1: Evaluate
\[\int_{0}^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} \, dx. \]

2: Find all solutions in nonnegative integers \(x \) and \(y \) to the equation
\[x(x + 1)(x + 2)(x + 3) = \sum_{i=0}^{y} (2i + 1). \]

3: Consider a set of \(n \) points placed arbitrarily in \(d \)-dimensional Euclidean space \(\mathbb{R}^d \). From each point, we draw an arrow to its nearest neighbour among the \(n - 1 \) other points (using the usual Euclidean measure of distance). We assume that each point has a unique nearest neighbour. Two of the \(n \) points are said to be connected if there is an arrow from one to the other. Two points are said to lie in the same cluster if there is a path of connected points from one to the other. Show that each cluster has exactly one reflexive pair of points, i.e. a pair of points joined by arrows in both directions.

4: On a blackboard are written the numbers
\[1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{100}. \]
At each step, two numbers \(a \) and \(b \) are selected arbitrarily from the list, deleted, and replaced by the single number \(a + b + ab \). After 99 steps, one number is left. What are the possible values of this number?

5: Two points, \(A \) and \(B \), are placed in the interior of a circle. The point \(C \) is chosen to lie on the boundary of the circle such that the angle \(ACB \) is maximized. Find general conditions under which the point \(C \) is unique, and construct a method for finding \(C \) under these conditions.
1: Evaluate
\[\int_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} \, dx. \]

2: Let \(f \) be a continuous function of the closed interval \([0, 1]\) into itself. The function \(f \) is said to be an involution if for every point \(x \in [0, 1] \) we have \(f(f(x)) = x \). The involution \(f(x) = x \)
is said to be trivial. Prove that every non-trivial involution has exactly one fixed point, i.e. one point \(y \) with \(f(y) = y \).

3: Let \(x_1, x_2, x_3, \ldots \) be a sequence of positive real numbers. Define
\[\bar{x}_n = \frac{x_1 + x_2 + \cdots + x_n}{n}. \]
Show that if \(\sum_{n=1}^{\infty} \frac{1}{x_n} < \infty \) then \(\sum_{n=1}^{\infty} \frac{1}{\bar{x}_n} < \infty \).

4: On a blackboard are written the numbers
\[1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{100}. \]
At each step, two numbers \(a \) and \(b \) are selected arbitrarily from the list, deleted, and replaced by the single number \(a + b + ab \). After 99 steps, one number is left. What are the possible values of this number?

5: A black and white cat walks on the plane which is divided into cells by a square grid. Each cell is either black or white. Initially, the cat is sitting on a cell, call it the origin, heading in one of the four compass directions. It proceeds to walk from cell to cell according to the following rule: it moves one cell over in the direction it is heading, when it lands on a white (black) cell it rotates its heading 90 degrees to the right (left) and paints the cell the opposite colour with a brush attached to its tail. Prove that the cat’s trajectory is unbounded.