Solutions to the Special K Problems, 2012

1: Let \(f(x) = x^4 + 2x^3 \). Find the equation of a line which is tangent to the curve \(y = f(x) \) at two distinct points.

Solution: We have \(f'(x) = 4x^3 + 6x^2 \). The tangent line to \(y = f(x) \) at \(x = a \) is given by \(y = l(x) \) where

\[
 l(x) = f(x) + f'(a)(x-a) = (a^4 + 2a^3) + (4a^3 + 6a^2)(x-a) = (4a^3 + 6a^2)x - (3a^4 + 4a^3).
\]

Note that the function \(g(x) = f(x) - l(x) \) has a double root at \(x = a \), indeed

\[
 g(x) = f(x) - l(x) = x^4 + 2x^3 - (4a^3 + 6a^2)x - (3a^4 + 4a^3)
 = (x-a)(x^3 + (a+2)x^2 + (a^2 + 2a)x - (3a^3 + 4a^2))
 = (x-a)^2(x^2 + (2a+2)x + (3a^2 + 4a)).
\]

In order for \(y = l(x) \) to be tangent to the curve \(y = f(x) \) at another point \((b, f(b))\), we need \(g(x) \) to have another double root at \(x = b \). Since \(g(x) \) is monic, it must be of the form \(g(x) = (x-a)^2(x-b)^2 \), so we must have

\[
x^2 + (2a + 2)x + (3a^2 + 4a) = (x-b)^2 = x^2 - 2b + b^2,
\]
and so \(b = -(a+1) \) (1) and \(b^2 = 3a^2 + 4a \) (2). Put \(b = -(a+1) \) into equation (2) to get \(a^2 + 2a + 1 = 3a^2 + 4a \), that is \(2a^2 + 2a - 1 = 0 \). Thus \(a = \frac{-2 \pm \sqrt{4+8}}{4} = \frac{-1 \pm \sqrt{3}}{2} \) and \(b = -(a+1) \). When \(a = \frac{-1 + \sqrt{3}}{2} \) we have \(b = \frac{-1 - \sqrt{3}}{2} \), and vice versa. Taking \(a = \frac{-1 + \sqrt{3}}{2} \), we have \(a^2 = \frac{-2 - \sqrt{3}}{2} \), \(a^3 = \frac{-5 + 3\sqrt{3}}{4} \) and \(a^4 = \frac{-7 - 4\sqrt{3}}{2} \) and so the equation of the required tangent line is

\[
y = l(x) = (4a^3 + 6a^2)x - (3a^4 + 4a^3) = ((-5 + 3\sqrt{3}) + (6 - 3\sqrt{3}))x - (\frac{21 - 12\sqrt{3}}{4} + \frac{-20 + 12\sqrt{3}}{4}) = x - \frac{1}{4}.
\]

2: Find the area of the region \(R = \{(x, y) \in \mathbb{R}^2 | (x^2 + y^2)^2 \leq 4x^2 \text{ and } x(x^2 + y^2) \leq 2\sqrt{3}xy \} \).

Solution: When \(x > 0 \) we have \((x^2 + y^2)^2 \leq 4x^2 \iff x^2 + y^2 \leq 2x \iff (x - 1)^2 + y^2 \leq 1 \) and we have \(x(x^2 + y^2) \leq 2\sqrt{3}xy \iff \frac{x^2 + y^2}{2} \leq \sqrt{3}y \iff x^2 + y^2 \leq (y - \sqrt{3})^2 \leq 3 \), and so the part of the region \(R \) which lies to the right of the \(y \)-axis is the region \(A \) which lies inside both the circle centered at \((1,0)\) of radius 1 and the circle centered at \((0, \sqrt{3})\) of radius \(\sqrt{3} \). When \(x < 0 \), on the other hand, we have \((x^2 + y^2)^2 \leq 4x^2 \iff x^2 + y^2 \leq -2x \iff (x + 1)^2 + y^2 \leq 1 \) and \(x(x^2 + y^2) \leq 2\sqrt{3}xy \iff x^2 + y^2 \geq 2\sqrt{3}y \iff x^2 + (y - \sqrt{3})^2 \geq 3 \) and so the part of the region \(R \) which lies to the left of the \(y \)-axis is the region \(B \) which lies inside the circle centered at \((-1,0)\) of radius 1 and outside the circle centered at \((0, \sqrt{3})\) of radius \(\sqrt{3} \). The area of \(R \) is the sum of the areas of \(A \) and \(B \) which, by symmetry, is equal to the area of a unit circle, namely \(\pi \).
3: Let \(x_n \) be the number of \(2 \times n \) matrices with entries in \(\{0, 1\} \) which do not contain the \(2 \times 2 \) block \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \).

Find \(\lim_{n \to \infty} \frac{x_{n+1}}{x_n} \).

Solution: Let \(a_n, b_n, c_n \) and \(d_n \) be the number of allowable \(2 \times n \) matrices which end with the column \(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \), \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \) and \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \). Note that \(a_1 = b_1 = c_1 = d_1 = 1 \). Each of the three columns \(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \), \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \) and \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \) can be appended to any allowable \(2 \times n \) matrix to get an allowable \(2 \times (n + 1) \) matrix, so we have

\[
a_{n+1} = c_{n+1} = d_{n+1} = a_n + b_n + c_n + d_n.
\]

It follows that \(a_n = c_n = d_n \) for all \(n \geq 1 \), and we can write the above recursion formula as

\[
a_{n+1} = 3a_n + b_n.
\]

The column \(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \) can be appended to any allowable \(2 \times n \) matrix which does not end with \(\begin{pmatrix} 1 \\ 0 \end{pmatrix} \), so we have

\[
b_{n+1} = a_n + b_n + d_n = 2a_n + b_n.
\]

From the formula \(a_{n+1} = 3a_n + b_n \) we get \(b_n = a_{n+1} - 3a_n \) (hence also \(b_{n+1} = a_{n+2} - 3a_n \)). Put this into the formula \(b_{n+1} = 2a_n + b_n \) to get \(a_{n+2} - 3a_{n+1} = 2a_n + a_{n+1} - 3a_n \) which we can also write as

\[
a_{n+2} = 4a_{n+1} - a_n.
\]

Note that \(x_n = a_n + b_n + c_n + d_n = 3a_n + b_n = a_{n+1} \), so that \(x_1 = 4 \), \(x_2 = 15 \) and for \(n \geq 2 \) we have

\[
x_{n+1} = 4x_n - x_{n-1}.
\]

Dividing by \(x_n \) gives

\[
\frac{x_{n+1}}{x_n} = 4 - \frac{x_{n-1}}{x_n}.
\]

The above formula shows that \(\left\{ \frac{x_{n+1}}{x_n} \right\} \) is decreasing, and we have \(x_{n+1} = a_{n+2} = 3a_{n+1} + b_{n+1} \geq 3a_{n+1} = 3x_n \) so that \(\frac{x_{n+1}}{x_n} \geq 3 \), and so the sequence \(\left\{ \frac{x_{n+1}}{x_n} \right\} \) must converge with \(\lim_{n \to \infty} \frac{x_{n+1}}{x_n} \geq 3 \). Let \(L = \lim_{n \to \infty} \frac{x_{n+1}}{x_n} \). By taking the limit on both sides of the formula \(\frac{x_{n+1}}{x_n} = 4 - \frac{x_{n-1}}{x_n} \) we obtain \(L = 4 - \frac{1}{L} \), that is \(L^2 - 4L + 1 = 0 \), and so \(L = \frac{4 \pm \sqrt{16 - 4}}{2} = 2 \pm \sqrt{2} \). Since \(L \geq 3 \) we must have \(L = 2 + \sqrt{2} \).

4: Let \(k \geq 3 \) be an integer. Let \(n = \frac{k(k+1)}{2} \). Let \(S \subseteq \mathbb{Z}_n \) with \(|S| = k \). Show that \(S + S \neq \mathbb{Z}_n \).

Solution: Say \(S = \{a_1, a_2, \ldots, a_k\} \). Then each element of \(S + S \) is of the form \(a_i + a_j \) for some 1 or 2-element subset \(\{a_j, a_k\} \subseteq S \) (where we allow the possibility that \(a_j = a_k \)). There are \(\frac{k(k+1)}{2} \) such subsets, and so to show that \(S + S \neq \mathbb{Z}_n \) it suffices to find two distinct sets \(\{a_i, a_j\} \neq \{a_j, a_k\} \) with \(a_i + a_j \) and \(a_i + a_k \).

There are \(k(k-1) \) ordered pairs \((a_i, a_j) \) with \(a_i \neq a_j \). For such pairs, there are \(n - 1 \) possible values for the difference \(a_i - a_j \) in \(\mathbb{Z}_n \) (since the difference cannot be zero). For \(k \geq 3 \) we have

\[
k(k-1) = \frac{k(k+1)}{2} + \frac{k(k-3)}{2} \geq \frac{k(k+1)}{2} = n > n - 1
\]

so by the Pigeonhole principle, we can choose two order pairs \((a_i, a_j) \neq (a_k, a_l) \) with \(a_i \neq a_j \) and \(a_k \neq a_l \) such that \(a_i - a_j = a_k - a_l \). Note that \(a_i + a_l = a_j + a_k \) and note that \(\{a_i, a_l\} \neq \{a_j, a_k\} \) (indeed, if we had \(\{a_i, a_l\} = \{a_j, a_k\} \) then since \(a_j \neq a_l \) we would need \(a_i = a_k \), and since \(a_i \neq a_k \) we would need \(a_l = a_j \), but then we would have \((a_i, a_j) = (a_k, a_l) \)).
5: Let \(f : \mathbb{R} \to \mathbb{R} \). Suppose that \(\lim_{x \to 0} f(x) = f(0) = 0 \) and \(\lim_{x \to 0} \frac{f(2x) - f(x)}{x} = 0 \). Show that \(f \) is differentiable at 0 with \(f'(0) = 0 \).

Solution: Let \(\epsilon > 0 \). Choose \(\delta > 0 \) so that \(0 < |x| < \delta \implies \left| \frac{f(2x) - f(x)}{x} \right| < \frac{\epsilon}{2} \). Let \(x \in \mathbb{R} \) with \(0 < |x| < \delta \).

Note that for \(k \in \mathbb{Z}^+ \) we have \(0 < |x| < \delta \) and so \(\left| \frac{f(x_2^k) - f(x_1^k)}{x} \right| < \frac{\epsilon}{2} \), hence \(\left| \frac{f(x_2^k) - f(x_1^k)}{x} \right| < \frac{\epsilon}{2^{k+1}} \).

Thus for all \(n \in \mathbb{Z}^+ \) we have

\[
\left| \frac{f(x) - f(0)}{x} \right| = \left| \frac{f(x)}{x} \right| = \left| \frac{f(x) - f(x_1^k)}{x} + \frac{f(x_1^k) - f(x_2^k)}{x} + \cdots + \frac{f(x_n^k) - f(x_{n+1}^k)}{x} \right|
\leq \left| \frac{f(x) - f(x_1^k)}{x} \right| + \left| \frac{f(x_1^k) - f(x_2^k)}{x} \right| + \cdots + \left| \frac{f(x_n^k) - f(x_{n+1}^k)}{x} \right| + \left| \frac{f(x_{n+1}^k)}{x} \right|
< \frac{\epsilon}{4} + \frac{\epsilon}{8} + \cdots + \frac{\epsilon}{2^{n+1}} + \left| \frac{f(x_{n+1}^k)}{x} \right| < \frac{\epsilon}{2} + \frac{\epsilon}{2^{|x|}}.
\]

In particular, choosing \(n \) large enough so that \(|f(x_{n+1}^k)| < \frac{\epsilon}{2^{|x|}} \) (which we can do since \(\lim_{x \to 0} f(x) = 0 \)) we have

\[
\left| \frac{f(x) - f(0)}{x} \right| < \epsilon.
\]

6: Let \(\mathbb{Z}^+ \) be the set of positive integers. Show that there exists a bijection \(f : \mathbb{Z}^+ \to \mathbb{Z}^+ \) with the property that \(\prod_{k=1}^n f(k) \) is an \(n \)th power for every \(n \in \mathbb{Z}^+ \).

Solution: We construct such a bijection. We define \(f(1) = 1 \). Having defined \(f(1), f(2), \ldots, f(2n-1) \), we define \(f(2n) \) and \(f(2n+1) \) as follows. First we define \(f(2n+1) \) to be the smallest positive integer with \(f(2n+1) \notin \{f(1), f(2), \ldots, f(2n-1)\} \), and then we define

\[
f(2n) = (f(1)f(2) \cdots f(2n-1))^{(2n)(2n+1)-1} f(2n+1)^{2n}.
\]
1: Find the volume of the solid $S = \{(x,y,z) \in \mathbb{R}^3 \mid (x^2 + y^2 + z^2)^2 \leq 4x^2 \text{ and } x(x^2 + y^2) \leq xz^2 \}$.

Solution: When $x > 0$ we have $(x^2 + y^2 + z^2)^2 \leq 4x^2 \iff x^2 + y^2 + z^2 \leq 2x \iff (x-1)^2 + y^2 + z^2 \leq 1$ and we have $x(x^2 + y^2) \leq xz^2 \iff x^2 + y^2 \leq z^2$, and so the part of the solid S which lies to the right of the yz-plane is the region A which lies inside both the sphere centered at $(1,0,0)$ of radius 1 and the double cone $x^2 + y^2 = z^2$. When $x < 0$, on the other hand, we have $(x^2 + y^2 + z^2)^2 \leq 4x^2 \iff x^2 + y^2 + z^2 \leq -2x \iff (x+1)^2 + y^2 + z^2 \leq 1$ and $x(x^2 + y^2) \leq xz^2 \iff x^2 + y^2 \geq z^2$ and so the part of the solid S which lies to the left of the yz-plane is the region B which lies inside the sphere centred at $(-1,0,0)$ of radius 1 and outside the double cone $x^2 + y^2 = z^2$. The volume of S is the sum of the volumes of A and B which, by symmetry, is equal to the volume of a unit sphere, namely $\frac{4\pi}{3}$.

2: Find the number of $3 \times n$ matrices with entries in $\{0, 1\}$ which do not contain the 2×2 block $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Solution: For $k = 0, 1, 2, \ldots, 7$, let $a_{k,n}$ be the number of allowable $3 \times n$ matrices ending with the column which corresponds to the binary representation of k. Note that $a_{k,1} = 1$ for all k. Since each of the columns $(0,0,0)^T,(1,0,0)^T,(1,1,0)^T,(1,1,1)^T$ can be appended to any allowable $3 \times n$ matrix to obtain an allowable $3 \times (n+1)$ matrix, we have $a_{0,n+1} = a_{4,n+1} = a_{6,n+1} = a_{7,n+1} = a_{0,n} + a_{1,n} + a_{2,n} + \cdots + a_{7,n}$.

Since each of the columns $(0,0,1)^T,(1,0,1)^T$ can be appended to any allowable $3 \times n$ matrix with any final column other than $(0,1,0)^T$ or $(1,1,0)^T$ we have $a_{1,n+1} = a_{5,n+1} = a_{0,n} + a_{1,n} + a_{3,n} + a_{4,n} + a_{5,n} + a_{7,n}$.

Since each of the columns $(0,1,0)^T,(0,1,1)^T$ can be appended to any allowable $3 \times n$ matrix with any final column other than $(1,0,0)^T,(1,0,1)^T$ we have $a_{2,n+1} = a_{3,n+1} = a_{0,n} + a_{1,n} + a_{2,n} + a_{3,n} + a_{6,n} + a_{7,n}$.

We see that $a_{0,n} = a_{4,n} = a_{6,n} = a_{7,n}$ for all n, and $a_{1,n} = a_{5,n}$ for all n, and $a_{2,n} = a_{3,n}$ for all n. Say $a_n = a_{0,n}$, $b_n = a_{1,n}$ and $c_n = a_{2,n}$. Then we have $a_1 = b_1 = c_1$ and the above recursion formulas simplify to $a_{n+1} = 4a_n + 2b_n + 2c_n$

$b_{n+1} = 3a_n + 2b_n + c_n$

$c_{n+1} = 3a_n + b_n + 2c_n$.

By the symmetry between b and c in these equations we see that $b_n = c_n$ for all n, so the formulas further simplify to $a_{n+1} = 4a_n + 4b_n$

$b_{n+1} = 3a_n + 3b_n = \frac{3}{4} a_{n+1}$.

Thus we have $a_1 = 1$, $b_1 = 1$, $a_2 = 8$, $b_2 = 7$, and for $n \geq 1$ we have $b_n = \frac{3}{4} a_n$ so that $a_{n+1} = 4a_n + 4b_n = 4a_n + 3a_n = 7a_n$.

Thus for $n \geq 2$ we have $a_n = 8 \cdot 7^{n-2}$ and $b_n = 7 \cdot 7^{n-2}$. For $n \geq 1$, the total number of allowable $3 \times n$ matrices is equal to $4a_n + 4b_n = a_{n+1} = 8 \cdot 7^{n-1}$.
3: Let $k \geq 3$ be an integer. Let $n = \frac{k(k+1)}{2}$. Let $S \subseteq \mathbb{Z}_n$ with $|S| = k$. Show that $S + S \neq \mathbb{Z}_n$.

Solution: Say $S = \{a_1, a_2, \ldots, a_k\}$. Then each element of $S + S$ is of the form $a_j + a_k$ for some $1 \leq j < k$. There are $\frac{k(k+1)}{2}$ such subsets, and so to show that $S + S \neq \mathbb{Z}_n$ it suffices to find two distinct sets $\{a_i, a_l\} \neq \{a_j, a_k\}$ with $a_i + a_l = a_j + a_k$.

There are $k(k - 1)$ ordered pairs (a_i, a_j) with $a_i \neq a_j$. For such pairs, there are $n - 1$ possible values for the difference $a_i - a_j$ in \mathbb{Z}_n (since the difference cannot be zero). For $k \geq 3$ we have

$$k(k - 1) = \frac{k(k+1)}{2} + \frac{k(k-3)}{2} \geq \frac{k(k+1)}{2} = n > n - 1$$

so by the Pigeonhole principle, we can choose two order pairs $(a_i, a_j) \neq (a_k, a_l)$ with $a_i \neq a_j$ and $a_k \neq a_l$ such that $a_i - a_j = a_k - a_l$. Note that $a_i + a_l = a_j + a_k$ and note that $\{a_i, a_l\} \neq \{a_j, a_k\}$ (indeed, if we had $\{a_i, a_l\} = \{a_j, a_k\}$ then since $a_i \neq a_j$ we would need $a_i = a_k$, and since $a_l \neq a_k$ we would need $a_l = a_j$, but then we would have $(a_i, a_j) = (a_k, a_l)$).

4: Let $f : \mathbb{R}^2 \to \mathbb{R}$. Suppose that f is continuous and that $\int_0^1 f(a + tu) \, dt = 0$ for every point $a \in \mathbb{R}^2$ and every vector $u \in \mathbb{R}^2$ with $|u| = 1$. Show that f is constant.

Solution: Let $a, u \in \mathbb{R}^2$ and with $|u| = 1$. For $x \in \mathbb{R}$, the substitution $t = s + x$ gives

$$\int_x^{1+x} f(a + tu) \, du = \int_0^1 f(a + xu + su) \, ds = 0$$

and so we have

$$\int_0^x f(a + tu) \, dt - \int_x^{1+x} f(a + tu) \, dt = \int_0^1 f(a + tu) \, dt - \int_x^{1+x} f(a + tu) \, dt = 0.$$

Differentiate both sides with respect to x using the FTC to get $f(a + xu) - f(a + xu + u) = 0$. In particular, taking $x = 0$, we obtain

$$f(a) = f(a + u).$$

To show that f is constant, we shall show that $f(a) = f(0)$ for all $a \in \mathbb{R}^2$. Given $a \in \mathbb{R}^2$, let $k = |a|$, let $u = \frac{a}{|a|}$ and let $b = a - ku$. Then we have $|b| < 1$ and

$$f(a) = f(a - u) = f(a - 2u) = \cdots = f(a - ku) = f(b).$$

Let v and w be the two points of intersection of the unit circle with the perpendicular bisector of the line segment from 0 to b so that $|v| = |w| = 1$ and $v + w = b$. Then $f(0) = f(v) = f(v + w) = f(b) = f(a).$
5: Let \(\mathbb{Z}^+ \) be the set of positive integers. Show that there exists a bijection \(f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \) with the property that \(\prod_{k=1}^n f(k) \) is an \(n \)-th power for every \(n \in \mathbb{Z}^+ \).

Solution: We construct such a bijection. We define \(f(1) = 1 \). Having defined \(f(1), f(2), \cdots, f(2^n - 1) \), we define \(f(2^n) \) and \(f(2^n + 1) \) as follows. First we define \(f(2^n + 1) \) to be the smallest positive integer with \(f(2^n + 1) \in \{ f(1), f(2), \cdots, f(2^n - 1) \} \), and then we define

\[
 f(2^n) = \left(f(1)f(2)\cdots f(2n-1) \right)^{(2n)(2n+1)^{-1}} f(2n+1)^{2n}.
\]

6: Let \(A \) be an \(n \times n \) matrix. Let \(u \) be an eigenvector of \(A \) for the eigenvalue 1. Suppose that all of the entries of \(A \) and all of the entries of \(u \) are positive. Show that the eigenspace for the eigenvalue 1 is 1-dimensional.

Solution: Let \(v \) be any eigenvector for the eigenvalue 1. We must show that \(u = cv \) for some \(0 \neq c \in \mathbb{R} \). Suppose that \(v \) has at least one positive entry (otherwise replace \(v \) by \(-v \)). Choose \(k \) with \(v_k > 0 \) to minimize \(\frac{u_k}{v_k} \) (so we have \(\frac{u_k}{v_k} \leq \frac{u_i}{v_i} \) whenever \(v_i > 0 \)). We claim that \(u = \frac{u_k}{v_k} v \). Consider the vector \(w = u - \frac{u_k}{v_k} v \). The \(i \)-th entry of \(w \) is \(w_i = u_i - \frac{u_k}{v_k} v_i \). If \(v_i \leq 0 \) then we have \(w_i \geq u_i > 0 \), and if \(v_i > 0 \) then we have

\[
 w_i = \left(\frac{u_i}{v_i} - \frac{u_k}{v_k} \right) v_i \geq 0,
\]

so we have \(w_i \geq 0 \) for all \(i \). Also note that

\[
 Aw = A\left(u - \frac{u_k}{v_k} v \right) = Au - \frac{u_k}{v_k} Av = u - \frac{u_k}{v_k} v = w.
\]

Suppose, for a contradiction, that \(w \neq 0 \). Then each entry \(w_i \geq 0 \) and some entry \(w_l > 0 \). Since every entry of \(A \) is positive, it follows that every entry of \(Aw \) is positive, indeed the \(i \)-th entry of \(Aw \) is

\[
 (Aw)_i = \sum_{j=1}^n A_{i,j}w_j \geq A_{i,l}w_l > 0.
\]

Since \(w = Aw \), every entry of \(w \) is positive. But this is not possible since \(w_k = u_k - \frac{u_k}{v_k} v_k = 0 \). Thus \(w = 0 \) and so we have \(u = \frac{u_k}{v_k} v \), as claimed.