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“The quasimathematical methods of Dr. Boole especially
are so magical and abstruse, that they appear to pass
beyond the comprehension and criticism of most other
writers, and are calmly ignored.” — William Stanley
Jevons, 1869 in Substitution of Similars.



The Paradigm for an Algebra of Logic

LOGIC ALGEBRA

PREMISSES Propositions
TranslateÝÑ Equations

Ó

CONCLUSIONS Propositions
TranslateÐÝ Equations



An Example

LOGIC ALGEBRA

PREMISSES
All x is y
All y is z

TranslateÝÑ x � x � y
y � y � z

Ó

CONCLUSIONS All x is z
TranslateÐÝ x � x � z



Early Insights into Boole’s Algebra of Classes

That the symbolic processes of algebra, invented as tools
of numerical calculation, should be competent to express
every act of thought, and to furnish the grammar and
dictionary of an all-containing system of logic, would not
have been believed until it was proved.

—Augustus De Morgan, in A Budget of Paradoxes
(See the MacTutor article on Boole)

The algebra which Boole himself used was simply
ordinary numerical algebra as applied to a collection of
quantities each of which was assumed to be subject to
the quadratic equation xpl � xq � 0, and Boole showed
how this hypothesis could be applied to the solution of
many logical problems.

—C.S. Peirce, from a Nachlass article of 1904 on Huntington’s
postulates, in Vol. IV of Peirce’s collected papers.



Boole’s Algebra of Classes (Quick Overview)

Boole used the high-school algebra of numbers, to create an
algebra of classes.

His system was based on the following symbols:

Operations �,�,� Variables x , y , z , . . .
Constants 0, 1 Equality �

The variables were to be interpreted as classes;
0 would denote the empty class, 1 the universe.

Boole’s starting point was to define the operations �,�,�
on classes,
to state the laws and rules of inference for this algebra,
and then to study valid equational arguments

p1pxq � q1pxq, . . . , pkpxq � qkpxqloooooooooooooooooooomoooooooooooooooooooon
Premisses

∴ ppxq � qpxqlooooomooooon
Conclusion

.



First Step: Defining Multiplication A � B of Classes

Let us start by assuming, as Boole likely did, that valid equations
and equational arguments for numbers, say for the integers Z, are
valid for this algebra of classes.

For the time being let us consider just one of Boole’s operations on
classes, namely the product of two classes:

DEFINITION: AB :� “AX B”.

This satisfies the familiar commutative law AB � BA and the
associative law ApBC q � pABqC .

It also introduces the non-numerical idempotent law

A2 � A

which plays a key role in Boole’s algebra.



Which Numbers can be Names of Classes?

Having decided to incorporate the basic operations of numerical
algebra into an algebra of logic, can we incorporate some of the
symbols n for numbers as names of classes?

We would like that such an n, when interpreted as a class, obey
the laws of numbers, and vice-versa.

This just means we want n2 � n, so the only candidates are
n � 0 and n � 1.



Which Classes Could be Named by 0?

To preserve the number law x � 0 � 0,

we want the corresponding class law to hold, that is,

for every class A we want AX 0 � 0.

The only class that 0 could be is the empty class.

Definition. 0 :� “Ø” (Nothing; the “empty class”).



Which Classes Could be Named by 1?

From the number law x � 1 � x we find that

1 could only be the universe U.

Definition. 1 :� “U” (the Universe).

So far we have defined the product of two classes

and the interpretation of 0 and 1 as classes.

Before defining � and �,

let’s consider the expressive power of what we have.



Schröder’s Translations in the 1890s

Soon we will see that 1� A denotes the complement of A in
Boole’s system.

This allows us to express Aristotle’s four kinds of categorical
propositions by equations and negated equations:

(A) All x is y . x � xy
(E) No x is y . xy � 0

(I) Some x is y . xy � 0
(O) Some x is not y . xp1� yq � 0

However, Boole only used equations in his translations of
categorical propositions.

Before defining addition and subtraction of classes

two important CAUTIONS are noted.



Two Cautions

CAUTION 1: Equational arguments have a single equation as
the conclusion.

Consider xy � 0 ∴ x � 0 or y � 0 , a valid argument in Z,

This is NOT an equational argument!!

(And it is certainly not valid in Boole’s algebra of classes.)

CAUTION 2: The idempotent law is for variables, and not, in
general, for compound terms.

The following reasoning is valid in Boole’s algebra of classes:

px � xq2 � x � x ùñ 4x2 � 2x ùñ 4x � 2x ùñ x � 0

Assuming px � xq2 � x � x is a consequence of the idempotent law
leads to disaster!



Boole’s Equational System (Overview)

The following diagram shows the ingredients that go into Boole’s
equational logic.

NOTE: (1) and (2) are closed under (uniform) substitutions (of
terms for variables), but not (3).



Boole’s Equational System (Examples)

(1) Commutative, Associative, Distributive Laws, Etc.

(2) nx � 0 ∴ x � 0 , for n � 1, 2, . . .

x2 � y2 � 0 ∴ x � 0

(3) x2 � x for x a variable

(4) xm � xn for 1 ¤ m ¤ n

p1� xq2 � 1� x

px � yq2 � x � y � 2xy

(5) px � yq2 � x � y ∴ xy � 0

ppx , yq � 0 ∴ pp1, yq � pp0, yq � 0



Defining A� B

Suppose A� B is defined for given classes A and B.

Then

(1) pA� Bq2 � A� B

Also,

(2) pA� Bq2 � A2 � 2AB � B2 � A� B � 2AB

Combining (1) and (2) we obtain

A� B � A� B � 2AB,

so AB � 0 .

Thus if A� B is defined we must have AX B � Ø.

This means addition must be a partial operation on classes.



Defining A� B (Cont’d)

Since A� B is assumed to be defined,

let C � A� B and D � AY B. We evaluate CD two ways.

CD � pA� Bq � D
� A � D � B � D

� AX pAY Bq � B X pAY Bq � A� B .

CD � C X pAY Bq
� rC X As Y rC X Bs
� rC � As Y rC � Bs
� pA2 � BAq Y pAB � B2q
� AY B since AB � 0.

Thus A� B � AY B .

In summary, if A� B is defined, then

AX B � Ø and A� B � AY B.



Defining A� B

Likewise we can show that if A� B is defined then B � A and

A� B � A r B .

This leads us to Boole’s definitions:

A � B : � AX B

A� B : �
"

AY B if AX B � Ø
undefined otherwise.

A� B : �
"

A r B if B � A
undefined otherwise.

0 : � Ø
1 : � U.

REMARK: Dropping the ‘undefined’ restrictions gives models for a

version of the Modern Algebra of Classes.

But then one cannot freely use the equational algebra of numbers.



Expressing Modern Operations in Boole’s System

Boole explicitly expressed our modern operations of union (Y),
intersection (X), complement (1) and symmetric difference (4) by
totally defined idempotent terms in his system:

 AX B � AB

 A1 � 1� A .

 AY B � A� p1� AqB � pA� Bq � AB

 A4B � Ap1� Bq � p1� AqB � pA� Bq � 2AB

For two of the operations, Y and 4, alternate expressions have
been derived using the algebra of numbers.

These alternate terms are uninterpretable (undefined) for some
values of A and B. But they are still idempotent in Boole’s algebra
of classes.

Boole said that using uninterpretable terms is OK—the important
thing is to be faithful to the laws and rules of inference!



Interpretable Results Using Uninterpretables!

Let’s use (partially) uninterpretable terms in Boole’s algebra to
find properties of the symmetric difference x4y , a total operation.

We start by using x4y � px � yq � 2xy .

1. x4x � px � xq � 2x � 0

2. x4y � px � yq � 2xy � py � xq � 2yx � y4x

3. x4py4zq � x4
�py � zq � 2yz

�
�

�
x � �py � zq � 2yz

�	� 2x
�py � zq � 2yz

�
� px � y � zq � 2pxy � xz � yzq � 4xyz (number algebra)

� z4px4yq (by symmetry)

� px4yq4z (by item 2).



Boole’s Rule of 0 and 1

After presenting his laws and rules of inference, Boole suddenly
offered a radically new foundational principle for his work, which
we call the Rule of 0 and 1.

Boole said that the laws, axioms and processes of his algebra of
logic were exactly the same as those for numbers when the
variables can only assume the values 0 and 1. (LT, p. 37).

Let us conceive, then, of an Algebra in which the
symbols x, y, z, etc. admit indifferently of the values
0 and 1, and of these values alone. The laws, the
axioms, and the processes, of such an Algebra will be
identical in their whole extent with the laws, the axioms,
and the processes of an Algebra of Logic. Difference of
interpretation will alone divide them. Upon this
principle the method of the following work is
established.



The Rule of 0 and 1 (Cont’d)

To make Boole’s rule precise, let Z |ù01 ϕpxq mean ϕpxq holds in

Z whenever the variables are restricted to the two values 0 and 1.

The RULE of 0 and 1
An equational argument ε1pxq, . . . , εkpxq ∴ εpxq is correct in

Boole’s algebra of logic iff Z |ù01 ε1pxq ^ � � � ^ εkpxq Ñ εpxq

The latter is equivalent to

Z |ù �
σ

�
ε1pσq ^ � � � ^ εkpσq Ñ εpσq

�

with σ ranging over strings of 0s and 1s.

We write spxq � tpxq if Z |ù01 spxq � tpxq.



The Constituents Cσpxq

For x a variable let C0pxq � 1� x , C1pxq � x .

Given x :� x1, . . . , xm let σ be a string of 0’s and 1’s of length m.

Cσpxq :� Cσ1px1q � � �Cσmpxmq is a constituent of x.



Properties of Constituents Cσpxq

MAIN PROPERTIES OF CONSTITUENTS:

Cσpxq � Cτ pxq �
"

Cσpxq if σ � τ
0 if σ � τ

Cσpτq �
"

1 if σ � τ
0 if σ � τ

1 � °
σ Cσpxq

mCσpxq � nCσpxq ô m � n



Expansion Theorem

THEOREM: tpxq � °
σ tpσqCσpxq

COR: tpxqCσpxq � tpσqCσpxq
COR: spxq � tpxq iff spσq � tpσq, for all σ

COR: tpxq2 � tpxq iff tpσq P t0, 1u for all σ.

LEMMA: Every equation rpxq � spxq is equivalent to an equation
in the form tpxq � 0. (Put tpxq � rpxq � spxq.)
COR: Every equation is equivalent to

(1) setting certain constituents equal to 0, as well as to

(2) a single totally interpretable equation.

tpxq � 0 iff
© 

Cσpxq � 0 : tpσq � 0
(

iff 0 �
¸ 

Cσpxq : tpσq � 0
(
.



Reduction Theorem

A system of equations can always be reduced to a single equation.

THEOREM: A system of equations

t1pxq � 0, . . . , tkpxq � 0

is equivalent to the single equation

t1pxq2 � � � � � tkpxq2 � 0.

Note that if the ti pxq are idempotent terms, that is, ti pxq2 � ti pxq,
then one can choose the single equation to be

t1pxq � � � � � tkpxq � 0.



Elimination Theorem

THEOREM: The complete result of eliminating x from the single
equation tpx, yq � 0 is

¹
σ

tpσ, yq � 0.

Syllogisms are special cases of Elimination.

For example, the conclusion of

All A is B
All B is C

All A is C
is the result of

eliminating B from the premisses.



Solution Theorem

THEOREM: To solve qpxq � y � ppxq , write y � ppxq
qpxq .

The fraction has no meaning, so apply the Expansion Theorem:

y �
¸
σ

ppσq
qpσqCσpxq.

Replace coefficients
n

n
with n � 0 by 1.

Coefficients
0

0
become arbitrary parameters v .

Coefficients
0

n
, with n � 0, are replaced by 0.

For all other coefficients put Cσpxq � 0. This gives the necessary
and sufficient side-conditions on x for the solution to exist.



Solution Theorem (Cont’d)

In summary, let

J1 :� tσ : ppσq � qpσq � 0u
J2 :� tσ : ppσq � qpσq � 0u
J3 :� tσ : 0 � ppσq � qpσqu

Then the general solution to the equation is

y �
¸
tCσpxq : σ P J1u � v �

¸
tCσpxq : σ P J2u

provided one has
Cσpxq � 0 for σ P J3.

If ppxq and qpxq are idempotent then one has a simpler expression:

y � qpxq � v
�
1� ppxq�, provided qpxq � �1� ppxq� � 0.



Issues with Boole’s Algebra of Logic

(1) Can one really use the algebra of numbers for an algebra
of logic?

Boole thought it was amazing that the laws of numbers and of
logic differed in only one item, the idempotent law.

He said it was possibly beyond the capability of man to understand
why. (LT, p. 11)

Indeed for more than a century no one could justify Boole’s algebra
of logic — but this story belongs to my second talk (tomorrow)!



Issues (Cont’d)

(2) Can one really use uninterpretables to derive true results
about interpretables?

Boole said absolutely, by his Principles of Symbolical Reasoning.

As a well-known example, he cited the derivation of trigonometric
identities by using the ‘uninterpretable’

?�1.

In general Boole’s Principles are not correct—ordinary equational
reasoning with partial algebras can give false conclusions!

But in Boole’s algebra, ordinary equational reasoning gives correct
results!



Issues (Cont’d)

(3) How does one justify Boole’s formal use of division, with

coefficients like
0

0
and

1

0
?

Solving qpxqy � ppxq is equivalent to solving the system

qpσqyCσpxq � ppσqCσpxq (all σ).

If qpσq � 0 but ppσq � 0 then clearly Cσpxq � 0.

This is just Boole’s requirement that if
ppσq
qpσq �

n

0
, with n � 0,

then one sets Cσpxq � 0.

Etc.

Boole’s expansion with fractional coefficients is useful as a
mnemonic device.



How was Boole’s Algebra of Logic Received?

They loved the beauty and perfection of his main theorems.

They did not like his “algebra of numbers” approach.

Within a decade a movement was underway to replace Boole’s
approach with one based solely on union, complement and
intersection.

All four of Boole’s main theorems could be comfortably formulated
to fit the new ‘Boolean Algebra”.

This was first done by E. Schröder in his 1877 monograph
“Operationskreis des Logikkalkuls”.

During the years 1910–1940 Harvard scholars succeeded in
applying the name “Boolean Algebra” to this alternate approach,
as C.S. Peirce had always thought the right thing to do.



THANK YOU!

THE END
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