Mailbox

Rigid Boolean powers

STANLEY BURRIS¹

Shelah proved that in the variety of Boolean algebras there are rigid algebras of every uncountable cardinality (see [2]). We will prove that certain rigid simple algebras S transfer this result to the variety generated by S.

If A is an algebra let $\text{Con}(A)$ denote the lattice of congruences of A, and let $\text{Aut}(A)$ be the automorphism group of A. For X a Boolean space let $A[X]^*$ be the algebra of continuous functions from X to A, giving A the discrete topology (this construction is called a bounded Boolean power). For $f, g \in A[X]^*$ let $\ll f = g \gg = \{x \in X \mid fx = gx\}$. X^* is the Boolean algebra of clopen subsets of X.

LEMMA. For any algebra A and Boolean space² X the map from $(\text{Aut}(A))[X]^*$ to $\text{Aut}(A[X]^*)$ given by $\alpha \mapsto \bar{\alpha}$ where $(\bar{\alpha}f)(x) = (\alpha x)(fx)$, $f \in A[X]^*$, is a group embedding. If this embedding is surjective then X^* must be rigid or $|A| = 1$.

Proof. The first part is straight-forward as the mapping is defined component-wise. For the second part note that if $\mu : X \rightarrow X$ is a homeomorphism then the map from $A[X]^*$ to $A[X]^*$ defined by $f \mapsto f \circ \mu$ is an automorphism of $A[X]^*$. If this automorphism is equal to $\bar{\alpha}$ for some $\alpha \in \text{Aut}(A)[X]^*$ then an easy argument shows $\bar{\alpha}$ is the identity map on the constant functions in $A[X]^*$, hence $\bar{\alpha}$ is the identity map on $A[X]^*$, so μ is the identity map on X or $|A| = 1$. Thus the embedding $\alpha \mapsto \bar{\alpha}$ is surjective implies X^* is rigid, or $|A| = 1$.

It is trivial to show that if X^* is rigid then the map in the above lemma need not be surjective (let A be the group \mathbb{Z}_2 and let X^* be an infinite rigid Boolean algebra). In the following we give sufficient conditions on A which ensure that the mapping is surjective, provided X^* is rigid.

¹ Research supported by NRC Grant A7256.
² This lemma actually holds for an arbitrary topological space X, where $A[X]^*$ is, as before, the algebra of continuous functions.

Presented by G. Grätzer. Received October 7, 1976. Accepted for publication in final form January 27, 1977.
REFERENCES

University of Manitoba,
Winnipeg, Manitoba,
Canada.