
MATH 247 Calculus 3, Solutions to Assignment 2.5

1: (a) Let f(x, y) =
xy2

x2 + 2y2
for (x, y) 6= (0, 0). Determine whether lim

(x,y)→(0,0)
f(x, y) exists and, if so, find it.

Solution: We claim that lim
(x,y)→(0,0)

f(x, y) = 0. For all x, y we have |x| =
√
x2 ≤

√
x2 + y2 and y2 ≤ x2 + y2

and x2 + 2y2 ≥ x2 + y2 and so∣∣f(x, y)− 0
∣∣ =

∣∣∣∣ xy2

x2 + 2y2

∣∣∣∣ =
|x|y2

x2 + 2y2
≤
√
x2 + y2 (x2 + y2)

x2 + y2
=
√
x2 + y2 .

Thus given ε > 0 we can choose δ = ε and then for all x with 0 <
∣∣(x, y)− (0, 0)

∣∣ < δ we have∣∣f(x, y)− 0
∣∣ ≤√x2 + y2 < δ = ε .

(b) Let f(x, y) =
x
√
y

x2 + y
for y > 0. Determine whether lim

(x,y)→(0,0)
f(x, y) exists and, if so, find it.

Solution: Suppose, for a contradiction, that lim
(x,y)→(0,0)

f(x, y) exists. Let α(t) = (t, 0) for t > 0. Since

α(t) 6= (0, 0) for t > 0 and lim
t→0

α(t) = (0, 0) it follows, by Part 1 of Theorem 3.31 (Composition and Limits),

that lim
(x,y)→(0,0)

f(x, y) = lim
t→0

f(α(t)) = lim
t→0

0 = 0. Let β(t) = (t, t2) for t > 0. Since β(t) 6= (0, 0) for t > 0 and

lim
t→0

β(t) = (0, 0), it follows, again by Theorem 3.31, that lim
(x,y)→(0,0)

f(x, y) = lim
t→0

f(β(t)) = lim
t→0

= lim
t→0

1
2 = 1

2 .

By Theorem 3.18 (the uniqueness of limits), we cannot have lim
(x,y)→(0,0)

f(x, y) = 0 and lim
(x,y)→(0,0)

= 1
2 , so we

obtain the desired contradiction. Thus lim
(x,y)→(0,0)

f(x, y) does not exist.

(c) Define f : R2 → R by f(x, y) =


xy

x2 − y2
if y 6= ±x

0 if y = ±x

. Determine where f(x, y) is continuous, that

is find all points (a, b) ∈ R2 such that f is continuous at (a, b).

Solution: Note that f is continuous for all points (x, y) with y 6= ±x because elementary functions are
continuous in their domains. We claim that f not continuous at any other points.

First, let us show that f is not continuous at (0, 0). Suppose, for a contradiction, that f is continuous
at (0, 0). Define α : R→ R2 by α(t) = (2t, t). Since α is continuous (it is elementary) with α(0) = (0, 0), it
follows, by Part 1 of Corollary 3.32 (Composition of Continuous Functions), that g=f◦α is continuous at 0.

This implies that g(0) = lim
t→0

g(t) = lim
t→0

f(α(t)) = lim
t→0

2t2

4t2−t2 = 2
3 , but in fact g(0) = f(α(0)) = f(0, 0) = 0,

which gives the desired contradiction.
Finally, let us show that f is not continuous at any point (a,±a) with a 6= 0. Let 0 6= a ∈ R. Suppose,

for a contradiction, that f is continuous at (a, a). Define β : R → R2 by β(t) = (a, a) + t(a,−a) and note
that β is continuous with β(0) = (a, a). By Corollary 3.32, the composite h = f ◦ β is continuous at 0.

This implies that h(0) = lim
t→0

f(β(t)) = lim
t→0

(a+ta)(a−ta)
(a+ta)2−(a−ta)2 = lim

t→0

1−t2
4t , but this is not possible since lim

t→0

1−t2
4t

does not exist. Similarly, f is not continuous at (a,−a) since, if it was, then for γ(t) = (a,−a) + t(a, a) and

k = f ◦ γ, we would have k(0) = lim
t→0

f(γ(t)) = lim
t→0

(a+ta)(−a+ta)
(a+ta)2−(−a+ta)2 = lim

t→0

t2−1
4t , which does not exist.



2: For each of the following subsets A ⊆ Rn, determine whether A is closed, whether A is compact, and whether
A is connected.

(a) A =

{
(a, b, c, d) ∈ R4

∣∣∣∣∣
(
a b
c d

)2

=

(
1 0
0 1

)}
.

Solution: We claim that A is closed. For a, b, c, d ∈ R we have

(
a b
c d

)2

=

(
a2 + bc ab+ bd
ac+ cd bc+ d2

)
so that

(a, b, c, d) ∈ A ⇐⇒
(
a2 + bc, ab+ bd, ac+ cd, bc+ d2

)
= (1, 0, 0, 1), and so A = f−1(p) where f : R4 → R4 is

given by f(a, b, c, d) =
(
a2 + bc, ab+ bd, ac+ cd, bc+ d2

)
and p = (1, 0, 0, 1) ∈ R4. The map f is continuous

(it is a polynomial map) and {p} is closed in R4, and so A = f−1
(
{p}
)

is closed in R4 (by Theorem 3.36).

Note that A is not bounded because for r > 0 we have (1, r, 0,−1) ∈ A and
∣∣(1, r, 0,−1)

∣∣ =
√

2 + r2 →∞
as r →∞. Since A is not bounded in R4, it is not compact (by the Heine Borel Theorem).

We claim that A is not connected. For a, b, c, d ∈ R, if (a, b, c, d) ∈ A then we have

(
a b
c d

)2

= I so that

det

(
a b
c d

)
= ±1, that is ad − bc = ±1. It follows that A can be separated in R4 by the two open sets

U =
{

(a, b, c, d)
∣∣ad−bc > 0

}
and V =

{
(a, b, c, d)

∣∣ad−bc < 0
}

. Note that U is open because U = g−1
(
(0,∞)

)
where g : R4 → R is given by g(a, b, c, d) = ad− bc (and g is continuous and (0,∞) is open), and similarly V
is open because V = g−1

(
(−∞, 0)

)
. And we have U ∩A 6= ∅ because for example (1, 0, 0, 1) ∈ U ∩A, and we

have V ∩A 6= ∅ because for example (0, 1, 1, 0) ∈ V ∩A. And A ⊆ U ∪V since (a, b, c, d) ∈ A =⇒ ad−bc 6= 0.

(b) A is the set of points (a, b, c) ∈ R3 such that the polynomial p(x) = x3 + ax2 + bx+ c has three distinct
real roots which all lie in the closed interval [−1, 1].

Solution: We claim that A is not closed in R3 . For n ∈ Z+, let un = (an, bn, cn) =
(
0,− 1

n2 , 0
)
∈ R3. Note

that un ∈ A since the polynomial pn(x) = x3 + anx
2 + bnx + cn = x3 − 1

n2x =
(
x + 1

n

)(
x − 0

)(
x − 1

n

)
has

3 distinct real roots, namely − 1
n , 0, and 1

n , which all lie in [−1, 1]. Note that lim
n→∞

un = (0, 0, 0) so that

(0, 0, 0) ∈ A. But (0, 0, 0) /∈ A because the polynomial p(x) = x3 + 0x2 + 0x + 0 = x3 does not have three
distinct real roots (it has the single triple root, 0). Thus A is not closed in R3 (by Theorem 3.11), as claimed.
Since A is not closed in R3, it is not compact (by the Heine-Borel Theorem).

We claim that A is connected. Let C =
{

(r, s, t) ∈ R3
∣∣− 1 ≤ r < s < t ≤ 1

}
and define f : C → A by

f(r, s, t) =
(
−(r+s+t), st+tr+rs,−rst

)
. Note that f is continuous (all polynomial functions are continuous),

and f takes values in A and is surjective because x3−(r+s+t)x2+(st+tr+rs)x−rst = (x−r)(x−s)(x−t).
Note that C = C1∩C2∩C3∩C4 where C1 =

{
(r, s, t)

∣∣−1 ≤ r
}

, C2 =
{

(r, s, t)
∣∣r < s

}
, C3 =

{
(r, s, t)

∣∣s < t
}

and C4 =
{

(r, s, t)
∣∣t ≤ 1

}
. Each of these sets Ck is easily seen to be convex: for example, C2 is convex

because if u1 = (r1, s1, t1) ∈ C2 (so r1 < s2) and u2 = (r2, s2, t2) ∈ C2 (so r2 < s2) then for all λ ∈ [0, 1] we
have (1− λ)r1 + λr2 < (1− λ)s1 + λs2 so that

(1− λ)u1 + λu2 =
(
(1− λ)r1 + λr2, (1− λ)s1 + λs2, (1− λ)t1 + λt2

)
∈ C2.

Since C is the intersection of four convex sets, it follows that C is convex: indeed given a, b ∈ C, we have
a, b ∈ Ck so that [a, b] ⊆ Ck for every index k, and hence [a, b] ⊆ C =

⋂4
k=1 Ck. Since C is convex, it is path

connected, and hence connected. Since f is continuous and C is connected and A = f(C), it follows that A
is connected by Part 1 of Theorem 3.37.



3: (a) When A ⊆ R` is unbounded, f : A ⊆ R` → Rm, and b ∈ Rm, we write lim
x→∞

f(x) = b when

∀ε>0 ∃r>0 ∀x∈A
(
|x| ≥ r =⇒ |f(x)− b| < ε

)
.

Show that if A ⊆ R` is closed and unbounded, and f : A ⊆ R` → Rm is continuous, and lim
x→∞

f(x) = b ∈ Rm,

then f is uniformly continuous on A.

Solution: Suppose A is closed and unbounded in R`, and f : A ⊆ R` → Rm is continuous with lim
x→∞

f(x) = b.

Let ε > 0. Since lim
x→∞

f(x) = b we can choose r > 0 such that for all x ∈ A with x ≥ r we have |f(x)−b| < ε
2 .

Since A is closed, the set B = B(0, 3r) ∩ A is closed, and since B is also bounded, it is compact. Since
f is continuous on B, which is compact, it follows that f is uniformly continuous on B, so we can choose
δ > 0 with δ < r such that for all a, x ∈ A, if |x − a| < δ then |f(x) − f(a)| < ε. Let a, x ∈ A with
|x− a| < δ. If |a| ≤ 2r then since |x− a| < r we have |x| ≤ |x− a|+ |a| < r+ 2r = 3r, so that x, a ∈ B with
|x− a| < δ, and hence |f(x)− f(a)| < ε. If |a| ≥ 2r then since |x− a| < r we have |a| ≤ |a− x|+ |x| so that
|x| ≥ |a| − |x− a| > 2r − r = r, so we have |a| > r and |x| > r, and hence |f(a)− b| < ε

2 and |f(x)− b| < ε
2

so that |f(x)− f(a)| ≤ |f(x)− b|+ |b− f(a)| < ε
2 + ε

2 = ε.

(b) Show that if f : A ⊆ R` → Rm is uniformly continuous on A then there exists a unique continuous

function g : A ⊆ R` → Rm with g(x) = f(x) for all x ∈ A, and that g is uniformly continuous on A.

Solution: Suppose that f is uniformly continuous on A. Note that if a ∈ A then there exists a sequence (xn)
in A such that xn → a: indeed if a ∈ A then we can use the constant sequence xn = a for all n, and if a ∈ A′
then we can choose a sequence in A \ {a} by Theorem 3.10 (the sequential characterization of limit points).

We claim that when a ∈ A and (xn) is a sequence in A with xn → a, the sequence (f(xn)) converges in
Rm. Let ε > 0. Since f is uniformly continuous on A, we can choose δ > 0 such that for all x, y ∈ A we have
|x − y| < δ =⇒

∣∣f(x) − f(y)
∣∣ < ε. Since xn → a, we can choose n ∈ Z+ such that k ≥ n =⇒ |xn − a| < δ

2 .

Then for k, ` ≥ n we have |xk − x`| ≤ |xk − a|+ |a− x`| < δ
2 + δ

2 = δ, and hence
∣∣f(xk)− f(x`)

∣∣ < ε. This
shows that the sequence (f(xn)) is Cauchy in Rm, and so it converges, as claimed.

We claim that when a ∈ A and (xn) and (yn) are two sequences in A with xn → a and yn → a, we
have lim

n→∞
f(xn) = lim

n→∞
f(yn). By the previous paragraph, we know that the sequences (f(xn)) and f(yn))

both converge, say f(xn)→ b and f(yn)→ c. We need to show that b = c. Let ε > 0. Since f is uniformly
continuous on A, we can choose δ > 0 so that for all x, y ∈ A we have |x − y| < δ =⇒ |f(x) − f(y)| < ε

3 .

Since xn → a and yn → a and f(xn) → b and f(yn) → b, we can choose n ∈ Z+ such that |xn − a| < δ
2 ,

|yn− a| < δ
2 , |f(xn)− b| < ε

3 and |f(yn)− c| < ε
3 . Since |xn− a| < δ

2 and |yn− a| < δ
2 we have |xn− yn| < δ

and hence |f(xn)−f(yn)| < ε
3 . Thus we have |b−c| ≤ |b−f(xn)|+ |f(xn)−f(yn)|+ |yn−c| < ε

3 + ε
3 + ε

3 = ε.
Since ε > 0 was arbitrary, we have |b− c| < ε for every ε > 0, and hence b = c, as required.

Thus we can define g : A → Rm as follows: given a ∈ A we choose a sequence (xn) in A with xn → a,
and we define g(a) = lim

n→∞
f(xn). Note that when a ∈ A, we do have g(a) = f(a) because we can choose

(xn) to be the constant sequence xn = a for all a, and then g(a) = lim
n→∞

f(xn) = lim
n→∞

f(a) = f(a).

It remains to show that the map g : A → Rm is uniformly continuous on A. Let ε > 0. Since f is
uniformly continuous on A, we can choose δ1 > 0 such that for all x, y ∈ A we have |x − y| < δ1 =⇒
|f(x) − f(y)| < ε

3 . Let δ = 1
3 δ1. Let a, b ∈ A with |a − b| < δ. Choose sequences (xn) and (yn) in

A with xn → a and yn → b. Since xn → a and yn → b and f(xn) → g(a) and f(yn) → g(b), we can
choose n ∈ Z+ such that |xn − a| < δ, |yn − b| < δ, |f(xn) − g(a)| < ε

3 and |f(yn) − g(b)| < ε
3 . Then

|xn − yn| ≤ |xn − a|+ |a− b|+ |b− yn| < δ+δ+δ = δ1 so that |f(xn)− f(yn)| < ε
3 , and hence

|g(a)− g(b)| ≤ |g(a)− f(xn)|+ |f(xn)− f(yn)|+ |f(yn)− g(b)| < ε
3 + ε

3 + ε
3 = ε.


