MATH 247 Calculus 3, Solutions to Assignment 2.5

: (a) Let f(x,y) = for (z,y) # (0,0). Determine whether ~ lim  f(x,y) exists and, if so, find it.

24 22 (2.4)-(0,0)

Solution: We claim that ( %Hn( )f(x,y) = 0. For all z,y we have |z| = Va2 < /22 + y? and y? < 22 +y?
z,y)—(0,0

and z2 + 2y% > 2% 4+ y? and so

2 2 2
Ty |zly Vot +y? (@ +y?) o
-0 = = < 2
‘f(%?/) ’ 22 + 22 24 2y2 — 22 + 12 22 +y?.

Thus given € > 0 we can choose § = € and then for all z with 0 < |(z,y) — (0,0)| < § we have

|f(z,y) 0] < Va2 +y2 <d=e.

(b) Let f(z,y) = z\/ﬂ for y > 0. Determine whether  lim  f(x,y) exists and, if so, find it.
¢ty (z,5)—(0,0)

Solution: Suppose, for a contradiction, that ( %im(o O)f(:c,y) exists. Let a(t) = (¢,0) for t > 0. Since
z,y)— (0,
a(t) # (0,0) for t > 0 and }irr(l) a(t) = (0,0) it follows, by Part 1 of Theorem 3.31 (Composition and Limits),
—

that lim  f(z,y) = }51(1) fla(t)) = 7}iﬁn(l)o =0. Let 8(t) = (¢,t?) for t > 0. Since B(t) # (0,0) for t > 0 and

(z,)—(0,0)
}gr(l) B(t) = (0,0), it follows, again by Theorem 3.31, that (m,y%1—>1n(070) flz,y) = }gr(l) f(B@®) = hr% = }gr(l) 5 = 13-
By Theorem 3.18 (the uniqueness of limits), we cannot have  lim  f(z,y) =0and lim = é, SO we
(@,y)—(0,0) (w,y)—(0,0)
obtain the desired contradiction. Thus  lim  f(x,y) does not exist.
(z,y)—(0,0)
5 Y 5 ify #+xx

(c) Define f : R? = R by f(x,y) = Z°—
0 ify==+x
is find all points (a,b) € R? such that f is continuous at (a,b).

Determine where f(z,y) is continuous, that

Solution: Note that f is continuous for all points (z,y) with y # +z because elementary functions are
continuous in their domains. We claim that f not continuous at any other points.

First, let us show that f is not continuous at (0,0). Suppose, for a contradiction, that f is continuous
at (0,0). Define o : R — R? by «(t) = (2¢,t). Since « is continuous (it is elementary) with «(0) = (0,0), it
follows, by Part 1 of Corollary 3.32 (Composition of Continuous Functions), that g= fo « is continuous at 0.

2
This implies that g(0) = tli_r}(l)g(t) = }gr(l) fla(t) = }E)I(l) 25 = 2, but in fact g(0) = f(a(0)) = f£(0,0) =0,
which gives the desired contradiction.

Finally, let us show that f is not continuous at any point (a, +a) with a # 0. Let 0 # a € R. Suppose,
for a contradiction, that f is continuous at (a,a). Define 8 : R — R? by 3(t) = (a,a) + t(a, —a) and note
that 8 is continuous with 5(0) = (a,a). By Corollary 3.32, the composite h = f o 8 is continuous at 0.

This implies that h(0) = }51(1) f(B) = }gr(l) % = IIH(I) L5, but this is not possible since hH(l) 4t2

does not exist. Similarly, f is not continuous at (a, —a) since, if it was, then for v(t) = (a, —a) +t(a,a) and

k = f o, we would have k(0) = }ir% f(y(@) = hm % = }nn 247:&’ which does not exist.
—



2: For each of the following subsets A C R™, determine whether A is closed, whether A is compact, and whether

A is connected.
a b\ (1 0
c d) \0 1 '

Solution: We claim that A is closed. For a,b,c,d € R we have <Ccl

(a) A= {(a,b,c,d) eR*

b\° _ (a*+bc ab+bd

d) - <ac+cd bc+d2> so that

(a,b,c,d) € A — (a2 + be, ab+ bd, ac+ cd, bc+d2) = (1,0,0,1), and so A = f~1(p) where f : R* — R*is

given by f(a,b,c,d) = (a2 + be, ab + bd, ac + cd, be + d2) and p = (1,0,0,1) € R*. The map f is continuous

(it is a polynomial map) and {p} is closed in R?, and so A = f~({p}) is closed in R* (by Theorem 3.36).
Note that A is not bounded because for r > 0 we have (1,7,0,—1) € A and }(17 r,0, —1)| =v2+71? 5 0

as r — 0o. Since A is not bounded in R*, it is not compact (by the Heine Borel Theorem).

2
We claim that A is not connected. For a,b,¢,d € R, if (a,b, ¢,d) € A then we have (CCL Z) = I so that

a b

det c = =1, that is ad — bec = £1. It follows that A can be separated in R* by the two open sets

d
U = {(a,b,c,d)|ad—bc > 0} and V = {(a, b, c,d)|ad—bc < 0}. Note that U is open because U = g~ ((0, 00))
where g : R* — R is given by g(a, b, c,d) = ad — be (and g is continuous and (0, 00) is open), and similarly V/
is open because V = g~! ((—0070)). And we have U N A # () because for example (1,0,0,1) € UN A, and we
have VN A # () because for example (0,1,1,0) € VNA. And A CUUV since (a,b,¢,d) € A = ad—be # 0.

(b) A is the set of points (a,b,c) € R? such that the polynomial p(z) = 23 + az? + bx + ¢ has three distinct
real roots which all lie in the closed interval [—1,1].

Solution: We claim that A is not closed in R® . For n € Z*, let u, = (an, by, c) = (0,—25,0) € R®. Note

RN

that u, € A since the polynomial p,(z) = 23 + a,2? + byx + ¢, = 2% — Lo = (9: + %) (9: — O) (x — %) has

2
3 distinct real roots, namely —%, 0, and %, which all lie in [—1,1]. Notne that nhﬁrr;o u, = (0,0,0) so that
(0,0,0) € A. But (0,0,0) ¢ A because the polynomial p(z) = 23 + 022 + 0z + 0 = 2 does not have three
distinct real roots (it has the single triple root, 0). Thus A is not closed in R* (by Theorem 3.11), as claimed.
Since A is not closed in R3, it is not compact (by the Heine-Borel Theorem).

We claim that A is connected. Let C' = {(r,s,t) e R®| -1 <r < s <t <1} and define f : C — A by
flr,s,t) = (—(r+5—|—t), st+tr+rs, —rst). Note that f is continuous (all polynomial functions are continuous),
and f takes values in A and is surjective because 2® — (r+s+t)a%+ (st+tr+rs)x—rst = (x—r)(xz—s)(xz —1t).
Note that C = C1NCyNC3NCy where Cq = {(’I",S,t)‘ -1< 7"}, Cy = {(’I",S,t)|?” < s}, C3 = {(r,s7t)|s < t}
and Cy = {(r,s,t)|t < 1}. Each of these sets C} is easily seen to be convex: for example, Cy is convex
because if u1 = (11, 81,%1) € Ca (so r1 < s2) and ug = (rg, S2,t2) € Co (s0 12 < $2) then for all A € [0, 1] we
have (1 — A)rq + Arg < (1 — A)sy + Asg so that

(1 — )\)ul + Aug = ((1 — )\)7’1 =+ /\’I"Q, (1 — )\)81 + /\82, (1 — )\)tl + /\tg) € Cs.

Since C' is the intersection of four convex sets, it follows that C' is convex: indeed given a,b € C, we have
a,b € Cy, so that [a,b] C Cj, for every index k, and hence [a,b] C C = ﬂizl C. Since C' is convex, it is path
connected, and hence connected. Since f is continuous and C' is connected and A = f(C), it follows that A
is connected by Part 1 of Theorem 3.37.



3: (a) When A C R’ is unbounded, f: A C R — R™, and b € R™, we write lim f(z) = b when
T—r 00

Ve>03r>0 VazeA (lz|>r=|f(z) —b| <e¢).
Show that if A C R’ is closed and unbounded, and f : A C R — R™ is continuous, and lim f(z) =b € R™,

Tr— 00
then f is uniformly continuous on A.

Solution: Suppose A is closed and unbounded in R?, and f : A C R — R™ is continuous with li_>m f(z) =0.
Let € > 0. Since lim f(x) = b we can choose r > 0 such that for all z € A with x > r we have |f(z) —b| < 5.
T—r0o0

Since A is closed, the set B = B(0,3r) N A is closed, and since B is also bounded, it is compact. Since
f is continuous on B, which is compact, it follows that f is uniformly continuous on B, so we can choose
d > 0 with § < r such that for all a,x € A, if |x —a| < ¢ then |f(z) — f(a)| < e. Let a,z € A with
|z —a] < 6. If |a| < 2r then since |z — a| < r we have |z| < |z —a|+ |a|] < r+2r = 3r, so that z,a € B with
|z —al < d, and hence |f(z) — f(a)| < e. If |a| > 2r then since |z — a| < r we have |a| < |a — x|+ |z| so that
|z| > |a| — |x —a| > 2r —r =7, so we have |a| > r and |z| > r, and hence |f(a) —b| < § and |f(z) —b] < §
so that | £(z) — f(a)] < |f(x) = b + b — Fla)| < §+ 5 = e

(b) Show that if f : A € R — R™ is uniformly continuous on A then there exists a unique continuous
function g : A C R — R™ with g(z) = f(z) for all z € A, and that g is uniformly continuous on A.

Solution: Suppose that f is uniformly continuous on A. Note that if a € A then there exists a sequence (x,,)
in A such that x,, — a: indeed if a € A then we can use the constant sequence z,, = a for all n, and if a € A’
then we can choose a sequence in A\ {a} by Theorem 3.10 (the sequential characterization of limit points).

We claim that when a € A and (z,,) is a sequence in A with x,, — a, the sequence (f(z,)) converges in
R™. Let € > 0. Since f is uniformly continuous on A, we can choose § > 0 such that for all z,y € A we have
|z —y| <6 => |f(z) — f(y)| < e Since x, — a, we can choose n € Z* such that k > n => |z, —a| < $.
Then for k,¢ > n we have |z, — z,| < |z —a| +|a — x| < § + % =4, and hence |f(zr) — f(xe)| <e. This
shows that the sequence (f(x,)) is Cauchy in R™, and so it converges, as claimed.

We claim that when a € A and (z,,) and (y,) are two sequences in A with z,, — a and y,, — a, we
have nlLII;O flz,) = nhﬁrrgo f(yn). By the previous paragraph, we know that the sequences (f(z,)) and f(y.))

both converge, say f(z,) — b and f(y,) — ¢. We need to show that b = ¢. Let ¢ > 0. Since f is uniformly
continuous on A, we can choose § > 0 so that for all z,y € A we have |z —y| <0 = [f(z) — f(y)| < 5.
Since z, — a and y, — a and f(z,) — b and f(y,) — b, we can choose n € Z* such that |z, —a| < 2,
lyn —al < 3, |f(zn) — b < g and | f(yn) —c| < §. Since |z, —al < ¢ and |y, —a| < § we have |z, — y,| < &
and hence |f(x,,) — f(yn)| < §. Thus we have [b—c| < [b— f(zn)|+|f(2n) = f(yn) | +|yn—c| < §+5+5 =€
Since € > 0 was arbitrary, we have |b — ¢| < € for every € > 0, and hence b = ¢, as required.

Thus we can define g : A — R™ as follows: given a € A we choose a sequence (x,,) in A with z,, — a,
and we define g(a) = nlin;o f(x,). Note that when a € A, we do have g(a) = f(a) because we can choose

(5,) to be the constant sequence x,, = a for all a, and then g(a) = lim f(z,) = lim f(a) = f(a).
n—oo n—oo

It remains to show that the map g : A — R™ is uniformly continuous on A. Let ¢ > 0. Since f is
uniformly continuous on A, we can choose §; > 0 such that for all z,y € A we have |z —y| < § =
|f(x) = f(y)] < §. Let § = £61. Let a,b € A with |a — b| < 6. Choose sequences (z,) and (y,) in
A with =, — a and y, — b. Since z, — a and y, — b and f(z,) — g(a) and f(y,) — g(b), we can
choose n € Z* such that |z, —a| < 6, |yn — b < 9, |f(zn) —g(a)| < § and [f(yn) — g(b)| < §. Then
[T = Yn| < |2n —al +|a —=b| + b — yn| < 0++06 = 01 so that |f(zn) — f(yn)| < §, and hence

)

lg(a) —g(®)] < lg(a) = f(@n)| + |f(@n) = Flyn) |+ [f(yn) =9 < 5+ 5+ 5 =€



