- **1:** (a) Prove that $\overline{B(a,r)} = \overline{B}(a,r)$ for all $a \in \mathbb{R}^n$ and all r > 0.
 - (b) Determine whether for every subset $P \subseteq \mathbb{R}^n$, we have $\overline{B_P(a,r)} = \overline{B_P(a,r)}$ for all $a \in P$ and all r > 0.
 - (c) Let $A \subseteq P \subseteq \mathbb{R}^n$. Prove that A is compact in P if and only if A is compact in \mathbb{R}^n (this is Theorem 2.32).
- **2:** (a) Let $A \subseteq \mathbb{R}^n$ be compact and let S be an open cover of A. Show that there exists r > 0 such that for every $a \in A$ there exists $U \in S$ such that $B(a, r) \subseteq U$.

(b) Let C_1, C_2, C_3, \cdots be non-empty closed sets in \mathbb{R}^n with $C_1 \supseteq C_2 \supseteq C_3 \supseteq \cdots$. Show that if each set C_k is compact then $\bigcap_{k=1}^{\infty} C_k \neq \emptyset$, and find an example where the sets C_k are not compact and we have $\bigcap_{k=1}^{\infty} C_k = \emptyset$.

3: Note that $\mathbb{C} = \mathbb{R}^2$ so a sequence in \mathbb{C} is a sequence in \mathbb{R}^2 .

(a) For $k \ge 0$, let $x_k = \left(\frac{3+i\sqrt{3}}{4}\right)^k \in \mathbb{C}$, and for $n \ge 0$, let $s_n = \sum_{k=0}^n x_k \in \mathbb{C}$. Use the definition of the limit (for a sequence in \mathbb{R}^2) to find $a, b \in \mathbb{R}$ such that $\lim_{n \to \infty} s_n = a + ib$.

(b) Let $c = \frac{2-i}{8} \in \mathbb{C}$. Let $(z_n)_{n\geq 0}$ be the sequence in \mathbb{C} given by $z_0 = 0$ and $z_{n+1} = z_n^2 + c$ for $n \geq 0$. Determine whether $(z_n)_{n\geq 0}$ converges in \mathbb{C} and, if so, find $\lim_{n\to\infty} z_n$ in \mathbb{C} .

4: Let \mathbb{R}^{ω} be the set of all sequences in \mathbb{R} , that is $\mathbb{R}^{\omega} = \{x = (x_j)_{j \ge 1} | \operatorname{each} x_j \in \mathbb{R}\}$ and let \mathbb{R}^{∞} be the set of eventually zero sequences in \mathbb{R} , that is $\mathbb{R}^{\infty} = \{x = (x_j)_{j \ge 1} \in \mathbb{R}^{\omega} | \exists m \in \mathbb{Z}^+ \forall j \in \mathbb{Z}^+ (j \ge m \Longrightarrow x_j = 0)\}$. For $x, y \in \mathbb{R}^{\infty}$, define $x \cdot y = \sum_{n=1}^{\infty} x_n y_n$ and $|x| = (x \cdot x)^{1/2}$.

When $(x_n)_{n\geq 1}$ is a sequence in \mathbb{R}^{∞} , each $x_n \in \mathbb{R}^{\infty}$, and we can write $x_n = (x_{n,j})_{j\geq 1} = (x_{n,1}, x_{n,2}, x_{n,3}, \cdots)$. For a sequence $(x_n)_{n\geq 1}$ in \mathbb{R}^{∞} and an element $a \in \mathbb{R}^{\infty}$, we say the sequence $(x_n)_{n\geq 1}$ converges to a in \mathbb{R}^{∞} , and we write $x_n \to a$ in \mathbb{R}^{∞} or $\lim_{n\to\infty} x_n = a$ in \mathbb{R}^{∞} , when $\forall \epsilon > 0 \exists m \in \mathbb{Z}^+ \forall n \in \mathbb{Z}^+ (n \ge m \Longrightarrow |x_n - a| < \epsilon)$, we say that $(x_n)_{n\geq 1}$ is bounded when $\exists r \ge 0 \forall n \in \mathbb{Z}^+ |x_n| \le r$, and we say that $(x_n)_{n\geq 1}$ is Cauchy when $\forall \epsilon > 0 \exists m \in Z^+ \forall k, \ell \in \mathbb{Z}^+ (k, \ell \ge m \Longrightarrow |x_k - x_{\ell}| < \epsilon)$.

(a) Prove that for all sequences $(x_n)_{n\geq 1}$ in \mathbb{R}^{∞} , and all $a \in \mathbb{R}^{\infty}$, if $\lim_{n \to \infty} x_n = a$ in \mathbb{R}^{∞} then $\lim_{n \to \infty} x_{n,j} = a_j$ for all $j \in \mathbb{Z}^+$, but that the converse does not hold.

(b) Prove that for all sequences $(x_n)_{n\geq 1}$ in \mathbb{R}^{∞} , if the sequence $(x_n)_{n\geq 1}$ converges in \mathbb{R}^{∞} (to some $a \in \mathbb{R}^{\infty}$) then it is Cauchy, but that the converse does not hold.

(c) Determine whether every bounded sequence $(x_n)_{n\geq 1}$ in \mathbb{R}^{∞} has a convergent subsequence $(x_{n_k})_{k\geq 1} \mathbb{R}^{\infty}$.