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Abstract. First we show that there is a countable ordinal a such that if <4, {f}>
is a mono-unary algebra then one can find a Scott sentence (which describes {4, {f}>
up to isomorphism) whose rank is less than a. Combining this result with Morley’s we
gee that if a sentence of £, , for mono-unary algebras has more than denumerably many
isomorphism types of countable models then it must have continuum many of these
isomorphism types.

We wish to show that for a given countable mono-unary algebra U
we can construct a reasonably simple Scott Senience ¢y in L, ,, i.e. for
any countable mono-unary algebra B, B k @4 iff B is isomorphic to A.
Then we apply the methods of Morley [1] to determine the possible
number of isomorphism types which can be realized among the count-
able models of a £, sentence for mono-unary algebras.
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1. The Scott Sentence. In what follows we will always assume €,
involves one non-logical symbol, a unary operation symbol. Let £ be
a subset of £, ,. Define Cy(£) to be the closure of £ under A, v, 7, &
and V; define C,(£) to be £ union the set of formulas formed by taking
the countable conjunction (or disjunction) of a set & of formulas in £,
where the set of variables which occur free in members of F is finite.

Define a transfinite sequence £,C €, C ... by the following inductive
procedure:

£, is the usual first-order predicate calculus with one unary oper-
ation symbol,

£e = U,<ef, for limit ordinals &, é< w,, and £, = G, Cy(£,;) for
E< w,.

Then £, , = Uscom,be-

THEOREM 1. The isomorphism type of a countable mono-unary algebra
U= (A, {f}> can be defined by a single sentence gy in L£,,,.

Proof. In the following we will introduce the notations which will
be used to construct ¢y, and following each definition we will state its
meaning as well as an £, to which it belongs. In much of what follows
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it will be helpful to visualize a mono-unary algebra A= ¢4, {f}> as
a directed graph {{a, f(a)>: a € A} (see Fig. 1). We will freely draw upon
graph-theoretical terminology such as predecessor, immediate predecessor,
successor, component and loop. Note that in the directed graph of a mono-
unary algebra each component contains at most one loop.

Fig. 1

(1) D(&yy .0y Tn) = /\ogi-:fgn(mi # ;) .

(This formula is in £, and expresses the predicate: z,, ..., x, are
pairwise distinet.)

(2) P (w4, ;) = D (5, 2,) \(fBy = @) .
(This formula is in £, and says: @, is an immediate predecessor of ,.)
(3) If S(w,) is any formula in £, , and a < w, let
[ 1"z 8 (@) , if a= 0;
"y ... T, [D(@gy oory @a ) AS (@) A oo AS(2,-1)] A
ATVHz ... T2 [D(Bgy oovy BIAS (@) A ... AS(2,)], if 1< a<w;
| Ai<scw Ty ... Tag[D(Ty; ooy 25) A S(X) A oo A B(@p)], if e=w.

H:“ostmﬂ) =

If S(»,) contains free variables other than x,, then a suitable change of
variables is employed to prevent them from becoming bound.

(This is in £, if S(x,) is in £; and says: There are exactly a ®,’s such
that 8 (x,).)

(4) L(x,) = Algnqm (f"@o = @,).
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{This is in £, and says: %, generates a loop.)
(3) P*(@, ®,) = P (w9, @,) A 1L (,) -
(P*(@,, @) is in £, and expresses: , immediately precedes x, and does
not generate a loop.)
(6) TFor k< w, y e w+1* define
P¥(wy) = TLO|[P¥(w,, 26) NALO[P (@3, #y) A .. ABEE VP (3, 2, _1)] ...] -
(P¥(@) is in £, and says: There are exactly y(0) immediate predecessors
o] ®, which do not generate a loop, each of which has exactly w(1) immediate

predecessors, each of which ... each of which has exactly yw(k—1) immediate
predecessors.)

(7)  Returning to our algebra A = {4, {f}>, and focusing our attention
on an element a in A, let
P,(@) = )\ {P¥(z,): P¥(a) holds, where y ¢ +1%, k< w}.
(Pgl®wy) 18 in £, ., and tells the structure of all predecessors of a which
are not in a loop.)

{8) Let 8,(x,) be whichever of the following formulas is true of a:
(f™wo = ™ mo) A N\ { N f'wo = f*20): s <m, j<my i+j<m+n},
where n,j =1, or

N AT " wo = [Mwo): my 0 < 0, m # n} .

(Sa(@) € £, and describes the structure of the successors of a.)

We remark that if B = (B, {f}) is a countable mono-unary algebra
and b € B, then P,(b) implies b has the same predecessor structure as a,
discarding those points which generate a loop. Likewise S,(b) implies a
and b have the same successor structure.

(9) Ka(“"o) = Sa(:ﬂo)/\ /\nf.aa {Pffn(a)(fﬂwﬂ)} b
(K (@) € £,,40 and tells the structure of the component of a in A.)
(10) DK (2o, 1) = Nmm<a W™ = f"m) .

(DK (2, ;) € £, and says: @, and x, belong to distinct components.)
(11) Let I, be whichever of the following is true of a:
o . T[( i< o)) A No<icicaDE (@5, 25))| A
A Ny .. E&pp]( Ascas 1 Ko@) A Nogicicar: DE (@4, 7))

where a << w or
/\cdaﬂmﬂ E[mal(/\is;axa(mi))/\(/\osm;‘saDK(xh a’s‘))] .
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(Lg€Lyrg. From I, we can determine the mumber of components iso-
morphic to the component of a, as well as the structure of the component of a.)

Finally, to describe the Scott Sentence, let {a;: ie A} be a subset
of A such that it contains exactly one element from each component
of A. Then the sentence:

(12) Pq = ( /\J.eAIm) ANV xg8a,[ T\ DK (3, ;) A VReAKm(wl)]

is readily seen to completely describe the isomorphism type of %, and
isin £, ...

2. The number of isomorphism types. The remainder of the paper is
an adaptation of Morley [1]. Let £ be a subset of £, ,. Suppose £ is closed
under C,, substitution of one variable for another (with a suitable
renaming of bound variables to prevent a clash), and contains all sub-
formulas of its members. Then if £ is countable we will say that it is
regqular. If T is a theory of mono-unary algebras consisting of a sentence
from €, ,, and K is the class of models of T which are countable, then
we will say T is scattered if, for every regular £C £, , and n < w, Sa(L, K)
is countable, where S,(L, K) denotes the set of n-types in £ realized by
models in K.

Assume that 7' is a scattered theory of mono-unary algebras, and K
its class of countable models. Let £; be a regular language containing
Loy L(@0), DK (2y, ®,), P*(@9, @), P¥(x,) for all y e o+1%, k< w, and all
possible S,(x,) as described in (8).

Let A= (A, {f}) and B = {B, {f}) be two algebras in K, and let
aed, beB. Returning to (7) one sees that either P,(x,) is identical to
Py(x,), or Pg(z,) A Py(w,) is always false. Since P,(x,) is a conjunction of
formulas in £g, it follows that for some v € 8,(f;, K), A p— P,(a,), and
if P,(w,) is not identical to Py(w,), then ~1(/Ap—>P,(w)). Since T is
scattered it follows that there are only countably many formulas of the
form P,(z,), where A= (A, {f}) eK and aeA. Let £f be a regular
language containing £7 and formulas of the form P (a,).

By an argument of the above style we can also conclude that there
are only countably many formulas of the form K (x,). Let us denote them
by Ka(w,), » < a, for a suitable a < w. Referring to (11) it is immediate
that there are only countably many sentences of the form I,. Let us
introduce the notation I,;, i < @, j < w, where 7 refers to the isomorphism
type described by Ki(w,), and j tells the number of components of this
type. Let £; be a regular language containing £} and the I ;.

Let 0,pew-+1% If 0 # p it is easy to verify that A, .I;qy and
Ni<oliwe are contradictory. Since S,(Ly, K) is countable, it will follow
that there are only countably many 6 € w+1° such that A;_.I;qq is true
of some model of 7. Since the sentence /\;_.I;q; completely describes
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the isomorphism type of a model in K which satisfies it, K has only count-
ably many different isomorphism types.

THEOREM 2. The number of isomorphism types of countable mono-unary
algebras which satisfy a sentence of L, , is either countable or 2°. (This
answers a problem of Vaught — in the case of mono-unary algebras (see [3]).)

Proof. In [1] Morley proved everything stated except he allowed
the possibility of w, isomorphism types in a scattered theory, and we
have just finished excluding this.

In conclusion we remark that all of the possible numbers of iso-
morphism types can be realized by a suitable theory of mono-unary
algebras. Also, by some obvious modifications Theorem 2 is still true
if we add a finite number of constants to our language (which already
involves one unary operation).
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