- 1: (a) Define f: R² → R by z = f(x, y) = ^{6x}/_{1 + x² + y²}. Sketch the level sets f(x, y) = c for c = 0, ±1, ±2, ±3, and the level set z = f(x, 0), then sketch the graph of f, that is sketch the surface z = f(x, y).
 (b) Define f: R² → R³ by f(r, θ) = (r cos θ, r sin θ, e^r). Sketch the range of f, that is sketch the parametric surface (x, y, z) = f(r, θ).
- 2: (a) Define $f : \mathbf{R} \to \mathbf{R}^2$ by $f(t) = (r(t)\cos t, r(t)\sin t)$ where $r(t) = \sin 2t$. Find (with proof) a function $g : \mathbf{R}^2 \to \mathbf{R}$ such that $\operatorname{Range}(f) = \operatorname{Null}(g)$. (b) Define $g : \mathbf{R}^3 \to \mathbf{R}^2$ by $g(x, y, z) = (x^2 + y^2 - z, x^2 - 2x + y^2)$, Find (with proof) a function $f : \mathbf{R} \to \mathbf{R}^3$ such that $\operatorname{Range}(f) = \operatorname{Null}(g)$.
- **3:** (a) Let $A = \{(x, y) \in \mathbb{R}^2 | y > x^2\}$. Prove, from the definition of an open set, that A is open in \mathbb{R}^2 . (b) Define $f : \mathbb{R} \to \mathbb{R}^2$ by $f(t) = (\sin t, t e^t)$. Prove that the range of f is not closed in \mathbb{R}^2 .

(c) Let A be the set of real numbers $x \in [0, 1)$ which can be written in base 3 without using the digit 2, or in other words, let A be the set of real numbers of the form $x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}$ with each $a_k \in \{0, 1\}$. Determine whether A is open or closed (or neither) in **R**.

4: (a) Let $A, B \subseteq \mathbf{R}^n$. Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

(b) Let $A \subseteq \mathbf{R}^n$. Show that $A' = \overline{A}'$ or, in other words, show that A and \overline{A} have the same limit points. (c) Let $A, B \subseteq \mathbf{R}^n$ be disjoint closed sets. Show that there exist disjoint open sets $U, V \subseteq \mathbf{R}^n$ with $A \subseteq U$

and $B \subseteq V$.