1 Arithmetic I

1.1 First-order Arithmetic

Let ω be the structure $(\omega, +, \times, 0, 1)$, where ω is the set of non-negative integers. First-order Arithmetic is $\text{Th}(\omega)$, the set of first-order statements in the language $\{+, \times, 0, 1\}$ which are true in ω. Much of the fascination of working with first-order number theory comes from the simple fact that there are so many assertions P, including unsolved problems, in number theory for which one can routinely exhibit a specific first-order φ such that the assertion P is true iff $\omega \models \varphi$. We say that such assertions can be expressed in first-order arithmetic.

This contrasts sharply with Presburger Arithmetic, i.e., the first-order theory of $(\mathbb{Z}, +, 0, 1, <)$, or the first-order theory for the calculus of classes, i.e., the first-order theory of all structures $(P(U), \cup, \cap, ', 0, 1)$. For these two examples there are no known unsettled assertions in mathematics for which one can find such a corresponding first-order φ.

In this section we look at the basic ideas for translating number-theoretic assertions into first-order arithmetic. The starting point is to express some well known relations by first-order formulas.

DEFINITION 1 For $n \in \omega$ we define the term \bar{n} by: $\bar{0} = 0$, $\bar{n} + 1 = \bar{n}$.

\bar{n} is an obvious choice for a term to represent the number n.

DEFINITION 2 A relation $r \subseteq \omega^n$ is definable on ω if there is a formula $\varphi(x_1, \ldots, x_n)$ such that $r = \varphi^\omega$, i.e.,

$$(k_1, \ldots, k_n) \in r \quad \text{iff} \quad \omega \models \varphi(\bar{k}_1, \ldots, \bar{k}_n).$$

Now we look at a few definable relations:
Relation	Defining Formula
$x \leq y$ | $\exists z (x + z \approx y)$
$x < y$ | $x \not\approx y \land x \leq y$
$x \mid y$ | $\exists z (xz \approx y)$
$x \equiv y \mod z$ | $\exists u [(u + x \approx y \lor y + u \approx x) \land z \mid u]$
prime(x) | $(x \not\approx 1) \land \forall y (y \mid x \implies y \approx 1 \lor y \approx x)$
coprime(x, y) | $\forall u (u \mid x \land u \mid y \implies u \approx 1)$

With just these formulas we can express important results, for Euclid’s theorem on the infinitude of primes is given by

$$\forall x \exists y \ x < y \land \text{prime}(y);$$

and Dirichlet’s theorem about the infinitude of primes in an arithmetical progression $an + b$, when a and b are relatively prime, is expressed by

$$\forall u \forall v \text{coprime}(u, v) \implies \forall x \exists y [x < y \land \text{prime}(uy + v)].$$

And one can express Goldbach’s Twin Prime conjecture by

$$\forall x \exists y \ x < y \land \text{prime}(y) \land \text{prime}(y + 2).$$

Many of the results and problems in number theory deal with the exponential function x^y. If we had given ourselves this function as a fundamental operation of ω then we could easily express Fermat’s Last Theorem by

$$\forall x \forall y \forall z \forall w [x^w + y^w \approx z^w \implies w < 3 \lor xy \approx 0].$$

However we do not have this simple situation. Nonetheless we are able to work with a wide class of functions in first-order number theory by defining their graphs.

DEFINITION 3 A function $f : \omega^n \implies \omega$ is *definable* in first-order arithmetic if there is a formula $\varphi(x_1, \ldots, x_n, y)$ such that $f(\vec{k}) = m$ iff $\varphi(\omega(k_1, \ldots, k_n, m))$ holds in ω.

Now, if we could define the exponential function, say by $\varphi_1(x, y, z)$, then we could express Fermat’s Last Theorem by

$$\forall x \forall y \forall z \forall w \forall u \forall v \varphi_1(x, w, u) \land \varphi_1(y, w, v) \land \varphi_1(z, w, u + v) \implies w < 3 \lor xy \approx 0.$$
directly from such a definition we would compute the sequence a^0, a^1, \ldots, a^n. However this does not appear to be expressible in first-order form.

For the moment suppose there is a definable function $s : \omega^2 \implies \omega$, defined by $\varphi_s(x, y, z)$, such that for each finite sequence a_0, \ldots, a_n there is a b such that $s(b, 0) = a_0, \ldots, s(b, n) = a_n$. Then we could use φ_s to define exponentiation in first-order arithmetic using the following formula $\varphi_\uparrow(x, y, z)$:

$$\exists u [\varphi_s(u, 0, 1) \land \forall v \forall w (v < y \land \varphi_s(u, v, w) \implies \varphi_s(u, v + 1, wx)) \land \varphi_s(u, y, z)].$$

A beautiful observation of Gödel in his 1931 paper was the fact that one could find such a formula — however it was simpler to define a certain function of three variables, called Gödel’s beta function, given by

$$\beta(x, y, z) = \text{rem}(1 + (z + 1)y, x),$$

where $\text{rem}(x, y)$ is the remainder after dividing y by x. Clearly β is defined by the following formula $\varphi_\beta(x, y, z, w)$:

$$\exists w [w \equiv x \mod 1 + (z + 1)y \land w < 1 + (z + 1)y].$$

The following lemma says that for any finite sequence a_0, \ldots, a_n from ω there are numbers b and c from ω such that a_i is the result of reducing b modulo $1 + (i + 1)c$.

LEMMA 4 Given any finite sequence $a_0, \ldots, a_n \in \omega$ there are $b, c \in \omega$ such that $\beta(b, c, i) = a_i$ for $0 \leq i \leq n$.

PROOF. Let $c = \max(n, a_0, \ldots, a_n)!$ and let $u_i = 1 + (i + 1)c$ for $0 \leq i \leq n$. Then for a prime we have $p|u_i \implies p \not| c$, and thus for $0 \leq i < j \leq n$ we have

$$p|u_i \& p|u_j \implies p|u_i - u_j$$
$$\implies p|(i - j)c$$
$$\implies p|i - j.$$

But $i - j|c$, so $p|c$, which is impossible. Thus the u_i are pairwise co-prime. Consequently by the Chinese remainder theorem one can find an integer $b (< u_0 \cdots u_n)$ such that $b \equiv a_i \mod u_i$; and since $a_i < u_i$ we have $\text{rem}(u_i, b) = a_i$. ■
So now a slight modification of our attempt (using φ_s) at defining exponentiation succeeds, and we can write a simple sentence φ_{FLT} which holds in ω iff Fermat’s Last Theorem is true.

Exercises Let DEF be the class of functions definable on ω (we include the constants as nullary functions).

Problem 1 Show that DEF is closed under composition, i.e., if $f : \omega^n \implies \omega$ and $g_i : \omega^k \implies \omega$ are in DEF, $1 \leq i \leq n$, then $f(g_1, \ldots, g_n) : \omega^k \implies \omega$ is in DEF.

Problem 2 Show that DEF is closed under primitive recursion, i.e., suppose $n > 0$ and $g : \omega^{n-1} \implies \omega$ and $h : \omega^{n+1} \implies \omega$ are in DEF. Then $f : \omega^n \implies \omega$ given by

$$f(x_1, \ldots, x_{n-1}, 0) = g(x_1, \ldots, x_{n-1})$$
$$f(x_1, \ldots, x_{n-1}, x_n + 1) = h(x_1, \ldots, x_n, f(x_1, \ldots, x_n))$$

is also in DEF1.

1.2 Peano Arithmetic

Based on the work of Dedekind and Peano one can give a relatively simple set of first-order axioms, called PA, for the natural numbers2 from which one can prove all standard theorems of number theory which can be formulated as first-order statements.

1Note that we obtain exponentiation by using $g = 1$ and $h(x_1, x_2) = x_1 \cdot x_2$.

2Although Dedekind, Peano, and Landau were interested in axiomatizing positive integers (natural numbers), the standard now is to work with the nonnegative integers.
Peano Arithmetic

- The language is \(+, \times, 0, 1\)
- The AXIOMS are

\[
\begin{align*}
\forall x & \quad x + 1 \not\approx 0 \\
\forall x \forall y & \quad x + 1 \approx y + 1 \implies x \approx y \\
\forall x & \quad x + 0 \approx x \\
\forall x \forall y & \quad x + (y + 1) \approx (x + y) + 1 \\
\forall x & \quad x \times 0 \approx 0 \\
\forall x \forall y & \quad x \times (y + 1) \approx (x \times y) + x
\end{align*}
\]

and for each first-order formula \(\varphi(x, \vec{y})\)
the first-order induction axiom

\[
\forall \vec{y}(\varphi(0, \vec{y}) \land \forall z(\varphi(z, \vec{y}) \implies \varphi(z + 1, \vec{y})) \implies \forall x \varphi(x, \vec{y}))
\]

The standard model of PA is \((\omega, +, \times, 0, 1)\), where the operations are the usual ones. In Example V.14.3 of LMCS we saw that there are other countable models of PA. And once we have developed a derivation calculus then it is possible to return to the sentences \(\varphi\) in §1 which expressed important assertions and try to prove them by seeing if we can show PA ⊢ \(\varphi\). This method cannot work all the time by Gödel’s incompleteness theorem – and indeed we do not know if PA is strong enough to prove any interesting open problems in number theory.