Mailbox

Rigid Boolean powers

STANLEY BURRIS¹

Shelah proved that in the variety of Boolean algebras there are rigid algebras of every uncountable cardinality (see [2]). We will prove that certain rigid simple algebras S transfer this result to the variety generated by S.

If A is an algebra let Con(A) denote the lattice of congruences of A, and let Aut(A) be the automorphism group of A. For X a Boolean space let $A[X]^*$ be the algebra of continuous functions from X to A, giving A the discrete topology (this construction is called a bounded Boolean power). For $f, g \in A[X]^*$ let $[f = g] = \{x \in X \mid fx = gx\}$. X^* is the Boolean algebra of clopen subsets of X.

LEMMA. For any algebra A and Boolean space 2X the map from $(\operatorname{Aut}(A))[X]^*$ to $\operatorname{Aut}(A[X]^*)$ given by $\alpha \to \bar{\alpha}$ where $(\bar{\alpha}f)(x) = (ax)(fx)$, $f \in A[X]^*$, is a group embedding. If this embedding is surjective then X^* must be rigid or |A| = 1.

Proof. The first part is straight-forward as the mapping is defined componentwise. For the second part note that if $\mu: X \to X$ is a homeomorphism then the map from $A[X]^*$ to $A[X]^*$ defined by $f \to f \circ \mu$ is an automorphism of $A[X]^*$. If this automorphism is equal to $\bar{\alpha}$ for some $\alpha \in \operatorname{Aut}(A)[X]^*$ then an easy argument shows $\bar{\alpha}$ is the identity map on the constant functions in $A[X]^*$, hence $\bar{\alpha}$ is the identity map on $A[X]^*$, so μ is the identity map on X or |A| = 1. Thus the embedding $\alpha \to \bar{\alpha}$ is surjective implies X^* is rigid, or |A| = 1.

It is trivial to show that if X^* is rigid then the map in the above lemma need not be surjective (let A be the group Z_2 and let X^* be an infinite rigid Boolean algebra). In the following we give sufficient conditions on A which ensure that the mapping is surjective, provided X^* is rigid.

¹ Research supported by NRC Grant A7256.

² This lemma actually holds for an arbitrary topological space X, where $A[X]^*$ is, as before, the algebra of continuous functions.

Presented by G. Grätzer. Received October 7, 1976. Accepted for publication in final form January 27, 1977.

REFERENCES

- [1] T. Evans, Some connections between residual finiteness, finite embeddability and the word problem, J. London Math. Soc. (2) 1 (1969), 399-403.
- [2] G. GRÄTZER, General Lattice Theory, Birkhäuser Verlag, Basel, 1976.
- [3] G. GRÄTZER, H. LAKSER, and C. R. PLATT, Free products of lattices, Fund. Math. 69 (1970), 233-240.

University of Manitoba, Winnipeg, Manitoba, Canada.