1: Find the minimum possible discriminant $\Delta = b^2 - 4ac$ of a quadratic $f(x) = ax^2 + bx + c$ which satisfies the requirement that $f(f(f(0))) = f(0)$.

2: Show that for every integer a, there exist infinitely many perfect powers of the form

$$a + 2010t, \ t \in \mathbb{Z}.$$

(A perfect power is an integer of the form n^k for some integers $n \geq 0$ and $k \geq 2$).

3: Let n be a positive integer. Evaluate $\sum_{k=0}^{\infty} \left\lfloor \frac{n + 2k}{2k+1} \right\rfloor$, where $\lfloor x \rfloor$ denotes the largest integer less than or equal to x.

4: A point $p = (x, y)$ is chosen at random (with uniform distribution) in the unit square $0 \leq x \leq 1, 0 \leq y \leq 1$. Find the probability that, in the triangle with vertices at $(0,0)$, $(1,0)$ and p, the angle at each vertex is at most $\frac{5\pi}{12}$.

5: Let x be an irrational number, and let M be a positive integer. Show that there exist integers a and b with $b > 0$ such that

$$|x - \frac{a}{b}| < \frac{1}{Mb}.$$

6: Let f be continuous on $[0,1]$ and differentiable in $(0,1)$. Suppose there exists $M > 0$ such that for all $x \in (0,1)$ we have $|f(0) - f(x) + xf'(x)| < Mx^2$. Prove that f is differentiable (from the right) at 0.
1: Find the minimum possible discriminant \(\Delta = b^2 - 4ac \) of a quadratic \(f(x) = ax^2 + bx + c \) which satisfies the requirement that \(f(f(f(0))) = f(0) \).

2: Show that for every integer \(a \), there exist infinitely many perfect powers of the form

\[
a + 2010t, \ t \in \mathbb{Z}.
\]

(A perfect power is an integer of the form \(n^k \) for some integers \(n \geq 0 \) and \(k \geq 2 \)).

3: Evaluate \(\sum_{n=0}^{\infty} \int_{0}^{\pi} (-1)^n \sin^{2n} x \, dx \).

4: Two points \(p \) and \(q \) are chosen at random (with uniform distribution) in the unit ball \(x^2 + y^2 + z^2 \leq 1 \). Find the probability that the triangle with vertices at \(p \), \(q \) and the origin is an acute-angled triangle.

5: Let \(A \) be the \(n \times n \) matrix whose \((i, j)\)th entry is \(A_{i,j} = \frac{1}{i+j} \). Show that \(A \) is invertible.

6: Let \(f \) be continuous on \([0, 1]\) and differentiable in \((0, 1)\). Suppose there exists \(M > 0 \) such that for all \(x \in (0, 1) \) we have \(|f(0) - f(x) + xf'(x)| < Mx^2 \). Prove that \(f \) is differentiable (from the right) at 0.