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Rigid Boolean powers

STANLEY BURRIS'

Shelah proved that in the variety of Boolean algebras there are rigid algebras
of every uncountable cardinality (see [2]). We will prove that certain rigid simple
algebras S transfer this result to the variety generated by S.

If A is an algebra let Con (A) denote the lattice of congruences of A, and let
Aut (A) be the automorphism group of A. For X a Boolean space let A[XT]* be
the algebra of continuous functions from X to A, giving A the discrete topology
(this construction is called a bounded Boolean power). For f,ge A[XT* let
If=gl={xe X | fx=gx}. X* is the Boolean algebra of clopen subsets of X.

LEMMA. For any algebra A and Boolean space’ X the map from (Aut (A))[ XT*
to Aut(A[XT*) given by a—a where (af)(x)=(ax)(fx), fe A[X]*, is a
group embedding. If this embedding is surjective then X™ must be rigid or |A|= 1.

Proof. The first part is straight-forward as the mapping is defined component-
wise. For the second part note that if u : X— X is a homeomorphism then the
map from A[XT* to A[X]* defined by f — fou is an automorphism of A[X]*. If
this automorphism is equal to @ for some a € Aut (A)[ X]* then an easy argument
shows @ is the identity map on the constant functions in A[XT*, hence a is the
identity map on A[X]*, so u is the identity map on X or |A|=1. Thus the
embedding « — @ is surjective implies X™ is rigid, or |A|=1.

It is trivial to show that if X™ is rigid then the map in the above lemma need
not be surjective (let A be the group Z, and let X™* be an infinite rigid Boolean
algebra). In the following we give sufficient conditions on A which ensure that the
mapping is surjective, provided X* is rigid.

! Research supported by NRC Grant A7256.

* This lemma actually holds for an arbitrary topological space X, where A[X]* is, as before, the
algebra of continuous functions.
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