1: (a) Let $f(x, y)=\frac{x y^{2}}{x^{2}+2 y^{2}}$ for $(x, y) \neq(0,0)$. Determine whether $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists and, if so, find it.
(b) Let $f(x, y)=\frac{x \sqrt{y}}{x^{2}+y}$ for $y>0$. Determine whether $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists and, if so, find it.
(c) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=\left\{\begin{array}{cc}\frac{x y}{x^{2}-y^{2}} & \text { if } y \neq \pm x \\ 0 & \text { if } y= \pm x\end{array}\right\}$. Determine where $f(x, y)$ is continuous, that is find all points $(a, b) \in \mathbb{R}^{2}$ such that f is continuous at (a, b).

2: For each of the following subsets $A \subseteq \mathbb{R}^{n}$, determine whether A is closed, whether A is compact, and whether A is connected.
(a) $A=\left\{(a, b, c, d) \in \mathbb{R}^{4} \left\lvert\,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right.\right\}$.
(b) A is the set of points $(a, b, c) \in \mathbb{R}^{3}$ such that the polynomial $p(x)=x^{3}+a x^{2}+b x+c$ has three distinct real roots which all lie in the closed interval $[-1,1]$.

3: (a) When $A \subseteq \mathbb{R}^{\ell}$ is unbounded, $f: A \subseteq \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{m}$, and $b \in \mathbb{R}^{m}$, we write $\lim _{x \rightarrow \infty} f(x)=b$ when

$$
\forall \epsilon>0 \exists r>0 \quad \forall x \in A \quad(|x| \geq r \Longrightarrow|f(x)-b|<\epsilon)
$$

Show that if $A \subseteq \mathbb{R}^{\ell}$ is closed and unbounded, and $f: A \subseteq \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{m}$ is continuous, and $\lim _{x \rightarrow \infty} f(x)=b \in \mathbb{R}^{m}$, then f is uniformly continuous on A.
(b) Show that if $f: A \subseteq \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{m}$ is uniformly continuous on A then there exists a unique continuous function $g: \bar{A} \subseteq \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{m}$ with $g(x)=f(x)$ for all $x \in A$, and that g is uniformly continuous on \bar{A}.

