1: Let $x > 1$ be a real number, and $n > 1$ be an integer. Prove that

$$\sqrt[n]{x} < 1 + \frac{x - 1}{n}.$$

2: Find the smallest (by area) right-angled triangle with integral sides in which a square with integral sides can be inscribed so that an angle of the square coincides with the right angle of the triangle.

3: Let S be a set of points in the plane. A circle C is said to be framed by S if C has a diameter whose endpoints both lie in S. Find all sets S of four points in the plane such that, for any two circles C_1 and C_2 framed by S, the set $S \cap C_1 \cap C_2$ is non-empty.

4: Let f be a real-valued continuous function of a real variable with the property that

$$\lim_{x \to +\infty} f(f(x)) = +\infty \quad \text{and} \quad \lim_{x \to -\infty} f(f(x)) = -\infty.$$

Prove that $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$ both exist and are infinite.

5: Peter tells Ian and Christopher that x and y are two integers with $1 < x < y$ and $x + y \leq 30$. Peter then gives Christopher the value of $x + y$ and Ian the value of xy.

(1) Ian says “I don’t know the values of x and y.”
(2) Christopher replies “I knew that you didn’t know their values.”
(3) Ian responds “I still don’t know the values of x and y.”
(4) Christopher exclaims “In that case, I know their values!”

What is the value of xy?
1: Define \(Q_k = \sum_{n=1}^{\infty} \frac{1}{(k+n)!} + \frac{2}{(k+n+3)!} + \frac{3}{(k+n+4)!} + \cdots \). Show that \(Q_0 \) is rational, but that \(Q_k \) is irrational for every positive integer \(k \).

2: Let \(S \) be a set of points in the plane. A circle \(C \) is said to be framed by \(S \) if \(C \) has a diameter whose endpoints both lie in \(S \). Find all sets \(S \) of four points in the plane such that, for any two circles \(C_1 \) and \(C_2 \) framed by \(S \), the set \(S \cap C_1 \cap C_2 \) is non-empty.

3: Let \(f \) be a real-valued continuous function of a real variable with the property that
\[
\lim_{x \to +\infty} f(f(x)) = +\infty \quad \text{and} \quad \lim_{x \to -\infty} f(f(x)) = -\infty.
\]
Prove that \(\lim_{x \to +\infty} f(x) \) and \(\lim_{x \to -\infty} f(x) \) both exist and are infinite.

4: Let \(a \) and \(b \) be non-zero complex numbers which satisfy the equation
\[a \left(2^{\lfloor a \rfloor} + 2^{\lfloor b \rfloor} \right) = (a + b) \left(2^{\lfloor a + b \rfloor} \right). \]
Prove that \(a^6 = b^6 \).

5: Find the value of the infinite product \(\prod_{n=1}^{\infty} \left(1 + \frac{1}{a_n} \right) \) where \(a_1 = 1 \) and \(a_n = n(a_{n-1} + 1) \) for all \(n \geq 2 \).