MATH 247 Calculus 3, Solutions to Assignment 1

6.
: (a) Define f : R? = R by 2z = f(x,y) = ﬁ Sketch the level sets f(x,y) = ¢ for ¢ = 0,41, +2, £3,
and the level set z = f(x,0), then sketch the graph of f, that is sketch the surface z = f(x,y).

Solution: The level set f(x,y) = 0 is the line z = 0 (the y-axis). For ¢ # 0, the level set f(x,y) = c is given
by ¢(1+2?+y*) = 6a, that is 2? — Sx+ 42 +1 =0, or (z — %)2+y2 = (%)2 — 1. For 0 < |¢| < 3 this is the

circle with center at (%, O) and radius \/C% — 1. The surface z = f(x,y) can be drawn by drawing each of

the level sets f(x,y) = c at the appropriate height z = ¢. Tt also helps to sketch the curve z = f(z,0) = 1_?“;2

in the plane y = 0 (which is the curve of intersection of the surface with the zz-plane). The required level
curves f(z,y) = ¢, the curve z = f(z,0) = %, and the surface z = f(x,y) are shown below.

z

(b) Define f : R? — R? by f(r,0) = (r cos 6, rsin H,er). Sketch the range of f, that is sketch the surface
given parametrically by (x,y, z) = f(r,0).

Solution: For fixed r € R, the set of points (z,y,2) = f(r,0) = (rcosf,rsinf,e") with 6 € R is the circle
22 +y? =12, 2 = ¢", that is the circle in the plane z = e" centered at (0,0,e") of radius |Inz|. Letting
c=e¢e" >0, s0r =lIngc, this is the circle in the plane z = ¢ centered at (0,0, ¢) of radius |In¢|. The image of
f is the union of all these circles, so we can sketch the surface by sketching some of these circles for various
values of ¢. (it is the surface of obtained by revolving the curve z = e in the zz-plane about the z-axis).
Here is the surface: 2




2: (a) Define f : R — R? by f(t) = (r(t) cost,r(t)sint) where r(t) = sin2t. Find (with proof) a function
g : R? — R such that Range(f) = Null(g).

Solution: We are being asked to find an implicit Cartesian equation for the curve given in polar coordinates
by 7 = 7() = sin 20. Define g : R? — R by g(z,y) = (2% +y?)3 — 42%y%. We claim that Range(f) = Null(g).
Let (z,y) € Range(f), say (z,y) = (rcost,rsint) with r = r(t) = sin2¢t = 2sintcost. Then we have
22 4+ 9% = 12 = 4sin®tcos? t and hence (22 4 y?)® = r% = 47 sin® tcos? t = 4(rsint)?(rcost)? = 4x%y? so
that (z,y) € Null(g). Thus Range(f) C Null(g).

Now let (x,y) € Null(g) so we have (22 + y?)3 = 422y%. Case 1: If (x,y) = (0,0) then we can choose
t =0 to get f(t) = (0,0) = (z,y). Suppose that (z,y) # (0,0) so we have z2 + y? > 0.

Case 2: If zy > 0 then choose ¢t € [0,%] U [m, 3F] such that (z,y) = (\/22+y? cost, /22 +y?sint).
Note that r(t) = sin2t = 2costsint = 2 - and note that since (22 + y?)® = 42?y?

x . y _
\/z2+y2 \/12+y2
and 2y > 0, we have (22 + 32)3/2 = 2xy > 0 (it is strictly positive because 22 4 3? > 0). Thus

. ; _ (.2 2 _ (22%y 2zy®\
f(t) = (T(t) cos t,’l"(t) blnt) - (IQ-II-?;ﬁ ’ \/x;rerZ ’ IQ'T‘?;ﬁ . \/x;!erQ) - ( 2:2;]’ va?i/ ) - (J?,y)
Case 3: If zy < 0 then choose t € [F, 7| U [3F, 27| such that (—z, —y) = (v/22+y? cost, /a2 +y?sint).

Note that r(t) = sin2t = 2costsint = 2 - \/m;in . \/;2-’11/2 = gEEi-’;ﬁ, and note that since (22 + y?)? = 422y?

with zy < 0 we have (22 + y?)%/2 = —2zy > 0. Thus
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£(6) = (r(®)costr(t)sint) = (B33 - 50—, - =) = (s, 22) — (@),
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In all cases, we can find t € R such that (x,y) = f(t), and hence Null(g) C Range(f).

(b) Define g : R® — R? by g(,y,2) = (22 + y* — z, 2? — 2z + y?), Find (with proof) a function f : R — R?
such that Range(f) = Null(g).

Solution: We are being asked to find a parametric equation for the curve of intersection of the two surfaces
22 +y? — 2 =0 and 2% — 22 + y? = 0. The first surface z = 22 + y? is a paraboloid (opening upwards with
its vertex at the origin). The equation of the second surface can be rewritten as (r — 1)? + 32 = 1, and so
it is a cylinder of radius 1 (with its axis along the vertical line z = 1,y = 0). We can parametrize the circle
(x —1)* +y? =1 (in the zy-plane) by (z,y) = (1 + cost,sint). We also need

z=a+y* = (1+cost)? + (sint)? = 1 + 2cost + cos’t +sin’t = 2 + 2 cos't.
Thus we shall define f : R — R? by
f(t) = (z,y,2) = (14 cost,sint,2 + 2cost).

Let us verify that Range(f) = Null(g). Suppose first that (z,y,2) € Range(f). Choose t € R so that
(x,y,2) = f(t) = (1 + cost,sint, 2 + 2 cos t). Then we have

22 +y? — 2= (1+cost)? + (sint)? — (24 2cost) = 1 +2cost + cos® t +sin’¢t — 2 — 2cost = 0, and
22 =22 +y* = (1 4 cost)? —2(1 + cost) + (sint)? = 1+ 2cost + cos*t — 2 — 2cost + sin?t = 0

and so g(z,y,z) = (x2 +y? -z, 22 -2+ y2) = (0,0). This shows that Range(f) C Null(g).

Now suppose that (z,y,z) € Null(g) so that g(z,y,z) = (2* + y* — 2, 2% — 2z + y?) = (0,0). Since
2?2 =2z +y? = 0 we have (x —1)2+3? = 1 and so we can choose t € [0,27) so that z—1 = cost and y = sint.
Since 22 + y? — z = 0 we have

z=ax? +y*> = (1+cost)? + (sint)> = 1 + 2cost + cos?t +sin*t = 2 4 2cost
(as calculated above) and so (z,y,z) = (14cost,sint,2+2cost) = f(t). This shows that Null(g) C Range(f).



3: (a) Let S = {(z,y) € Rﬂy > 22}, Prove, from the definition of an open set, that A is open in R

f|a)

Solution: Let (a,b) € S so we have b > a? and hence vb > |a|. Let 7 = min <b o® We claim that

B((a,b),r) € S. Let (z,y) € B((a,b),r). Note that

|z —a| < V(z—a)?+ (y—b)2 = d((a, b), (x,y)) <r< vb—|al
and similarly

b—a?
ly — bl <r < 5%,

Vb—|al Vb+|al
2 2

It follows that |z| — |a| < |z —a] < so that |z] < and that b—y < |y — b < # so that
y > #. Note that 0 < (vb — |a|)2 = b+ a® — 2|a|Vb so we have 2|a|v/b < b+ a?. Tt follows that

b 2 btad®42 b 2
x2<(\f;r\a|) :+a+4\a|\f<b+2a

<y.

Since y > 22 we have (z,y) € S. This shows that B((a,b),r) C S, as claimed, and so S is open.
(b) Define f: R — R? by f(t) = (sint, te'). Prove that the range of f is not closed in R?.

Solution: Note that (1,0) ¢ Range(f) because to get te! = 0 we need ¢t = 0, so the only point in Range(f)
which lies on the x-axis is the point f(0) = (0,0). We claim that (1,0) is a limit point of Range(f). Let
t, = 5 — 2nm for n € Z*. Note that sin(t,) = 1 for all n € Z*, and t, — —oo so that (using I'Hopital’s
Rule)

. . . t . .
lim t,ef” = lim tef = lim — = lim = lim —e' = 0.
n—oo t—o0 t—oo eft t—oo —e— t—oo
Given r > 0, since lim t,e'™ = 0 we can choose n € ZT such that ¢,e'» < r. Then we have
n—o0

f(tn) = (sinty, the™) = (1,t,e') € B*((1,0),r) N Range(f).

Thus (1,0) is a limit point of Range(f). Since (1,0) is a limit point of Range(f) and (1,0) ¢ Range(f), it
follows that Range(f) is not closed (by Part 2 of Theorem 2.19).

(c) Let A be the set of real numbers x € [0,1) which can be Written in base 3 without using the digit 2, or
in other words, let A be the set of real numbers of the form z = >~/ | % with each a; € {0,1}. Determine

whether A is open or closed (or neither) in R.

Solution: We claim that A is closed. Let A, be the set of all z € [0,1) of the form z = 77 ¢ with
ai,as, - an, € {0,1} and a, € {0,1,2} for k > n. Note that z € A, if and only if a = b + ¢ for some
b of the form b = >} | % with each aj, € {0,1} and for some ¢ of the form ¢ = 5l Z:io % with each

ar, € {0,1,2}, or equivalently for some t € [O, SR%} Thus A,, is the union of the 2™ closed intervals of the

form [b, b+ |, where b = Z # with each a;, € {0,1}. For example, we have 41 = [0,1]U[$,2] = [0, 2]

and Ay = [0,5] U [§, 2] U [%, g] U[s,2] =10,2]U[3,2]. Since A=(,2, A, and each set A, is closed, it

follows that A is closed (by Theorem 2.14, which follows easily from Theorem 2.13), as claimed.

We remark that A = 1C = {2m|x€C} Where C' is the famous Cantor set, which is the set of x € [0, 1]
which can be written in the form z = 3777 | 4 with each a; € {0,2}. One can prove that C is closed in the
same way that we proved that A is closed.



4: (a) Let A, B C R". Show that AUB = AU B.

Solution: Since A C A and B C B we have AUB C AUB. Since AUB C AU B and AU B is closed, it
follows (from Definition 2.15) that AUB C AU B.

Note that for X, Y C R”, if X C Y then every closed set containing ¥ also contains X, and so X C Y
(by Definition 2.15). Since A C AU B we have A C AU B. Since B C AU B we have B C AU B. Since

ACAUBand BC AUB we have AUB C AU B.
(b) Let A C R™. Show that A’ = A’ or, in other words, show that A and A have the same limit points.

Solution: Note first that if A C B then we have A’ C B’: indeed if a € A’ then given r > 0 we have
B*(a,r) N B 2 B*(a,r)N A # (). Since A C A, it follows that A’ C A'. It remains to show that A" C A'.
Let a € A'. Let r > 0. We must show that B*(a,7) N A # (). Since a € A’ we can choose an element
x € B*(a,5) N A. Since z € A = AU A, either we have z € A or we have z € A’. If z € A then we
have z € B*(a,r) N A so that B*(a,r) N A # 0. Suppose that x € A’. Let s = d(x,a) and note that since
x € B* (a, %) we have 0 < s < 5. Since x € A’ we can choose y € B*(x,s) N A. Then we have y € A, and
we have y # a (since d(y,z) < s = d(a, ) ), and we have d(y,a) < d(y,z) + d(z,a) < s+ % < r, and hence
y € B*(a,7) N A so that B*(a,r) N A # 0, as required.

(c) Let A, B C R™ be disjoint closed sets. Show that there exist disjoint open sets U,V C R™ with A C U
and BCV.

Solution: Let A and B be disjoint closed sets in R™. For each a € A, since AN B = () we have a € B¢, and
since B is closed so that B¢ is open, we can choose r, > 0 such that B(a,2r,) C B¢, that is B(a,2r,)NB = (.
Similarly, for each b € B we can choose s, > 0 such that B(b,2s,) C A¢, that is B(b,2s,) N A = ().

Let U = U eca Bla,rq) and V = (J,c g B(b, 55). Then U and V' are open with A C U and B C V. We
claim that U NV = (). Suppose, for a contradiction, that ¢ € UNV. Since ¢ € U = |J,c 4 B(a,74) we can
choose a € A such that ¢ € B(a,r,). Since c € V = |, g B(b, 53) we can choose b € B such that c € B(b, sp).
If r, < sp then d(a,b) < d(a,c)+ d(c,b) < rq+ sp < 2s;, so that a € B(b,2sy), but this contradicts the fact
that B(b,2s,) N A = (). Similarly, if s, < r, then d(a,b) < 2r, so that b € B(a,2r,), contradicting the fact
that B(a,2r,) N B =1{. Thus UNV =0, as claimed.




