k=1

Ck
c = C1

c ∪
∞⋃
k=2

Ck
c.

It follows that C1 ⊆
∞⋃
k=2

Ck
c since given a ∈ C1 we have a ∈ C1

c ∪
∞⋃
k=2

Ck
c but a /∈ C1

c, and so a ∈
∞⋃
k=2

Ck
c.

Thus S =
{
C2

c, C3
c, C4

c, · · ·
}

is an open cover for C1. Since C1 is compact, we can choose a finite sub-cover

T =
{
Ck1

c, Ck2
c, · · · , Ck`

c
}

say with 2 ≤ k1 < k2 < · · · < k`. Since T covers C1 we have C1 ⊆
⋃̀
i=1

Cki
c.

Since Ck1 ⊇ Ck2 ⊃ · · · ⊃ Ck` we have Ck1
c ⊆ Ck2

c ⊆ · · · ⊆ Ck`
c and hence

⋃̀
i=1

Cki
c = Ck`

c. Thus we obtain

C1 ⊆ Ck`
c, or equivalently C1 ∩ Ck` = ∅. But this is not possible since C1 ∩ Ck` = Ck` 6= ∅.

Note that the sets Ck = Rm \B(0, n) are closed in Rm with C1 ⊇ C2 ⊇ · · ·, but
∞⋂
k=1

Ck = ∅.



3: Note that C = R2 so a sequence in C is a sequence in R2.

(a) For k ≥ 0, let xk =
(
3+i
√
3

4

)k ∈ C, and for n ≥ 0, let sn =
n∑
k=0

xk ∈ C. Use the definition of the limit

(for a sequence in R2) to find a, b ∈ R such that lim
n→∞

sn = a+ ib.

Solution: From the formula for the sum of a geometric series, or by noting that sn =
n∑
k=0

(
3+i
√
3

4

)k
and(

3+i
√
3

4

)
sn=

n∑
k=0

(
3+i
√
4

4

)k+1
, so that sn−

(
3+i
√
3

4

)
sn = 1−

(
3+i
√
3

4

)n+1
, we have

sn =
1−
(

3+i
√

3
4

)n+1

1− 3+i
√

3
4

=
1−
(

3+i
√

3
4

)n+1

1−i
√

3
4

· 1+i
√
3

1+i
√
3

= (1 + i
√

3)
(

1−
(

3+i
√
3

4

)n+1 )
and hence ∣∣sn − (1+i

√
3)
∣∣ = |1+i

√
3|
∣∣ 3+i√3

4

∣∣n+1
= 2 ·

(√
3
2

)n+1
.

It follows that lim
n→∞

sn = 1+i
√

3: indeed given ε > 0 we can choose m ∈ N so that
(√

3
2

)m
< ε

2 , and then

when n ≥ m we have
∣∣sn − (1+i

√
3)
∣∣ = 2 ·

(√
3
2

)n ≤ 2 ·
(√

3
2

)m
< ε.

(b) Let c = 2−i
8 ∈ C. Let (zn)n≥0 be the sequence in C given by z0 = 0 and zn+1 = zn

2 + c for n ≥ 0.
Determine whether (zn)n≥0 converges in C and, if so, find lim

n→∞
zn in C.

Solution: If (zn) converges with zn → w in C, then taking the limit on each side of the equality zn+1 = zn
2+c

gives w = w2 + c. By the Quadratic Formula, we have w = w2 + c ⇐⇒ w2−w+ c = 0 ⇐⇒ w = 1±
√
1−4c
2 ,

(where
√

1− 4c is one of the two square roots of 1− 4c in C). Note that 1− 4c = 1− 2−i
2 = i

2 =
(
1+i
2

)2
, so

we must have w =
1± 1+i

2

2 = 2±(1+i)
4 , that is w = 3+i

4 or w = 1−i
4 .

Let w = 1−i
4 . We claim that zn → w. Note that z0 − w = 0 − w = −1+i

4 so that |z0 − w| = 1
2
√
2

and

z1−w = c−w = 2−i
8 −

1−i
4 = i

8 so that |z1−w| = 1
8 . Let n ≥ 1 and suppose, inductively, that |zn−w| ≤ 1

8

and that |zn − w| ≤ 1
8

(
5

4
√
2

)n−1
. We have

zn+1 − w = zn
2 + c− w = zn

2 + i
8 = zn

2 − w2 = (zn − w)(zn + w) = (zn − w)
(
(zn − w) + 2w

)
so that

|zn+1 − w| ≤ |zn − w|
(
|zn − w|+ |2w|

)
= |zn − w|

(
|zn − w|+ 1√

2

)
.

Using the first induction hypotheses gives

|zn+1 − w| ≤ |zn − w|
(
1
8 + 1√

2

)
≤ |zn − w|

(
1

4
√
2

+ 1√
2

)
= 5

4
√
2
|zn − w|.

Using this with the first induction hypothesis again gives |zn+1 − w| ≤ 5
4
√
2
|zn − w| ≤ |zn − w| ≤ 1

8 , and

using it with the second induction hypothesis gives |zn+1−w| ≤ 5
4
√
2
|zn−w| ≤ 5

4
√
2
· 18
(

5√
2

)n−1
= 1

8

(
5

4
√
2

)n
.

Thus, by induction, we have |zn − w| ≤ 1
8

(
5

4
√
2

)n−1
for all n ≥ 1.

It follows that zn → w, as claimed: indeed given ε > 0, since 5
4
√
2
< 1 so that

(
5

4
√
2

)n−1 → 0, we can

choose m ∈ Z+ so that
(

5
4
√
2

)m−1
< 8 ε and then for n ≥ m we have

|zn − w| ≤ 1
8

(
5

4
√
2

)n−1 ≤ 1
8

(
5

4
√
2

)m−1
< ε.



4: Let Rω be the set of all sequences in R, that is Rω =
{
x = (xj)j≥1

∣∣ each xj ∈ R
}

and let R∞ be the set of

eventually zero sequences in R, that is R∞ =
{
x = (xj)j≥1 ∈ Rω

∣∣∃m∈Z+ ∀ j∈Z+ (j≥m =⇒ xj=0)
}

. For

x, y ∈ R∞, define x.y =
∑∞
n=1 xnyn and |x| =

(
x.x)1/2.

When (xn)n≥1 is a sequence in R∞, each xn ∈ R∞, and we can write xn = (xn,j)j≥1 = (xn,1, xn,2, xn,3, · · ·).
For a sequence (xn)n≥1 in R∞ and an element a ∈ R∞, we say the sequence (xn)n≥1 converges to a in R∞,
and we write xn → a in R∞ or lim

n→∞
xn = a in R∞, when ∀ ε>0 ∃m∈Z+ ∀n∈Z+ (n≥m =⇒ |xn − a| < ε),

we say that (xn)n≥1 is bounded when ∃ r≥ 0 ∀n∈Z+ |xn| ≤ r, and we say that (xn)n≥1 is Cauchy when
∀ ε>0 ∃m∈Z+ ∀ k, `∈Z+ (k, `≥m =⇒ |xk − x`| < ε).

(a) Prove that for all sequences (xn)n≥1 in R∞, and all a ∈ R∞, if lim
n→∞

xn = a in R∞ then lim
n→∞

xn,j = aj

for all j ∈ Z+, but that the converse does not hold.

Solution: Let (xn)n≥1 be a sequence in R∞ and let a ∈ R∞. Suppose that lim
n→∞

xn = a in R∞. We claim

that lim
n→∞

xn,j = aj for all j ∈ Z+. Let j ∈ Z+. Note that |xn,j − aj |2 ≤
∑∞
i=1(xn,i − ai)2 = |xn − a|2. Since

|xn,j − aj | ≤ |xn − a| and lim
n→∞

xn = a in R∞, it follows that lim
n→∞

xn,j = ak in R: indeed given ε > 0, we

can choose m ∈ Z+ so that n ≥ m =⇒ |xn − a| < ε, and then, for n ≥ m, we have |xn,j − aj | ≤ |xn − a| < ε.
To see that the converse does not hold, for each n ∈ Z+, let xn = 1√

n

∑n
k=1 ek =

(
1√
n
, · · · , 1√

n
, 0, 0, · · ·

)
,

where ek = (0, 0, · · · , 0, 1, 0, 0, · · ·) is the kth standard basis vector for R∞. For each index j ∈ Z+ we have
xn,j = 1√

n
for all n ≥ j so that lim

n→∞
xn,j = 0 in R. But for a = 0 = (0, 0, 0, · · ·) we do not have lim

n→∞
xn = a

in R∞ because |xn − 0| = |xn| = 1 for all n ∈ Z+.

(b) Prove that for all sequences (xn)n≥1 in R∞, if the sequence (xn)n≥1 converges in R∞ (to some a ∈ R∞)
then it is Cauchy, but that the converse does not hold.

Solution: Let (xn)n≥1 be a sequence in R∞. Suppose that (xn)n≥1 converges in R∞ and let a = lim
n→∞

xn

in R∞. Let ε > 0. Choose m ∈ Z+ so that n ≥ m =⇒ |xn − a| < ε
2 . Then when k, ` ≥ m we have

|xk − x`| =
∣∣(xk − a)− (x` − a)

∣∣ ≤ |xk − a|+ |x` − a| < ε
2 + ε

2 = ε. Thus (xn)n≥1 is Cauchy.

To see that the converse does not hold, for each n ∈ Z+ let xn =
∑n
k=1

1
2k
ek =

(
1
2 ,

1
4 ,

1
8 , · · · ,

1
2n , 0, 0, · · ·

)
.

We claim that (xn)n≥1 is Cauchy. Let ε > 0. Choose m ∈ Z+ so that 1
2m < ε. Let k, ` ∈ Z+ with m ≤ k < `.

Then we have |xk−x`|2 =
∣∣∑`

j=k+1
1
2j ej

∣∣2 =
∑`
j=k+1

1
4j ≤

∑∞
j=k+1

1
4j = 1

4k
so that |xk−x`| ≤ 1

2k
≤ 1

2m < ε.
Thus (xn)n≥1 is Cauchy, as claimed. Suppose, for a contradiction, that (xn)n≥1 converges in R∞ and let
a = lim

n→∞
xn ∈ R∞. Note that for each j ∈ Z+, we have xn,j = 1

2j for all n ≥ j so that lim
n→∞

xn,j = 1
2j . By

Part (a), for each j ∈ Z+ we must have aj = lim
n→∞

xn,j = 1
2j so that a =

∑∞
j=1

1
2j ej =

(
1
2 ,

1
4 ,

1
8 , · · ·

)
. But

then a /∈ R∞, which gives the desired contradiction.

(c) Determine whether every bounded sequence (xn)n≥1 in R∞ has a convergent subsequence (xnk
)k≥1 R∞.

Solution: This is not true. For example, consider the sequence xn = en = (0, · · · , 0, 1, 0, · · ·) for n ∈ Z+.
Note that (xn)n≥1 is bounded since |xn| = 1 for all n ∈ Z+. Let (xnk

)k≥1 be any subsequence. Note that
for k, ` ∈ Z+ with k 6= ` we have |xnk

−xn`
| = |enk

− en`
| =
√

2, and so the sequence (xnk
)k≥1 is not Cauchy

(if it was Cauchy, then we would be able to choose k, ` ∈ Z+ with k < ` such that |xnk
− xn`

| <
√

2). Since
(xnk

)k≥1 is not Cauchy, it does not converge, by Part (b).


