1: (a) Define $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ by $z=f(x, y)=\frac{6 x}{1+x^{2}+y^{2}}$. Sketch the level sets $f(x, y)=c$ for $c=0, \pm 1, \pm 2, \pm 3$, and the level set $z=f(x, 0)$, then sketch the graph of $f$, that is sketch the surface $z=f(x, y)$.
(b) Define $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ by $f(r, \theta)=\left(r \cos \theta, r \sin \theta, e^{r}\right)$. Sketch the range of $f$, that is sketch the parametric surface $(x, y, z)=f(r, \theta)$.

2: (a) Define $f: \mathbf{R} \rightarrow \mathbf{R}^{2}$ by $f(t)=(r(t) \cos t, r(t) \sin t$ ) where $r(t)=\sin 2 t$. Find (with proof) a function $g: \mathbf{R}^{2} \rightarrow \mathbf{R}$ such that Range $(f)=\operatorname{Null}(g)$.
(b) Define $g: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ by $g(x, y, z)=\left(x^{2}+y^{2}-z, x^{2}-2 x+y^{2}\right)$, Find (with proof) a function $f: \mathbf{R} \rightarrow \mathbf{R}^{3}$ such that Range $(f)=\operatorname{Null}(g)$.

3: (a) Let $A=\left\{(x, y) \in \mathbf{R}^{2} \mid y>x^{2}\right\}$. Prove, from the definition of an open set, that $A$ is open in $\mathbf{R}^{2}$.
(b) Define $f: \mathbf{R} \rightarrow \mathbf{R}^{2}$ by $f(t)=\left(\sin t, t e^{t}\right)$. Prove that the range of $f$ is not closed in $\mathbf{R}^{2}$.
(c) Let $A$ be the set of real numbers $x \in[0,1)$ which can be written in base 3 without using the digit 2 , or in other words, let $A$ be the set of real numbers of the form $x=\sum_{k=1}^{\infty} \frac{a_{k}}{3^{k}}$ with each $a_{k} \in\{0,1\}$. Determine whether $A$ is open or closed (or neither) in $\mathbf{R}$.

4: (a) Let $A, B \subseteq \mathbf{R}^{n}$. Show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
(b) Let $A \subseteq \mathbf{R}^{n}$. Show that $A^{\prime}=\bar{A}^{\prime}$ or, in other words, show that $A$ and $\bar{A}$ have the same limit points.
(c) Let $A, B \subseteq \mathbf{R}^{n}$ be disjoint closed sets. Show that there exist disjoint open sets $U, V \subseteq \mathbf{R}^{n}$ with $A \subseteq U$ and $B \subseteq V$.

