MATH 247 Calculus 3, Solutions to Assignment 2.5

1: (a) Let $f(x, y)=\frac{x y^{2}}{x^{2}+2 y^{2}}$ for $(x, y) \neq(0,0)$. Determine whether $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists and, if so, find it. Solution: We claim that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$. For all x, y we have $|x|=\sqrt{x^{2}} \leq \sqrt{x^{2}+y^{2}}$ and $y^{2} \leq x^{2}+y^{2}$ and $x^{2}+2 y^{2} \geq x^{2}+y^{2}$ and so

$$
|f(x, y)-0|=\left|\frac{x y^{2}}{x^{2}+2 y^{2}}\right|=\frac{|x| y^{2}}{x^{2}+2 y^{2}} \leq \frac{\sqrt{x^{2}+y^{2}}\left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=\sqrt{x^{2}+y^{2}}
$$

Thus given $\epsilon>0$ we can choose $\delta=\epsilon$ and then for all x with $0<|(x, y)-(0,0)|<\delta$ we have

$$
|f(x, y)-0| \leq \sqrt{x^{2}+y^{2}}<\delta=\epsilon
$$

(b) Let $f(x, y)=\frac{x \sqrt{y}}{x^{2}+y}$ for $y>0$. Determine whether $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists and, if so, find it.

Solution: Suppose, for a contradiction, that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists. Let $\alpha(t)=(t, 0)$ for $t>0$. Since $\alpha(t) \neq(0,0)$ for $t>0$ and $\lim _{t \rightarrow 0} \alpha(t)=(0,0)$ it follows, by Part 1 of Theorem 3.31 (Composition and Limits), that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{t \rightarrow 0} f(\alpha(t))=\lim _{t \rightarrow 0} 0=0$. Let $\beta(t)=\left(t, t^{2}\right)$ for $t>0$. Since $\beta(t) \neq(0,0)$ for $t>0$ and $\lim _{t \rightarrow 0} \beta(t)=(0,0)$, it follows, again by Theorem 3.31, that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{t \rightarrow 0} f(\beta(t))=\lim _{t \rightarrow 0}=\lim _{t \rightarrow 0} \frac{1}{2}=\frac{1}{2}$. By Theorem 3.18 (the uniqueness of limits), we cannot have $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0$ and $\lim _{(x, y) \rightarrow(0,0)}=\frac{1}{2}$, so we obtain the desired contradiction. Thus $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
(c) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{x^{2}-y^{2}} & \text { if } y \neq \pm x \\ 0 & \text { if } y= \pm x\end{array}\right\}$. Determine where $f(x, y)$ is continuous, that is find all points $(a, b) \in \mathbb{R}^{2}$ such that f is continuous at (a, b).
Solution: Note that f is continuous for all points (x, y) with $y \neq \pm x$ because elementary functions are continuous in their domains. We claim that f not continuous at any other points.

First, let us show that f is not continuous at $(0,0)$. Suppose, for a contradiction, that f is continuous at $(0,0)$. Define $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by $\alpha(t)=(2 t, t)$. Since α is continuous (it is elementary) with $\alpha(0)=(0,0)$, it follows, by Part 1 of Corollary 3.32 (Composition of Continuous Functions), that $g=f \circ \alpha$ is continuous at 0 . This implies that $g(0)=\lim _{t \rightarrow 0} g(t)=\lim _{t \rightarrow 0} f(\alpha(t))=\lim _{t \rightarrow 0} \frac{2 t^{2}}{4 t^{2}-t^{2}}=\frac{2}{3}$, but in fact $g(0)=f(\alpha(0))=f(0,0)=0$, which gives the desired contradiction.

Finally, let us show that f is not continuous at any point $(a, \pm a)$ with $a \neq 0$. Let $0 \neq a \in \mathbb{R}$. Suppose, for a contradiction, that f is continuous at (a, a). Define $\beta: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by $\beta(t)=(a, a)+t(a,-a)$ and note that β is continuous with $\beta(0)=(a, a)$. By Corollary 3.32, the composite $h=f \circ \beta$ is continuous at 0 . This implies that $h(0)=\lim _{t \rightarrow 0} f(\beta(t))=\lim _{t \rightarrow 0} \frac{(a+t a)(a-t a)}{(a+t a)^{2}-(a-t a)^{2}}=\lim _{t \rightarrow 0} \frac{1-t^{2}}{4 t}$, but this is not possible since $\lim _{t \rightarrow 0} \frac{1-t^{2}}{4 t}$ does not exist. Similarly, f is not continuous at $(a,-a)$ since, if it was, then for $\gamma(t)=(a,-a)+t(a, a)$ and $k=f \circ \gamma$, we would have $k(0)=\lim _{t \rightarrow 0} f(\gamma(t))=\lim _{t \rightarrow 0} \frac{(a+t a)(-a+t a)}{(a+t a)^{2}-(-a+t a)^{2}}=\lim _{t \rightarrow 0} \frac{t^{2}-1}{4 t}$, which does not exist.

2: For each of the following subsets $A \subseteq \mathbb{R}^{n}$, determine whether A is closed, whether A is compact, and whether A is connected.
(a) $A=\left\{(a, b, c, d) \in \mathbb{R}^{4} \left\lvert\,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right.\right\}$.

Solution: We claim that A is closed. For $a, b, c, d \in \mathbb{R}$ we have $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{2}=\left(\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right)$ so that $(a, b, c, d) \in A \Longleftrightarrow\left(a^{2}+b c, a b+b d, a c+c d, b c+d^{2}\right)=(1,0,0,1)$, and so $A=f^{-1}(p)$ where $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is given by $f(a, b, c, d)=\left(a^{2}+b c, a b+b d, a c+c d, b c+d^{2}\right)$ and $p=(1,0,0,1) \in \mathbb{R}^{4}$. The map f is continuous (it is a polynomial map) and $\{p\}$ is closed in \mathbb{R}^{4}, and so $A=f^{-1}(\{p\})$ is closed in \mathbb{R}^{4} (by Theorem 3.36).

Note that A is not bounded because for $r>0$ we have $(1, r, 0,-1) \in A$ and $|(1, r, 0,-1)|=\sqrt{2+r^{2}} \rightarrow \infty$ as $r \rightarrow \infty$. Since A is not bounded in \mathbb{R}^{4}, it is not compact (by the Heine Borel Theorem).

We claim that A is not connected. For $a, b, c, d \in \mathbb{R}$, if $(a, b, c, d) \in A$ then we have $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{2}=I$ so that $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)= \pm 1$, that is $a d-b c= \pm 1$. It follows that A can be separated in \mathbb{R}^{4} by the two open sets $U=\{(a, b, c, d) \mid a d-b c>0\}$ and $V=\{(a, b, c, d) \mid a d-b c<0\}$. Note that U is open because $U=g^{-1}((0, \infty))$ where $g: \mathbb{R}^{4} \rightarrow \mathbb{R}$ is given by $g(a, b, c, d)=a d-b c$ (and g is continuous and $(0, \infty)$ is open), and similarly V is open because $V=g^{-1}((-\infty, 0))$. And we have $U \cap A \neq \emptyset$ because for example $(1,0,0,1) \in U \cap A$, and we have $V \cap A \neq \emptyset$ because for example $(0,1,1,0) \in V \cap A$. And $A \subseteq U \cup V$ since $(a, b, c, d) \in A \Longrightarrow a d-b c \neq 0$.
(b) A is the set of points $(a, b, c) \in \mathbb{R}^{3}$ such that the polynomial $p(x)=x^{3}+a x^{2}+b x+c$ has three distinct real roots which all lie in the closed interval $[-1,1]$.
Solution: We claim that A is not closed in \mathbb{R}^{3}. For $n \in \mathbb{Z}^{+}$, let $u_{n}=\left(a_{n}, b_{n}, c_{n}\right)=\left(0,-\frac{1}{n^{2}}, 0\right) \in \mathbb{R}^{3}$. Note that $u_{n} \in A$ since the polynomial $p_{n}(x)=x^{3}+a_{n} x^{2}+b_{n} x+c_{n}=x^{3}-\frac{1}{n^{2}} x=\left(x+\frac{1}{n}\right)(x-0)\left(x-\frac{1}{n}\right)$ has 3 distinct real roots, namely $-\frac{1}{n}, 0$, and $\frac{1}{n}$, which all lie in $[-1,1]$. Note that $\lim _{n \rightarrow \infty} u_{n}=(0,0,0)$ so that $(0,0,0) \in \bar{A}$. But $(0,0,0) \notin A$ because the polynomial $p(x)=x^{3}+0 x^{2}+0 x+0=x^{3}$ does not have three distinct real roots (it has the single triple root, 0). Thus A is not closed in \mathbb{R}^{3} (by Theorem 3.11), as claimed. Since A is not closed in \mathbb{R}^{3}, it is not compact (by the Heine-Borel Theorem).

We claim that A is connected. Let $C=\left\{(r, s, t) \in \mathbb{R}^{3} \mid-1 \leq r<s<t \leq 1\right\}$ and define $f: C \rightarrow A$ by $f(r, s, t)=(-(r+s+t), s t+t r+r s,-r s t)$. Note that f is continuous (all polynomial functions are continuous), and f takes values in A and is surjective because $x^{3}-(r+s+t) x^{2}+(s t+t r+r s) x-r s t=(x-r)(x-s)(x-t)$. Note that $C=C_{1} \cap C_{2} \cap C_{3} \cap C_{4}$ where $C_{1}=\{(r, s, t) \mid-1 \leq r\}, C_{2}=\{(r, s, t) \mid r<s\}, C_{3}=\{(r, s, t) \mid s<t\}$ and $C_{4}=\{(r, s, t) \mid t \leq 1\}$. Each of these sets C_{k} is easily seen to be convex: for example, C_{2} is convex because if $u_{1}=\left(r_{1}, s_{1}, t_{1}\right) \in C_{2}$ (so $r_{1}<s_{2}$) and $u_{2}=\left(r_{2}, s_{2}, t_{2}\right) \in C_{2}$ (so $r_{2}<s_{2}$) then for all $\lambda \in[0,1]$ we have $(1-\lambda) r_{1}+\lambda r_{2}<(1-\lambda) s_{1}+\lambda s_{2}$ so that

$$
(1-\lambda) u_{1}+\lambda u_{2}=\left((1-\lambda) r_{1}+\lambda r_{2},(1-\lambda) s_{1}+\lambda s_{2},(1-\lambda) t_{1}+\lambda t_{2}\right) \in C_{2} .
$$

Since C is the intersection of four convex sets, it follows that C is convex: indeed given $a, b \in C$, we have $a, b \in C_{k}$ so that $[a, b] \subseteq C_{k}$ for every index k, and hence $[a, b] \subseteq C=\bigcap_{k=1}^{4} C_{k}$. Since C is convex, it is path connected, and hence connected. Since f is continuous and C is connected and $A=f(C)$, it follows that A is connected by Part 1 of Theorem 3.37.

3: (a) When $A \subseteq \mathbb{R}^{\ell}$ is unbounded, $f: A \subseteq \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{m}$, and $b \in \mathbb{R}^{m}$, we write $\lim _{x \rightarrow \infty} f(x)=b$ when

$$
\forall \epsilon>0 \quad \exists r>0 \quad \forall x \in A \quad(|x| \geq r \Longrightarrow|f(x)-b|<\epsilon) .
$$

Show that if $A \subseteq \mathbb{R}^{\ell}$ is closed and unbounded, and $f: A \subseteq \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{m}$ is continuous, and $\lim _{x \rightarrow \infty} f(x)=b \in \mathbb{R}^{m}$, then f is uniformly continuous on A.
Solution: Suppose A is closed and unbounded in \mathbb{R}^{ℓ}, and $f: A \subseteq \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{m}$ is continuous with $\lim _{x \rightarrow \infty} f(x)=b$. Let $\epsilon>0$. Since $\lim _{x \rightarrow \infty} f(x)=b$ we can choose $r>0$ such that for all $x \in A$ with $x \geq r$ we have $|f(x)-b|<\frac{\epsilon}{2}$. Since A is closed, the set $B=\bar{B}(0,3 r) \cap A$ is closed, and since B is also bounded, it is compact. Since f is continuous on B, which is compact, it follows that f is uniformly continuous on B, so we can choose $\delta>0$ with $\delta<r$ such that for all $a, x \in A$, if $|x-a|<\delta$ then $|f(x)-f(a)|<\epsilon$. Let $a, x \in A$ with $|x-a|<\delta$. If $|a| \leq 2 r$ then since $|x-a|<r$ we have $|x| \leq|x-a|+|a|<r+2 r=3 r$, so that $x, a \in B$ with $|x-a|<\delta$, and hence $|f(x)-f(a)|<\epsilon$. If $|a| \geq 2 r$ then since $|x-a|<r$ we have $|a| \leq|a-x|+|x|$ so that $|x| \geq|a|-|x-a|>2 r-r=r$, so we have $|a|>r$ and $|x|>r$, and hence $|f(a)-b|<\frac{\epsilon}{2}$ and $|f(x)-b|<\frac{\epsilon}{2}$ so that $|f(x)-f(a)| \leq|f(x)-b|+|b-f(a)|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.
(b) Show that if $f: A \subseteq \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{m}$ is uniformly continuous on A then there exists a unique continuous function $g: \bar{A} \subseteq \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{m}$ with $g(x)=f(x)$ for all $x \in A$, and that g is uniformly continuous on \bar{A}.
Solution: Suppose that f is uniformly continuous on A. Note that if $a \in \bar{A}$ then there exists a sequence (x_{n}) in A such that $x_{n} \rightarrow a$: indeed if $a \in A$ then we can use the constant sequence $x_{n}=a$ for all n, and if $a \in A^{\prime}$ then we can choose a sequence in $A \backslash\{a\}$ by Theorem 3.10 (the sequential characterization of limit points).

We claim that when $a \in \bar{A}$ and $\left(x_{n}\right)$ is a sequence in A with $x_{n} \rightarrow a$, the sequence $\left(f\left(x_{n}\right)\right)$ converges in \mathbb{R}^{m}. Let $\epsilon>0$. Since f is uniformly continuous on A, we can choose $\delta>0$ such that for all $x, y \in A$ we have $|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon$. Since $x_{n} \rightarrow a$, we can choose $n \in \mathbb{Z}^{+}$such that $k \geq n \Longrightarrow\left|x_{n}-a\right|<\frac{\delta}{2}$. Then for $k, \ell \geq n$ we have $\left|x_{k}-x_{\ell}\right| \leq\left|x_{k}-a\right|+\left|a-x_{\ell}\right|<\frac{\delta}{2}+\frac{\delta}{2}=\delta$, and hence $\left|f\left(x_{k}\right)-f\left(x_{\ell}\right)\right|<\epsilon$. This shows that the sequence $\left(f\left(x_{n}\right)\right)$ is Cauchy in \mathbb{R}^{m}, and so it converges, as claimed.

We claim that when $a \in \bar{A}$ and $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are two sequences in A with $x_{n} \rightarrow a$ and $y_{n} \rightarrow a$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(y_{n}\right)$. By the previous paragraph, we know that the sequences $\left(f\left(x_{n}\right)\right)$ and $\left.f\left(y_{n}\right)\right)$ both converge, say $f\left(x_{n}\right) \rightarrow b$ and $f\left(y_{n}\right) \rightarrow c$. We need to show that $b=c$. Let $\epsilon>0$. Since f is uniformly continuous on A, we can choose $\delta>0$ so that for all $x, y \in A$ we have $|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\frac{\epsilon}{3}$. Since $x_{n} \rightarrow a$ and $y_{n} \rightarrow a$ and $f\left(x_{n}\right) \rightarrow b$ and $f\left(y_{n}\right) \rightarrow b$, we can choose $n \in \mathbb{Z}^{+}$such that $\left|x_{n}-a\right|<\frac{\delta}{2}$, $\left|y_{n}-a\right|<\frac{\delta}{2},\left|f\left(x_{n}\right)-b\right|<\frac{\epsilon}{3}$ and $\left|f\left(y_{n}\right)-c\right|<\frac{\epsilon}{3}$. Since $\left|x_{n}-a\right|<\frac{\delta}{2}$ and $\left|y_{n}-a\right|<\frac{\delta}{2}$ we have $\left|x_{n}-y_{n}\right|<\delta$ and hence $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|<\frac{\epsilon}{3}$. Thus we have $|b-c| \leq\left|b-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|+\left|y_{n}-c\right|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon$. Since $\epsilon>0$ was arbitrary, we have $|b-c|<\epsilon$ for every $\epsilon>0$, and hence $b=c$, as required.

Thus we can define $g: \bar{A} \rightarrow \mathbb{R}^{m}$ as follows: given $a \in \bar{A}$ we choose a sequence $\left(x_{n}\right)$ in A with $x_{n} \rightarrow a$, and we define $g(a)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$. Note that when $a \in A$, we do have $g(a)=f(a)$ because we can choose $\left(x_{n}\right)$ to be the constant sequence $x_{n}=a$ for all a, and then $g(a)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} f(a)=f(a)$.

It remains to show that the map $g: \bar{A} \rightarrow \mathbb{R}^{m}$ is uniformly continuous on \bar{A}. Let $\epsilon>0$. Since f is uniformly continuous on A, we can choose $\delta_{1} \geq 0$ such that for all $x, y \in A$ we have $|x-y|<\delta_{1} \Longrightarrow$ $|f(x)-f(y)|<\frac{\epsilon}{3}$. Let $\delta=\frac{1}{3} \delta_{1}$. Let $a, b \in \bar{A}$ with $|a-b|<\delta$. Choose sequences (x_{n}) and (y_{n}) in A with $x_{n} \rightarrow a$ and $y_{n} \rightarrow b$. Since $x_{n} \rightarrow a$ and $y_{n} \rightarrow b$ and $f\left(x_{n}\right) \rightarrow g(a)$ and $f\left(y_{n}\right) \rightarrow g(b)$, we can choose $n \in \mathbb{Z}^{+}$such that $\left|x_{n}-a\right|<\delta,\left|y_{n}-b\right|<\delta,\left|f\left(x_{n}\right)-g(a)\right|<\frac{\epsilon}{3}$ and $\left|f\left(y_{n}\right)-g(b)\right|<\frac{\epsilon}{3}$. Then $\left|x_{n}-y_{n}\right| \leq\left|x_{n}-a\right|+|a-b|+\left|b-y_{n}\right|<\delta+\delta+\delta=\delta_{1}$ so that $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|<\frac{\epsilon}{3}$, and hence

$$
|g(a)-g(b)| \leq\left|g(a)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|+\left|f\left(y_{n}\right)-g(b)\right|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
$$

