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1 Arithmetic I

1.1 First-order Arithmetic

Let w be the structure (w,+, x,0,1), where w is the set of non-negative
integers. First-order Arithmetic is Th(w), the set of first-order statements
in the language {+, x,0,1} which are true in w. Much of the fascination
of working with first-order number theory comes from the simple fact that
there are so many assertions P, including unsolved problems, in number
theory for which one can routinely exhibit a specific first-order ¢ such that
the assertion P is true iff w = ¢. We say that such assertions can be
expressed in first-order arithmetic.

This contrasts sharply with Presburger Arithmetic, i.e., the first-order
theory of (Z,+,0,1, <), or the first-order theory for the calculus of classes,
i.e., the first-order theory of all structures (P(U),U,N,”,0,1). For these two
examples there are no known unsettled assertions in mathematics for which
one can find such a corresponding first-order .

In this section we look at the basic ideas for translating number-theoretic
assertions into first-order arithmetic. The starting point is to express some
well known relations by first-order formulas.

DEFINITION 1 For n € w we define the term i by: 0 =0, n +1=n+1.
7 is an obvious choice for a term to represent the number n.

DEFINITION 2 A relation r C w" is definable on w if there is a formula
o(x1,... ,x,) such that r = ¥ i.e.,

(k1,... ,kn) €T iff wkE ok, ... k).

Now we look at a few definable relations:



Relation Defining Formula
r<y|z(zx+z=y)
r<ylxzxty Nx<y
zly | Iz (zz = y)
r=ymod z | u[(ut+z~y V ytuxz) A z|u
prime(z) | (z& 1) AVy(ylr = y=1Vy=uz)
coprime(z,y) | Vu(ulz Auly = u=~1)

With just these formulas we can express important results, for Euclid’s the-
orem on the infinitude of primes is given by

Vxdy x < y A prime (y);

and Dirichlet’s theorem about the infinitude of primes in an arithmetical
progression an + b, when a and b are relatively prime, is expressed by

VuVv coprime(u,v) = VzIy [z < y A prime (uy + v)].
And one can express Goldbach’s Twin Prime conjecture by
Vody x < y A prime(y) A prime(y + 2).

Many of the results and problems in number theory deal with the expo-
nential function x¥. If we had given ourselves this function as a fundamental
operation of w then we could easily express Fermat’s Last Theorem by

VaVyVaVw [z + ¢V ~ 2 = w<3Vaxy=~0)|.

However we do not have this simple situation. Nonetheless we are able to
work with a wide class of functions in first-order number theory by defining
their graphs.

DEFINITION 3 A function f : w"™ = w is definable in first-order
arithmetic if there is a formula ¢(z1,...,2n,y) such that f(k) = m iff
©“ (k1, ..., kn,m) holds in w.

Now, if we could define the exponential function, say by ¢1(x,y, 2), then
we could express Fermat’s Last Theorem by

VaVyVYwVuvo o1 (z, w,u) A o1 (y, w,v) A or(z,w,u+v) = w<3Vay~0.

So let us find a way to define exponentiation. The obvious approach is
to use recursion (as Dedekind did): a = 1 and a"*! = a"a. To compute a”



directly from such a definition we would compute the sequence a®, al, ... ,a".

However this does not appear to be expressible in first-order form.

For the moment suppose there is a definable function s : w? = w,
defined by ¢s(x,y, 2), such that for each finite sequence ao,... ,a, there
is a b such that s(b,0) = ag,...,s(b,n) = an. Then we could use ¢, to

define exponentiation in first-order arithmetic using the following formula
er(x,y, 2):

Fu [ps(u,0,1) AVoVw (v <y A ps(u,v,w) = @s(u, v+ Lwz)) A ps(u,y,2)].

A beautiful observation of Goédel in his 1931 paper was the fact that
one could find such a formula — however it was simpler to define a certain
function of three variables, called Godel’s beta function, given by

B(x,y,2) =rem(1+ (2 + 1)y, x),

where rem (x,y) is the remainder after dividing y by z. Clearly [ is defined
by the following formula yg(z,y, z, w):

Jww=zrmod 1+ (z+ 1)y A w<1l+(z+1)y].

The following lemma says that for any finite sequence ag,... ,a, from w
there are numbers b and ¢ from w such that a; is the result of reducing b
modulo 1+ (i 4 1)ec.

LEMMA 4 Given any finite sequence ao, ... ,a, € w there are b, c € w such
that 8(b,c,i) = a; for 0 <i <n.

PROOF. Let ¢ = max(n,ag, ... ,a,)! and let u; =1+ (i + 1)c for 0 < i < n.
Then for p a prime we have p|lu; = p /e, and thus for 0 < i < j < n we
have

plu; & plu; = plu; —uy
= pl(i —j)c
= pli—j.

But i — j|e, so ple, which is impossible. Thus the u; are pairwise co-
prime. Consequently by the Chinese remainder theorem one can find an
integer b (< ug - - uy,) such that b = a; mod wu;; and since a; < u; we have
rem (u;,b) = a;. m



So now a slight modification of our attempt (using ) at defining expo-
nentiation succeeds, and we can write a a simple sentence ¢ 7 which holds
in w iff Fermat’s Last Theorem is true.

EXERCISES Let DEF be the class of functions definable on w (we include the con-
stants as nullary functions).

Problem 1 Show that DEF is closed under composition, i.e., if f : w™ = w and
gi :w*¥ = warein DEF, 1 <i <n, then f(g1,...,9,) : w*¥ = wis in DEF.

Problem 2 Show that DEF is closed under primitive recursion, i.e., suppose n > 0
and g : w" ! = wand h:w""! = w are in DEF. Then f : w"” = w given
by

flxy,...,2p—1,0) = g(z1,... ,Tp-1)
flxy, .. sp_, 2+ 1) = h(zy,... 2z, f(x1,... ,20))

is also in DEF!.

1.2 Peano Arithmetic

Based on the work of Dedekind and Peano one can give a relatively simple
set of first-order axioms, called PA, for the natural numbers? from which one
can prove all standard theorems of number theory which can be formulated
as first-order statements.

'Note that we obtain exponentiation by using g = 1 and h(z1,22) = 21 - x2.
2 Although Dedekind, Peano, and Landau were interested in axiomatizing positive in-
tegers (natural numbers), the standard now is to work with the nonnegative integers.



PEANO ARITHMETIC

e The language is {+, x,0,1}
e The AXIOMS are

Vo x+150
VaVy z4+1l=y+1 = =y
Vo z+0~z
VaVy z+ (y+ 1)~ (z+y)+1
Yz rx0~0
VaVy X (y+1) = (zxy)+x

and for each first-order formula ¢(z, %)
the first-order induction axiom

Vi ([p(0,9) AV2(0(2,9) = ¢(z+1,9)] = Vzp(z,7))

The standard model of PA is (w, +, X, 0, 1), where the operations are the
usual ones. In Example V.14.3 of LMICS we saw that there are other count-
able models of PA. And once we have developed a derivation calculus then
it is possible to return to the sentences ¢ in §1 which expressed important
assertions and try to prove them by seeing if we can show PA + . This
method cannot work all the time by Goédel’s incompleteness theorem — and
indeed we do not know if PA is strong enough to prove any interesting open
problems in number theory.



