
MATH 247 Calculus 3, Solutions to Assignment 1

1: (a) Define f : R2 → R by z = f(x, y) =
6x

1 + x2 + y2
. Sketch the level sets f(x, y) = c for c = 0,±1,±2,±3,

and the level set z = f(x, 0), then sketch the graph of f , that is sketch the surface z = f(x, y).

Solution: The level set f(x, y) = 0 is the line x = 0 (the y-axis). For c 6= 0, the level set f(x, y) = c is given

by c (1 + x2 + y2) = 6x, that is x2− 6
c x+ y2 + 1 = 0, or

(
x− 3

c

)2
+ y2 =

(
3
c

)2− 1. For 0 < |c| ≤ 3 this is the

circle with center at
(
3
c , 0
)

and radius
√

9
c2 − 1. The surface z = f(x, y) can be drawn by drawing each of

the level sets f(x, y) = c at the appropriate height z = c. It also helps to sketch the curve z = f(x, 0) = 6x
1+x2

in the plane y = 0 (which is the curve of intersection of the surface with the xz-plane). The required level
curves f(x, y) = c, the curve z = f(x, 0) = 6x

1+x2 , and the surface z = f(x, y) are shown below.
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(b) Define f : R2 → R3 by f(r, θ) =
(
r cos θ, r sin θ, er

)
. Sketch the range of f , that is sketch the surface

given parametrically by (x, y, z) = f(r, θ).

Solution: For fixed r ∈ R, the set of points (x, y, z) = f(r, θ) =
(
r cos θ, r sin θ, er

)
with θ ∈ R is the circle

x2 + y2 = r2, z = er, that is the circle in the plane z = er centered at (0, 0, er) of radius | ln z|. Letting
c = er > 0, so r = ln c, this is the circle in the plane z = c centered at (0, 0, c) of radius | ln c|. The image of
f is the union of all these circles, so we can sketch the surface by sketching some of these circles for various
values of c. (it is the surface of obtained by revolving the curve z = ex in the xz-plane about the z-axis).
Here is the surface: z

x y



2: (a) Define f : R → R2 by f(t) =
(
r(t) cos t, r(t) sin t

)
where r(t) = sin 2t. Find (with proof) a function

g : R2 → R such that Range(f) = Null(g).

Solution: We are being asked to find an implicit Cartesian equation for the curve given in polar coordinates
by r = r(θ) = sin 2θ. Define g : R2 → R by g(x, y) = (x2 + y2)3− 4x2y2. We claim that Range(f) = Null(g).
Let (x, y) ∈ Range(f), say (x, y) =

(
r cos t, r sin t) with r = r(t) = sin 2t = 2 sin t cos t. Then we have

x2 + y2 = r2 = 4 sin2 t cos2 t and hence (x2 + y2)3 = r6 = 4r4 sin2 t cos2 t = 4(r sin t)2(r cos t)2 = 4x2y2 so
that (x, y) ∈ Null(g). Thus Range(f) ⊆ Null(g).

Now let (x, y) ∈ Null(g) so we have (x2 + y2)3 = 4x2y2. Case 1: If (x, y) = (0, 0) then we can choose
t = 0 to get f(t) = (0, 0) = (x, y). Suppose that (x, y) 6= (0, 0) so we have x2 + y2 > 0.

Case 2: If xy ≥ 0 then choose t ∈
[
0, π2

]
∪
[
π, 3π2

]
such that (x, y) =

(√
x2+y2 cos t,

√
x2+y2 sin t

)
.

Note that r(t) = sin 2t = 2 cos t sin t = 2 · x√
x2+y2

· y√
x2+y2

= 2xy
x2+y2 , and note that since (x2 + y2)3 = 4x2y2

and xy ≥ 0, we have (x2 + y2)3/2 = 2xy > 0 (it is strictly positive because x2 + y2 > 0). Thus

f(t) =
(
r(t) cos t, r(t) sin t

)
=
(

2xy
x2+y2 ·

x√
x2+y2

, 2xy
x2+y2 ·

y√
x2+y2

)
=
(
2x2y
2xy ,

2xy2

2xy

)
= (x, y).

Case 3: If xy ≤ 0 then choose t ∈
[
π
2 , π

]
∪
[
3π
2 , 2π

]
such that (−x,−y) =

(√
x2+y2 cos t,

√
x2+y2 sin t

)
.

Note that r(t) = sin 2t = 2 cos t sin t = 2 · −x√
x2+y2

· −y√
x2+y2

= 2xy
x2+y2 , and note that since (x2 + y2)3 = 4x2y2

with xy ≤ 0 we have (x2 + y2)3/2 = −2xy > 0. Thus

f(t) =
(
r(t) cos t, r(t) sin t

)
=
(

2xy
x2+y2 ·

−x√
x2+y2

, 2xy
x2+y2 ·

−y√
x2+y2

)
=
(−2x2y
−2xy ,

−2xy2
−2xy

)
= (x, y).

In all cases, we can find t ∈ R such that (x, y) = f(t), and hence Null(g) ⊆ Range(f).

(b) Define g : R3 → R2 by g(x, y, z) =
(
x2 + y2 − z , x2 − 2x+ y2

)
, Find (with proof) a function f : R→ R3

such that Range(f) = Null(g).

Solution: We are being asked to find a parametric equation for the curve of intersection of the two surfaces
x2 + y2 − z = 0 and x2 − 2x+ y2 = 0. The first surface z = x2 + y2 is a paraboloid (opening upwards with
its vertex at the origin). The equation of the second surface can be rewritten as (x − 1)2 + y2 = 1, and so
it is a cylinder of radius 1 (with its axis along the vertical line x = 1, y = 0). We can parametrize the circle
(x− 1)2 + y2 = 1 (in the xy-plane) by (x, y) =

(
1 + cos t, sin t

)
. We also need

z = x2 + y2 = (1 + cos t)2 + (sin t)2 = 1 + 2 cos t+ cos2 t+ sin2 t = 2 + 2 cos t .

Thus we shall define f : R→ R3 by

f(t) = (x, y, z) =
(
1 + cos t, sin t, 2 + 2 cos t

)
.

Let us verify that Range(f) = Null(g). Suppose first that (x, y, z) ∈ Range(f). Choose t ∈ R so that
(x, y, z) = f(t) =

(
1 + cos t, sin t, 2 + 2 cos t

)
. Then we have

x2 + y2 − z = (1 + cos t)2 + (sin t)2 − (2 + 2 cos t) = 1 + 2 cos t+ cos2 t+ sin2 t− 2− 2 cos t = 0, and

x2 − 2x+ y2 = (1 + cos t)2 − 2(1 + cos t) + (sin t)2 = 1 + 2 cos t+ cos2 t− 2− 2 cos t+ sin2 t = 0

and so g(x, y, z) =
(
x2 + y2 − z , x2 − 2x+ y2

)
= (0, 0). This shows that Range(f) ⊆ Null(g).

Now suppose that (x, y, z) ∈ Null(g) so that g(x, y, z) =
(
x2 + y2 − z , x2 − 2x + y2

)
= (0, 0). Since

x2−2x+y2 = 0 we have (x−1)2 +y2 = 1 and so we can choose t ∈ [0, 2π) so that x−1 = cos t and y = sin t.
Since x2 + y2 − z = 0 we have

z = x2 + y2 = (1 + cos t)2 + (sin t)2 = 1 + 2 cos t+ cos2 t+ sin2 t = 2 + 2 cos t

(as calculated above) and so (x, y, z) =
(
1+cos t, sin t, 2+2 cos t

)
= f(t). This shows that Null(g) ⊆ Range(f).



3: (a) Let S =
{

(x, y) ∈ R2
∣∣y > x2

}
. Prove, from the definition of an open set, that A is open in R2.

Solution: Let (a, b) ∈ S so we have b > a2 and hence
√
b > |a|. Let r = min

(
b−a2

2 ,
√
b−|a|
2

)
. We claim that

B
(
(a, b), r

)
⊆ S. Let (x, y) ∈ B

(
(a, b), r

)
. Note that

|x− a| ≤
√

(x− a)2 + (y − b)2 = d
(
(a, b), (x, y)

)
< r ≤

√
b−|a|
2

and similarly

|y − b| < r ≤ b−a2
2 .

It follows that |x| − |a| ≤ |x − a| <
√
b−|a|
2 so that |x| ≤

√
b+|a|
2 and that b − y ≤ |y − b| < b−a2

2 so that

y > b+a2

2 . Note that 0 ≤
(√
b− |a|

)2
= b+ a2 − 2|a|

√
b so we have 2|a|

√
b ≤ b+ a2. It follows that

x2 <
(√

b+|a|
2

)2
= b+a2+2|a|

√
b

4 ≤ b+a2

2 < y.

Since y > x2 we have (x, y) ∈ S. This shows that B
(
(a, b), r

)
⊆ S, as claimed, and so S is open.

(b) Define f : R→ R2 by f(t) =
(

sin t , t et
)
. Prove that the range of f is not closed in R2.

Solution: Note that (1, 0) /∈ Range(f) because to get tet = 0 we need t = 0, so the only point in Range(f)
which lies on the x-axis is the point f(0) = (0, 0). We claim that (1, 0) is a limit point of Range(f). Let
tn = π

2 − 2nπ for n ∈ Z+. Note that sin(tn) = 1 for all n ∈ Z+, and tn → −∞ so that (using l’Hôpital’s
Rule)

lim
n→∞

tne
tn = lim

t→∞
t et = lim

t→∞

t

e−t
= lim
t→∞

1

−e−t
= lim
t→∞

−et = 0.

Given r > 0, since lim
n→∞

tne
tn = 0 we can choose n ∈ Z+ such that tne

tn < r. Then we have

f(tn) = (sin tn, tne
tn) = (1, tne

tn) ∈ B∗
(
(1, 0), r

)
∩ Range(f).

Thus (1, 0) is a limit point of Range(f). Since (1, 0) is a limit point of Range(f) and (1, 0) /∈ Range(f), it
follows that Range(f) is not closed (by Part 2 of Theorem 2.19).

(c) Let A be the set of real numbers x ∈ [0, 1) which can be written in base 3 without using the digit 2, or
in other words, let A be the set of real numbers of the form x =

∑∞
k=1

ak
3k

with each ak ∈ {0, 1}. Determine
whether A is open or closed (or neither) in R.

Solution: We claim that A is closed. Let An be the set of all x ∈ [0, 1) of the form x =
∑∞
k=1

ak
3k

with
a1, a2, · · · , an ∈ {0, 1} and ak ∈ {0, 1, 2} for k > n. Note that x ∈ An if and only if a = b + t for some
b of the form b =

∑n
k=1

ak
3k

with each ak ∈ {0, 1} and for some t of the form t = 1
3n+1

∑∞
k=0

ak
3k

with each

ak ∈ {0, 1, 2}, or equivalently for some t ∈
[
0, 1

3n+1

]
. Thus An is the union of the 2n closed intervals of the

form
[
b, b+ 1

3n+1

]
, where b =

n∑
k=1

ak
3k

with each ak ∈ {0, 1}. For example, we have A1 =
[
0, 13
]
∪
[
1
3 ,

2
3

]
=
[
0, 23
]

and A2 =
[
0, 19
]
∪
[
1
9 ,

2
9

]
∪
[
1
3 ,

4
9

]
∪
[
4
9 ,

5
9

]
=
[
0, 29
]
∪
[
1
3 ,

5
9

]
. Since A =

⋂∞
n=1An and each set An is closed, it

follows that A is closed (by Theorem 2.14, which follows easily from Theorem 2.13), as claimed.

We remark that A = 1
2C =

{
1
2x
∣∣x∈C} where C is the famous Cantor set, which is the set of x ∈ [0, 1]

which can be written in the form x =
∑∞
k=1

ak
3k

with each ak ∈ {0, 2}. One can prove that C is closed in the
same way that we proved that A is closed.



4: (a) Let A,B ⊆ Rn. Show that A ∪B = A ∪B.

Solution: Since A ⊆ A and B ⊆ B we have A ∪ B ⊆ A ∪ B. Since A ∪ B ⊆ A ∪ B and A ∪ B is closed, it
follows (from Definition 2.15) that A ∪B ⊆ A ∪B.

Note that for X,Y ⊆ Rn, if X ⊆ Y then every closed set containing Y also contains X, and so X ⊆ Y
(by Definition 2.15). Since A ⊆ A ∪ B we have A ⊆ A ∪B. Since B ⊆ A ∪ B we have B ⊆ A ∪B. Since

A ⊆ A ∪B and B ⊆ A ∪B we have A ∪B ⊆ A ∪B.

(b) Let A ⊆ Rn. Show that A′ = A
′

or, in other words, show that A and A have the same limit points.

Solution: Note first that if A ⊆ B then we have A′ ⊆ B′: indeed if a ∈ A′ then given r > 0 we have

B∗(a, r) ∩ B ⊇ B∗(a, r) ∩ A 6= ∅. Since A ⊆ A, it follows that A′ ⊆ A
′
. It remains to show that A

′ ⊆ A′.

Let a ∈ A
′
. Let r > 0. We must show that B∗(a, r) ∩ A 6= ∅. Since a ∈ A

′
we can choose an element

x ∈ B∗
(
a, r2

)
∩ A. Since x ∈ A = A ∪ A′, either we have x ∈ A or we have x ∈ A′. If x ∈ A then we

have x ∈ B∗(a, r) ∩ A so that B∗(a, r) ∩ A 6= ∅. Suppose that x ∈ A′. Let s = d(x, a) and note that since
x ∈ B∗

(
a, r2

)
we have 0 < s < r

2 . Since x ∈ A′ we can choose y ∈ B∗(x, s) ∩ A. Then we have y ∈ A, and

we have y 6= a
(
since d(y, x) < s = d(a, x)

)
, and we have d(y, a) ≤ d(y, x) + d(x, a) < s+ r

2 < r, and hence
y ∈ B∗(a, r) ∩A so that B∗(a, r) ∩A 6= ∅, as required.

(c) Let A,B ⊆ Rn be disjoint closed sets. Show that there exist disjoint open sets U, V ⊆ Rn with A ⊆ U
and B ⊆ V .

Solution: Let A and B be disjoint closed sets in Rn. For each a ∈ A, since A ∩ B = ∅ we have a ∈ Bc, and
since B is closed so that Bc is open, we can choose ra > 0 such that B(a, 2ra) ⊆ Bc, that is B(a, 2ra)∩B = ∅.
Similarly, for each b ∈ B we can choose sb > 0 such that B(b, 2sb) ⊆ Ac, that is B(b, 2sb) ∩A = ∅.

Let U =
⋃
a∈AB(a, ra) and V =

⋃
b∈B B(b, sb). Then U and V are open with A ⊆ U and B ⊆ V . We

claim that U ∩ V = ∅. Suppose, for a contradiction, that c ∈ U ∩ V . Since c ∈ U =
⋃
a∈AB(a, ra) we can

choose a ∈ A such that c ∈ B(a, ra). Since c ∈ V =
⋃
b∈B B(b, sb) we can choose b ∈ B such that c ∈ B(b, sb).

If ra ≤ sb then d(a, b) ≤ d(a, c) + d(c, b) < ra + sb ≤ 2sb so that a ∈ B(b, 2sb), but this contradicts the fact
that B(b, 2sb) ∩ A = ∅. Similarly, if sb ≤ ra then d(a, b) < 2ra so that b ∈ B(a, 2ra), contradicting the fact
that B(a, 2ra) ∩B = ∅. Thus U ∩ V = ∅, as claimed.


